metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1268-m1269

Octa­methyl­bis­­(μ2-2-methyl­benzoato-κ2O:O′)bis­­(2-methyl­benzoato-κO)di-μ3-oxido-tetra­tin(IV)

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 30 August 2010; accepted 13 September 2010; online 18 September 2010)

The title compound, [Sn4(CH3)8(C8H7O2)4O2], is a distann­oxane derivative of 2-methyl­benzoic acid. The crystal structure is composed of centrosymmetric dimers lying about inversion centres. Both independent Sn atoms adopt distorted trigonal-bipyramidal SnC2O3 coordination geometries with the basal planes consisting of two C-atoms from the methyl groups and a bridging O atom. The Sn—C and Sn—O bond lengths lie in the ranges 2.090 (2)–2.104 (3) and 2.0241 (14)–2.2561 (15) Å, respectively. The central four-membered planar Sn2O2 ring [Sn⋯Sn distance = 3.2993 (2) Å] makes dihedral angles of 5.43 (11) and 59.50 (7)° with the methyl­phenyl groups, which are themselves oriented at a dihedral angle of 61.38 (8)°. Besides weak C—H⋯O and C—H⋯π inter­actions, the packing mainly features van der Waals forces between the mol­ecules.

Related literature

For distannoxanes, see: Amini et al. (2002[Amini, M. M., Abadi, S. H., Mirzaee, M., Lügger, T., Hahn, F. E. & Ng, S. W. (2002). Acta Cryst. E58, m697-m699.]); Danish et al. (2009[Danish, M., Tahir, M. N., Ahmad, N., Raza, A. R. & Ibrahim, M. (2009). Acta Cryst. E65, m609-m610.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn4(CH3)8(C8H7O2)4O2]

  • Mr = 1167.66

  • Triclinic, [P \overline 1]

  • a = 10.0413 (2) Å

  • b = 10.1280 (2) Å

  • c = 12.0910 (3) Å

  • α = 83.300 (1)°

  • β = 72.850 (2)°

  • γ = 71.876 (1)°

  • V = 1116.24 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.26 mm−1

  • T = 296 K

  • 0.30 × 0.26 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.514, Tmax = 0.593

  • 18376 measured reflections

  • 5470 independent reflections

  • 4786 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.049

  • S = 1.09

  • 5470 reflections

  • 250 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C14–C19 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10C⋯O5i 0.96 2.678 3.452 (3) 138
C4—H4⋯Cgi 0.93 2.74 3.493 (3) 139
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Recently we have reported the synthesis and crystal structure of a distannoxane (Danish et al., 2009). In continuation of our interest in tin chemistry, the title compound (I), (Fig. 1) has been synthesized and structurally characterized. The crystal structure of bis(1,1,3,3-tetramethyl-1,3-dibenzoatodistannoxane) (Amini et al., 2002) has also been published which is related to the title compound.

In the title molecule, both independent Sn atoms adopt distorted trigonal-bipyramidal coordination spheres with basal planes A (C9/C10/O3) and B (C11/C12/O3). The Sn—C and Sn—O bond lengths are lying in a range of 2.090 (2)–2.104 (3) Å and 2.0241 (14)–2.2561 (15) Å, respectively. The symmetry-related central four membered ring C (Sn2/O3/Sn2i/O3i; symmetry code: i = -x + 1, -y, -z + 1) is planar. The dihedral angles between A/C, B/C and A/B are 72.76 (4), 85.40 (6) and 57.54 (8)°, respectively. In (I), the 2-methylbenzoato ligands are not planar. In the endo ligand, group D (C2—C8) [r.m.s deviation of 0.0082 Å] is oriented at a dihedral angle of 32.9 (2)° with the carboxylato group E (O1/C1/O2). Whereas the exo ligand, group F (C14—C20) [r.m.s deviation of 0.0115 Å] is oriented at a dihedral angle of 45.3 (2)° with the carboxylato group G (O4/C13/O5). The dihedral angles between C/D and C/F are 5.43 (11) and 59.50 (7)°, respectively. There exist a weak C—H···O and a C—H···π interaction (Table 1). The packing mainly features van der Waals interactions between the molecules.

Related literature top

For distannoxanes, see: Amini et al. (2002); Danish et al. (2009).

