metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(1H-pyrazol-3-yl-κN2)pyridine-κN]di­thio­cyanato-κN,κS-cadmium(II)

aCollege of Science, Civil Aviation University of China, Tianjin 300300, People's Republic of China
*Correspondence e-mail: caihua-1109@163.com

(Received 22 August 2010; accepted 27 August 2010; online 4 September 2010)

The mol­ecular structure of the mononuclear complex, [Cd(SCN)2(C8H7N3)2], contains a CdII atom in a distorted octa­hedral coordination defined by five N atoms from two bidentate chelate 2-(1H-pyrazol-3-yl)pyridine ligands and by one SCN anion. The second SCN anion provides its S atom for completion of the coordination sphere. The complex is linked to four others by N—H⋯N and N—H⋯S hydrogen-bonding inter­actions between the pyrazol N—H group and the terminal S and N atoms of neighbouring SCN anions. This arrangement leads to the formation of sheets parallel to (100). Face-to-face ππ stacking inter­actions with shortest inter­planar distances of 3.805 (2) and 3.696 (2) Å help to consolidate the crystal packing.

Related literature

For background to self assembly in supra­molecular chemistry, see: Beatty (2003[Beatty, A. M. (2003). Coord. Chem. Rev. 246, 131-143.]); Braga et al. (2003[Braga, D., Maini, L., Polito, M., Tagliavini, E. & Grepioni, F. (2003). Coord. Chem. Rev. 246, 53-71.]); Chen & Liu (2002[Chen, X. M. & Liu, G. F. (2002). Chem. Eur. J. 8, 4811-4817.]); Zhang et al. (2004[Zhang, J. P., Zheng, S. L., Huang, X. C. & Chen, X. M. (2004). Angew. Chem. Int. Ed. 43, 206-209.]). For related structures, see: Hu et al. (2008[Hu, T. L., Zou, R. Q., Li, J. R. & Bu, X. H. (2008). Dalton Trans. pp. 1302-1311.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NCS)2(C8H7N3)2]

  • Mr = 518.89

  • Monoclinic, P 21 /c

  • a = 14.4612 (19) Å

  • b = 9.6043 (12) Å

  • c = 14.9089 (19) Å

  • β = 99.290 (2)°

  • V = 2043.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 296 K

  • 0.32 × 0.26 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.682, Tmax = 0.764

  • 10166 measured reflections

  • 3602 independent reflections

  • 3119 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.053

  • S = 1.05

  • 3602 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N7 2.281 (2)
Cd1—N5 2.336 (2)
Cd1—N1 2.361 (2)
Cd1—N4 2.4004 (18)
Cd1—N2 2.406 (2)
Cd1—S2 2.6730 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯S1i 0.86 2.52 3.310 (2) 153
N6—H6⋯N8ii 0.86 2.14 2.958 (3) 159
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Self-assembly processes directed by either hydrogen-bonding interactions or metal coordination have been extensively utilized in crystal engineering to construct supramolecular systems with novel structures and properties due to their inherent strength and reliability (Braga et al., 2003; Chen & Liu, 2002; Zhang et al., 2004). Proper selection of metal ions and ligands with suitable functionalized groups is the key issue in designing and self-assembling of molecules (Beatty, 2003). Very recently, we have initiated to utilize a multifunctional organic ligand, namely 3-(2-pyridyl)pyrazole (L), which acts as a simple bidentate chelate ligand, similar to 2,2'-bipyridine or 1,10-phenanthroline, to create a series of interesting metal-organic frameworks (Hu et al., 2008). In the present paper, we report the crystal structure of the title compound (I), a new CdII complex based on the ligand L with additional SCN- anions present.

In the molecular structure of the mononuclear complex (Fig. 1), the CdII atom is six-coordinated in a distorted octahedral geometry by five N atoms from one monodentate SCN- anion and two bidentate chelating ligands L, and by one S atom from another SCN- anion. The equatorial plane is defined by the SCN- N atom, and three N atoms of the L ligands. The axial positions are occupied by one pyrazole N atom of a L ligand and the S atom the second SCN- anion. The L ligand deviates slightly from planarity; the pyridyl and pyrazole rings make dihedral angles of 16.6 (2) and 3.3 (2)°, respectively. The L molecule adopts a bidentate chelate mode, in order to favor hydrogen bonding between the uncoordinated pyrazole N atoms and thiocyanate groups ligand. Each uncoordinated pyrazole N atom generates a hydrogen bond with two N and S atoms of the thiocyanate group. Furthermore, each complex is linked to four others, forming a (100) sheet, by N—H···N and N—H···S hydrogen bonding (Fig. 2). Face-to-face π-π stacking interactions between pyridyl-pyrazole and pyridyl-pyridyl rings link each sheet to two adjacent sheets, hence forming a three dimensional array (Fig. 3). The centroid-to-centroid distances between two neighboring almost parallel pyridyl-pyrazole rings are 3.805 (2) and 3.696 (2) Å, respectively.

Related literature top

For background to self assembly in supramolecular chemistry, see: Beatty (2003); Braga et al. (2003); Chen & Liu (2002); Zhang et al. (2004). For related structures, see: Hu et al. (2008).

Experimental top

Complex (I) was obtained by the reaction of Cd(NO3)2.4H2O, 3-(2-pyridyl)pyrazole (L) and NH4SCN in the molar ratio 1: 1: 1 in water (10 ml) under hydrothermal conditions at 393 K for three days. The autoclave was finally cooled down to room temperature at a rate of 5 Kh-1. The resulting solution was filtered and left to stand at room temperature. Colorless block-shaped crystals suitable for X-ray analysis were obtained in about 65% yield by slow evaporation of the solvent over a period of 1 week. Anal. calcd for C18H14CdN8S2: C,41.67; H,2.72, N, 21.59%; found: C, 41.63; H, 2.69; N, 21.54%.