Experimental top

The sodium salt of o-toluic acid (0.316 g, 2.0 mmol) was suspended in 25 ml dry methanol in a 100 ml round-bottom flask. To this suspension, dimethyl tin dichloride (0.22 g, 1 mmol), dissolved in 25 ml dry methanol, was added dropwise with constant stirring at room temperature. The reaction mixture was refluxed for 6 h. Filtration was carried out to remove sodium chloride formed during reaction. Colorless prism of (I) were obtained after 48 h from the filtrate. M.p 486 K; yield: 71%.

Refinement top

Some low angle reflections were omitted from the refinement due to the beam stop effect. The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radius. [Symmetry code: (i) -x + 1, -y, -z + 1.]
Octamethylbis(µ2-2-methylbenzoato-κ2O:O')bis(2- methylbenzoato-κO)di-µ3-oxido-tetratin(IV) top
Crystal data top
[Sn4(CH3)8(C8H7O2)4O2]Z = 1
Mr = 1167.66F(000) = 572
Triclinic, P1Dx = 1.737 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0413 (2) ÅCell parameters from 4786 reflections
b = 10.1280 (2) Åθ = 2.1–28.3°
c = 12.0910 (3) ŵ = 2.26 mm1
α = 83.300 (1)°T = 296 K
β = 72.850 (2)°Prism, colorless
γ = 71.876 (1)°0.30 × 0.26 × 0.23 mm
V = 1116.24 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5470 independent reflections
Radiation source: fine-focus sealed tube4786 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 7.50 pixels mm-1θmax = 28.3°, θmin = 2.1°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.514, Tmax = 0.593l = 1616
18376 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0194P)2 + 0.3314P]
where P = (Fo2 + 2Fc2)/3
5470 reflections(Δ/σ)max = 0.002
250 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Sn4(CH3)8(C8H7O2)4O2]γ = 71.876 (1)°
Mr = 1167.66V = 1116.24 (4) Å3
Triclinic, P1Z = 1
a = 10.0413 (2) ÅMo Kα radiation
b = 10.1280 (2) ŵ = 2.26 mm1
c = 12.0910 (3) ÅT = 296 K
α = 83.300 (1)°0.30 × 0.26 × 0.23 mm
β = 72.850 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5470 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4786 reflections with I > 2σ(I)
Tmin = 0.514, Tmax = 0.593Rint = 0.024
18376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 1.09Δρmax = 0.43 e Å3
5470 reflectionsΔρmin = 0.40 e Å3
250 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.22041 (1)0.28397 (1)0.53408 (1)0.0339 (1)
Sn20.57013 (1)0.05882 (1)0.58448 (1)0.0328 (1)
O10.26212 (16)0.33067 (15)0.69668 (12)0.0441 (5)
O20.50311 (16)0.27701 (15)0.64565 (14)0.0488 (5)
O30.39865 (14)0.11621 (13)0.51399 (12)0.0374 (4)
O40.20722 (17)0.18882 (15)0.38766 (13)0.0474 (5)
O50.0386 (2)0.38219 (17)0.36273 (15)0.0601 (6)
C10.3791 (2)0.3503 (2)0.69953 (17)0.0364 (6)
C20.3696 (2)0.46856 (19)0.76660 (16)0.0341 (6)
C30.2507 (2)0.5860 (2)0.77069 (19)0.0432 (7)
C40.2381 (3)0.7032 (2)0.8260 (2)0.0497 (7)