Refinement top

Although all H atoms were visible in difference maps, they were finally placed in geometrically calculated positions, with C—H distances of 0.93Å and N—H distances of 0.86 Å, and included in the final refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C, N) for aromatic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELX97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) with atom labelling and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. The sheet structure of compound (I), showing N—H···N and N—H···S hydrogen bongs as red dashed lines.
[Figure 3] Fig. 3. The three-dimensional packing of compound (I), showing ππ stacking as green dashed lines (red lines are hydrogen bonding interactions).
Bis[2-(1H-pyrazol-3-yl-κN2)pyridine-κN]dithiocyanato- κN,κS-cadmium(II) top
Crystal data top
[Cd(NCS)2(C8H7N3)2]F(000) = 1032
Mr = 518.89Dx = 1.687 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4275 reflections
a = 14.4612 (19) Åθ = 2.5–27.4°
b = 9.6043 (12) ŵ = 1.30 mm1
c = 14.9089 (19) ÅT = 296 K
β = 99.290 (2)°Block, colourless
V = 2043.5 (5) Å30.32 × 0.26 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3602 independent reflections
Radiation source: fine-focus sealed tube3119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 179
Tmin = 0.682, Tmax = 0.764k = 1111
10166 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0226P)2 + 0.5639P]
where P = (Fo2 + 2Fc2)/3
3602 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Cd(NCS)2(C8H7N3)2]V = 2043.5 (5) Å3
Mr = 518.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.4612 (19) ŵ = 1.30 mm1
b = 9.6043 (12) ÅT = 296 K
c = 14.9089 (19) Å0.32 × 0.26 × 0.22 mm
β = 99.290 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3602 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3119 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.764Rint = 0.022
10166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
3602 reflectionsΔρmin = 0.24 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.229952 (12)0.555357 (17)0.337364 (11)0.03567 (7)
S10.32477 (5)1.02032 (7)0.45051 (5)0.05433 (19)
S20.12657 (5)0.57892 (7)0.46990 (5)0.04796 (17)
N10.10594 (14)0.5820 (2)0.21453 (13)0.0402 (5)
N20.18138 (14)0.3329 (2)0.27202 (13)0.0413 (5)
N30.21610 (16)0.2024 (2)0.27632 (15)0.0510 (6)
H30.26000.17370.31820.061*
N40.34659 (14)0.42207 (19)0.43362 (13)0.0359 (5)
N50.36346 (15)0.5293 (2)0.26918 (14)0.0419 (5)
N60.38935 (16)0.5695 (2)0.19073 (14)0.0481 (5)
H60.35510.61890.15010.058*
N70.25827 (17)0.7890 (2)0.34656 (15)0.0552 (6)
N80.26347 (18)0.7180 (3)0.59283 (16)0.0653 (7)
C10.06579 (19)0.7044 (3)0.19052 (18)0.0494 (7)
H10.09250.78500.21790.059*
C20.0137 (2)0.7152 (3)0.12667 (19)0.0589 (8)
H20.03900.80200.10950.071*
C30.0551 (2)0.5966 (4)0.0887 (2)0.0681 (9)
H3A0.11020.60210.04700.082*
C40.0156 (2)0.4704 (4)0.11192 (18)0.0590 (8)
H40.04350.38900.08680.071*
C50.06664 (17)0.4655 (3)0.17354 (16)0.0421 (6)
C60.11593 (17)0.3351 (3)0.19786 (16)0.0410 (6)
C70.1093 (2)0.2035 (3)0.15527 (19)0.0589 (8)
H70.06930.17750.10270.071*
C80.1745 (2)0.1224 (3)0.2080 (2)0.0586 (8)
H80.18740.02930.19810.070*
C90.33719 (18)0.3731 (2)0.51578 (16)0.0415 (6)
H90.28090.38820.53680.050*
C100.40707 (19)0.3014 (3)0.57064 (17)0.0454 (6)
H100.39830.26850.62730.054*
C110.4903 (2)0.2798 (3)0.53915 (18)0.0485 (7)
H110.53890.23250.57490.058*
C120.50132 (17)0.3284 (2)0.45472 (17)0.0413 (6)
H120.55730.31410.43290.050*
C130.42789 (16)0.3990 (2)0.40266 (16)0.0354 (5)
C140.43478 (17)0.4553 (2)0.31247 (16)0.0371 (6)
C150.5074 (2)0.4489 (3)0.26009 (18)0.0475 (6)
H150.56480.40380.27460.057*
C160.4754 (2)0.5230 (3)0.18351 (18)0.0510 (7)
H160.50720.53850.13500.061*
C170.28474 (18)0.8847 (3)0.39008 (17)0.0411 (6)
C180.20761 (19)0.6625 (3)0.54154 (17)0.0435 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03330 (11)0.03163 (10)0.03974 (11)0.00163 (8)0.00116 (7)0.00255 (8)
S10.0605 (5)0.0379 (4)0.0599 (4)0.0038 (3)0.0042 (4)0.0060 (3)
S20.0363 (4)0.0557 (4)0.0517 (4)0.0017 (3)0.0065 (3)0.0062 (3)
N10.0355 (11)0.0463 (13)0.0389 (11)0.0059 (10)0.0061 (9)0.0059 (9)
N20.0411 (12)0.0385 (12)0.0425 (12)0.0033 (10)0.0012 (9)0.0049 (9)
N30.0541 (14)0.0407 (13)0.0558 (14)0.0018 (11)0.0014 (11)0.0011 (11)
N40.0348 (11)0.0334 (11)0.0375 (11)0.0022 (9)0.0002 (9)0.0004 (8)
N50.0401 (12)0.0405 (12)0.0449 (12)0.0012 (10)0.0063 (10)0.0034 (9)
N60.0533 (14)0.0481 (13)0.0425 (12)0.0007 (11)0.0067 (10)0.0090 (10)
N70.0670 (16)0.0360 (13)0.0611 (15)0.0061 (12)0.0062 (12)0.0068 (11)
N80.0662 (17)0.0773 (18)0.0530 (15)0.0144 (15)0.0116 (13)0.0167 (13)
C10.0483 (16)0.0484 (16)0.0530 (16)0.0079 (14)0.0130 (13)0.0077 (13)
C20.0558 (18)0.070 (2)0.0540 (17)0.0284 (17)0.0177 (14)0.0211 (16)
C30.0472 (18)0.105 (3)0.0520 (18)0.0130 (19)0.0083 (14)0.0102 (18)
C40.0439 (17)0.086 (2)0.0451 (16)0.0041 (16)0.0013 (13)0.0025 (15)
C50.0360 (14)0.0607 (18)0.0296 (12)0.0066 (13)0.0052 (11)0.0008 (12)
C60.0412 (15)0.0465 (15)0.0350 (13)0.0099 (12)0.0050 (11)0.0022 (11)
C70.068 (2)0.0604 (19)0.0467 (16)0.0134 (17)0.0038 (14)0.0142 (14)
C80.079 (2)0.0358 (15)0.0612 (18)0.0050 (16)0.0124 (16)0.0120 (14)
C90.0458 (15)0.0356 (13)0.0418 (14)0.0009 (12)0.0029 (11)0.0029 (11)
C100.0586 (18)0.0360 (14)0.0386 (14)0.0024 (13)0.0011 (12)0.0011 (11)
C110.0530 (17)0.0361 (14)0.0494 (16)0.0057 (13)0.0131 (13)0.0012 (12)
C120.0359 (14)0.0327 (13)0.0529 (15)0.0021 (11)0.0007 (11)0.0064 (11)
C130.0351 (13)0.0251 (11)0.0427 (13)0.0004 (10)0.0037 (11)0.0081 (10)
C140.0370 (13)0.0307 (13)0.0423 (13)0.0029 (11)0.0027 (11)0.0069 (11)
C150.0436 (15)0.0455 (15)0.0545 (16)0.0038 (13)0.0115 (13)0.0060 (13)
C160.0557 (18)0.0499 (17)0.0517 (17)0.0015 (14)0.0213 (14)0.0015 (13)
C170.0398 (14)0.0332 (13)0.0495 (15)0.0054 (12)0.0052 (11)0.0072 (12)
C180.0445 (15)0.0479 (15)0.0404 (14)0.0025 (13)0.0142 (12)0.0024 (12)
Geometric parameters (Å, º) top
Cd1—N72.281 (2)C2—C31.367 (4)
Cd1—N52.336 (2)C2—H20.9300
Cd1—N12.361 (2)C3—C41.360 (4)
Cd1—N42.4004 (18)C3—H3A0.9300
Cd1—N22.406 (2)C4—C51.381 (4)
Cd1—S22.6730 (8)C4—H40.9300
S1—C171.636 (3)C5—C61.458 (4)