C50.3430 (3)0.7029 (2)0.8776 (2)0.0495 (7)
C60.4602 (3)0.5859 (2)0.87427 (19)0.0462 (7)
C70.4771 (2)0.4666 (2)0.81952 (17)0.0376 (6)
C80.6062 (3)0.3421 (2)0.8215 (2)0.0528 (8)
C90.0303 (2)0.2487 (3)0.6466 (2)0.0514 (8)
C100.2897 (3)0.4523 (2)0.4481 (2)0.0565 (8)
C110.7553 (3)0.1127 (2)0.4805 (2)0.0510 (8)
C120.4894 (3)0.0106 (3)0.7538 (2)0.0572 (8)
C130.1215 (2)0.2684 (2)0.32976 (18)0.0423 (7)
C140.1306 (2)0.2099 (2)0.21784 (18)0.0415 (6)
C150.1326 (3)0.0718 (2)0.2182 (2)0.0503 (7)
C160.1385 (3)0.0126 (3)0.1193 (2)0.0597 (9)
C170.1461 (3)0.0905 (3)0.0183 (2)0.0656 (10)
C180.1470 (3)0.2263 (3)0.0163 (2)0.0603 (9)
C190.1369 (2)0.2902 (3)0.11569 (19)0.0477 (7)
C200.1334 (3)0.4405 (3)0.1102 (3)0.0668 (10)
H30.179420.585600.736120.0518*
H40.158900.781790.828190.0596*
H50.335080.781460.914820.0594*
H60.530170.587230.909920.0555*
H8A0.661570.361510.866910.0792*
H8B0.666470.322050.743900.0792*
H8C0.572950.263420.855080.0792*
H9A0.055830.177310.702720.0771*
H9B0.021240.219850.603070.0771*
H9C0.030610.332860.685560.0771*
H10A0.303650.447610.366490.0847*
H10B0.380010.449160.462050.0847*
H10C0.217410.537570.476350.0847*
H11A0.730190.173700.417990.0764*
H11B0.830350.030180.449560.0764*
H11C0.789780.158950.526340.0764*
H12A0.548980.003240.800650.0858*
H12B0.491240.105880.753130.0858*
H12C0.391100.045330.785230.0858*
H150.129900.018600.286500.0604*
H160.137340.079090.121080.0716*
H170.150670.051500.049180.0787*
H180.154570.277000.053390.0724*
H20A0.194660.451790.153940.1002*
H20B0.035240.496700.142060.1002*
H20C0.167940.468960.031000.1002*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0307 (1)0.0301 (1)0.0392 (1)0.0034 (1)0.0120 (1)0.0034 (1)
Sn20.0304 (1)0.0345 (1)0.0344 (1)0.0063 (1)0.0115 (1)0.0060 (1)
O10.0397 (8)0.0516 (9)0.0440 (8)0.0135 (7)0.0113 (6)0.0126 (7)
O20.0406 (8)0.0430 (8)0.0617 (10)0.0078 (6)0.0088 (7)0.0237 (7)
O30.0355 (7)0.0316 (6)0.0467 (8)0.0004 (5)0.0203 (6)0.0099 (6)
O40.0507 (9)0.0438 (8)0.0483 (9)0.0001 (7)0.0264 (7)0.0083 (6)
O50.0612 (11)0.0534 (10)0.0574 (10)0.0092 (8)0.0259 (8)0.0158 (8)
C10.0383 (10)0.0380 (10)0.0323 (10)0.0095 (8)0.0095 (8)0.0038 (8)
C20.0351 (10)0.0324 (9)0.0333 (10)0.0083 (8)0.0074 (7)0.0047 (7)
C30.0392 (11)0.0399 (11)0.0470 (12)0.0030 (9)0.0133 (9)0.0076 (9)
C40.0497 (13)0.0345 (10)0.0544 (14)0.0006 (9)0.0096 (10)0.0084 (9)
C50.0609 (14)0.0365 (11)0.0484 (13)0.0140 (10)0.0070 (10)0.0126 (9)
C60.0482 (12)0.0490 (12)0.0455 (12)0.0154 (10)0.0138 (9)0.0109 (9)
C70.0379 (10)0.0366 (10)0.0361 (10)0.0080 (8)0.0080 (8)0.0061 (8)
C80.0499 (13)0.0507 (13)0.0588 (14)0.0017 (10)0.0263 (11)0.0115 (11)
C90.0386 (12)0.0555 (13)0.0587 (14)0.0151 (10)0.0073 (10)0.0082 (11)
C100.0666 (16)0.0438 (12)0.0581 (15)0.0186 (11)0.0158 (12)0.0060 (10)
C110.0465 (13)0.0465 (12)0.0556 (14)0.0168 (10)0.0036 (10)0.0028 (10)