S2—C181.660 (3)C6—C71.410 (4)
N1—C11.335 (3)C7—C81.368 (4)
N1—C51.355 (3)C7—H70.9300
N2—C61.335 (3)C8—H80.9300
N2—N31.348 (3)C9—C101.378 (3)
N3—C81.339 (3)C9—H90.9300
N3—H30.8600C10—C111.376 (4)
N4—C91.339 (3)C10—H100.9300
N4—C131.349 (3)C11—C121.376 (4)
N5—C141.331 (3)C11—H110.9300
N5—N61.341 (3)C12—C131.387 (3)
N6—C161.342 (3)C12—H120.9300
N6—H60.8600C13—C141.468 (3)
N7—C171.154 (3)C14—C151.408 (4)
N8—C181.150 (3)C15—C161.362 (4)
C1—C21.372 (4)C15—H150.9300
C1—H10.9300C16—H160.9300
N7—Cd1—N588.76 (8)C2—C3—H3A120.0
N7—Cd1—N192.68 (8)C3—C4—C5118.7 (3)
N5—Cd1—N1104.58 (7)C3—C4—H4120.6
N7—Cd1—N4112.75 (7)C5—C4—H4120.6
N5—Cd1—N469.68 (7)N1—C5—C4121.7 (3)
N1—Cd1—N4153.36 (7)N1—C5—C6116.4 (2)
N7—Cd1—N2159.38 (7)C4—C5—C6121.9 (3)
N5—Cd1—N286.36 (7)N2—C6—C7110.3 (2)
N1—Cd1—N269.29 (7)N2—C6—C5118.2 (2)
N4—Cd1—N284.23 (6)C7—C6—C5131.5 (2)
N7—Cd1—S289.35 (6)C8—C7—C6105.1 (2)
N5—Cd1—S2158.58 (5)C8—C7—H7127.4
N1—Cd1—S296.82 (5)C6—C7—H7127.4
N4—Cd1—S291.50 (5)N3—C8—C7107.1 (2)
N2—Cd1—S2102.30 (5)N3—C8—H8126.5
C18—S2—Cd195.48 (9)C7—C8—H8126.5
C1—N1—C5118.3 (2)N4—C9—C10123.1 (2)
C1—N1—Cd1123.13 (17)N4—C9—H9118.5
C5—N1—Cd1118.12 (15)C10—C9—H9118.5
C6—N2—N3105.2 (2)C11—C10—C9118.1 (2)
C6—N2—Cd1116.32 (16)C11—C10—H10121.0
N3—N2—Cd1136.43 (16)C9—C10—H10121.0
C8—N3—N2112.3 (2)C12—C11—C10119.9 (2)
C8—N3—H3123.9C12—C11—H11120.1
N2—N3—H3123.9C10—C11—H11120.1
C9—N4—C13118.5 (2)C11—C12—C13119.1 (2)
C9—N4—Cd1124.66 (16)C11—C12—H12120.5
C13—N4—Cd1116.77 (15)C13—C12—H12120.5
C14—N5—N6105.9 (2)N4—C13—C12121.3 (2)
C14—N5—Cd1118.45 (16)N4—C13—C14116.4 (2)
N6—N5—Cd1135.67 (16)C12—C13—C14122.3 (2)
N5—N6—C16111.5 (2)N5—C14—C15110.1 (2)
N5—N6—H6124.2N5—C14—C13118.7 (2)
C16—N6—H6124.2C15—C14—C13131.2 (2)
C17—N7—Cd1149.0 (2)C16—C15—C14105.0 (2)
N1—C1—C2122.1 (3)C16—C15—H15127.5
N1—C1—H1118.9C14—C15—H15127.5
C2—C1—H1118.9N6—C16—C15107.5 (2)
C3—C2—C1119.1 (3)N6—C16—H16126.2
C3—C2—H2120.5C15—C16—H16126.2
C1—C2—H2120.5N7—C17—S1178.5 (3)
C4—C3—C2120.0 (3)N8—C18—S2178.3 (3)
C4—C3—H3A120.0
N7—Cd1—S2—C1851.87 (11)N4—Cd1—N7—C1736.8 (5)
N5—Cd1—S2—C1833.09 (17)N2—Cd1—N7—C17179.6 (3)
N1—Cd1—S2—C18144.49 (11)S2—Cd1—N7—C1754.5 (4)
N4—Cd1—S2—C1860.87 (10)C5—N1—C1—C20.5 (4)
N2—Cd1—S2—C18145.29 (10)Cd1—N1—C1—C2171.50 (19)
N7—Cd1—N1—C114.5 (2)N1—C1—C2—C32.4 (4)
N5—Cd1—N1—C1103.9 (2)C1—C2—C3—C42.4 (4)
N4—Cd1—N1—C1177.50 (17)C2—C3—C4—C50.4 (4)
N2—Cd1—N1—C1175.8 (2)C1—N1—C5—C43.4 (4)
S2—Cd1—N1—C175.21 (19)Cd1—N1—C5—C4168.96 (19)
N7—Cd1—N1—C5173.55 (18)C1—N1—C5—C6176.5 (2)
N5—Cd1—N1—C584.13 (18)Cd1—N1—C5—C611.2 (3)
N4—Cd1—N1—C510.5 (3)C3—C4—C5—N13.4 (4)
N2—Cd1—N1—C53.83 (16)C3—C4—C5—C6176.5 (3)
S2—Cd1—N1—C596.78 (17)N3—N2—C6—C70.3 (3)
N7—Cd1—N2—C625.9 (3)Cd1—N2—C6—C7166.79 (17)
N5—Cd1—N2—C6102.57 (18)N3—N2—C6—C5178.5 (2)
N1—Cd1—N2—C64.50 (16)Cd1—N2—C6—C512.0 (3)
N4—Cd1—N2—C6172.49 (18)N1—C5—C6—N215.5 (3)
S2—Cd1—N2—C697.23 (17)C4—C5—C6—N2164.6 (2)
N7—Cd1—N2—N3135.1 (3)N1—C5—C6—C7162.9 (3)
N5—Cd1—N2—N358.4 (2)C4—C5—C6—C717.0 (4)
N1—Cd1—N2—N3165.5 (2)N2—C6—C7—C80.1 (3)
N4—Cd1—N2—N311.5 (2)C5—C6—C7—C8178.5 (3)