C120.0550 (14)0.0631 (15)0.0442 (13)0.0122 (12)0.0058 (10)0.0005 (11)
C130.0404 (11)0.0436 (11)0.0436 (12)0.0074 (9)0.0160 (9)0.0051 (9)
C140.0344 (10)0.0462 (11)0.0417 (11)0.0025 (9)0.0147 (8)0.0072 (9)
C150.0517 (13)0.0475 (12)0.0502 (13)0.0039 (10)0.0215 (10)0.0051 (10)
C160.0617 (16)0.0532 (14)0.0621 (16)0.0041 (12)0.0204 (12)0.0199 (12)
C170.0602 (16)0.0784 (19)0.0527 (15)0.0040 (14)0.0143 (12)0.0287 (14)
C180.0558 (15)0.0817 (19)0.0375 (12)0.0121 (13)0.0120 (10)0.0026 (12)
C190.0395 (11)0.0577 (13)0.0439 (12)0.0092 (10)0.0132 (9)0.0031 (10)
C200.0742 (18)0.0673 (17)0.0639 (17)0.0287 (14)0.0237 (14)0.0143 (13)
Geometric parameters (Å, º) top
Sn1—O12.2561 (15)C18—C191.394 (3)
Sn1—O32.0241 (14)C19—C201.506 (4)
Sn1—O42.1671 (16)C3—H30.9300
Sn1—C92.098 (2)C4—H40.9300
Sn1—C102.090 (2)C5—H50.9300
Sn2—O22.2463 (15)C6—H60.9300
Sn2—O32.0387 (15)C8—H8A0.9600
Sn2—C112.104 (3)C8—H8B0.9600
Sn2—C122.094 (2)C8—H8C0.9600
Sn2—Sn2i3.2993 (2)C9—H9A0.9600
Sn2—O3i2.1412 (13)C9—H9B0.9600
O1—C11.261 (3)C9—H9C0.9600
O2—C11.259 (3)C10—H10A0.9600
O4—C131.293 (3)C10—H10B0.9600
O5—C131.223 (3)C10—H10C0.9600
C1—C21.487 (3)C11—H11A0.9600
C2—C31.392 (3)C11—H11B0.9600
C2—C71.402 (3)C11—H11C0.9600
C3—C41.384 (3)C12—H12A0.9600
C4—C51.373 (4)C12—H12B0.9600
C5—C61.381 (3)C12—H12C0.9600
C6—C71.386 (3)C15—H150.9300
C7—C81.505 (3)C16—H160.9300
C13—C141.507 (3)C17—H170.9300
C14—C151.392 (3)C18—H180.9300
C14—C191.394 (3)C20—H20A0.9600
C15—C161.377 (3)C20—H20B0.9600
C16—C171.370 (4)C20—H20C0.9600
C17—C181.376 (4)
Sn1···O5ii3.6541 (17)C1···H8C2.9700
Sn2···C13i4.045 (2)C1···H10B2.9300
Sn1···H11Bi3.3500C1···H8B3.0100
Sn2···H15i3.6200C3···H20Bii3.0900
O1···Sn23.4765 (15)C4···H11Aiv3.0300
O1···O32.9929 (19)C5···H8Aiii3.0700
O1···C92.937 (3)C5···H12Bv2.8300
O1···C103.080 (3)C6···H8Aiii3.0500
O2···C82.842 (3)C6···H6iii2.9800
O2···Sn13.4633 (17)C7···H10Aiv2.9100
O2···O32.990 (2)C8···H10Aiv3.0600
O2···C112.888 (3)C9···H11Bi2.9400
O2···C123.077 (3)C10···H8Biv3.1000
O3···O3i2.5685 (19)C13···H10A3.0900
O3···C103.314 (2)C13···H20A2.7400
O3···C123.294 (3)C14···H4ii3.0900
O3···O42.676 (2)C14···H3ii3.0900
O3···O12.9929 (19)C15···H4ii3.0300
O3···O22.990 (2)C15···H12Ai3.0000
O3···C12i3.287 (3)C16···H4ii3.0000
O3···C13.374 (2)C17···H4ii3.0400
O3···C11i3.147 (3)C19···H3ii3.0900
O4···Sn2i2.8567 (16)H3···O12.5100
O4···O32.676 (2)H3···O5ii2.7100
O4···C103.245 (3)H3···C14ii3.0900
O4···C11i3.243 (2)H3···C19ii3.0900
O4···C93.134 (3)H3···H20Bii2.5400
O4···C12i3.113 (3)H4···C14ii3.0900
O5···C103.278 (4)H4···C15ii3.0300
O5···Sn1ii3.6541 (17)H4···C16ii3.0000
O5···C202.965 (4)H4···C17ii3.0400
O1···H32.5100H5···H12Bv2.5200
O2···H8B2.4600H6···H8A2.2900
O2···H8C2.8000H6···C6iii2.9800
O2···H11C2.7600H6···H20Aiv2.5500
O4···H12Bi2.9100H8A···H62.2900
O4···H9B2.8900H8