S2—Cd1—N2—N3101.8 (2)N2—N3—C8—C70.4 (3)
C6—N2—N3—C80.4 (3)C6—C7—C8—N30.2 (3)
Cd1—N2—N3—C8162.8 (2)C13—N4—C9—C100.7 (3)
N7—Cd1—N4—C998.66 (19)Cd1—N4—C9—C10177.48 (18)
N5—Cd1—N4—C9178.3 (2)N4—C9—C10—C110.2 (4)
N1—Cd1—N4—C999.8 (2)C9—C10—C11—C120.6 (4)
N2—Cd1—N4—C993.47 (18)C10—C11—C12—C130.1 (4)
S2—Cd1—N4—C98.74 (18)C9—N4—C13—C121.1 (3)
N7—Cd1—N4—C1379.53 (17)Cd1—N4—C13—C12177.16 (16)
N5—Cd1—N4—C130.09 (15)C9—N4—C13—C14179.73 (19)
N1—Cd1—N4—C1382.1 (2)Cd1—N4—C13—C141.4 (2)
N2—Cd1—N4—C1388.34 (16)C11—C12—C13—N40.8 (3)
S2—Cd1—N4—C13169.45 (15)C11—C12—C13—C14179.3 (2)
N7—Cd1—N5—C14116.27 (17)N6—N5—C14—C150.1 (3)
N1—Cd1—N5—C14151.29 (16)Cd1—N5—C14—C15178.69 (15)
N4—Cd1—N5—C141.41 (16)N6—N5—C14—C13178.68 (19)
N2—Cd1—N5—C1483.78 (17)Cd1—N5—C14—C132.7 (3)
S2—Cd1—N5—C1431.2 (3)N4—C13—C14—N52.8 (3)
N7—Cd1—N5—N665.6 (2)C12—C13—C14—N5175.8 (2)
N1—Cd1—N5—N626.8 (2)N4—C13—C14—C15179.0 (2)
N4—Cd1—N5—N6179.5 (2)C12—C13—C14—C152.4 (4)
N2—Cd1—N5—N694.3 (2)N5—C14—C15—C160.0 (3)
S2—Cd1—N5—N6150.72 (17)C13—C14—C15—C16178.4 (2)
C14—N5—N6—C160.1 (3)N5—N6—C16—C150.1 (3)
Cd1—N5—N6—C16178.39 (18)C14—C15—C16—N60.1 (3)
N5—Cd1—N7—C17104.2 (4)Cd1—N7—C17—S1107 (9)
N1—Cd1—N7—C17151.3 (4)Cd1—S2—C18—N8129 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S1i0.862.523.310 (2)153
N6—H6···N8ii0.862.142.958 (3)159
Symmetry codes: (i) x, y1, z; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(NCS)2(C8H7N3)2]
Mr518.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.4612 (19), 9.6043 (12), 14.9089 (19)
β (°) 99.290 (2)
V3)2043.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.32 × 0.26 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.682, 0.764
No. of measured, independent and
observed [I > 2σ(I)] reflections
10166, 3602, 3119
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.053, 1.05
No. of reflections3602
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.24

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELX97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N72.281 (2)Cd1—N42.4004 (18)
Cd1—N52.336 (2)Cd1—N22.406 (2)
Cd1—N12.361 (2)Cd1—S22.6730 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S1i0.862.523.310 (2)153.2
N6—H6···N8ii0.862.142.958 (3)159.1
Symmetry codes: (i) x, y1, z; (ii) x, y+3/2, z1/2.
 

Acknowledgements

We acknowledge financial support by the Special Fund for Central Universities (ZXH2009D011).

References

First citationBeatty, A. M. (2003). Coord. Chem. Rev. 246, 131–143.  Web of Science CrossRef CAS Google Scholar
First citationBraga, D., Maini, L., Polito, M., Tagliavini, E. & Grepioni, F. (2003). Coord. Chem. Rev. 246, 53–71.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. M. & Liu, G. F. (2002). Chem. Eur. J. 8, 4811–4817.  CrossRef PubMed CAS Google Scholar
First citationHu, T. L., Zou, R. Q., Li, J. R. & Bu, X. H. (2008). Dalton Trans. pp. 1302–1311.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J. P., Zheng, S. L., Huang, X. C. & Chen, X. M. (2004). Angew. Chem. Int. Ed. 43, 206–209.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds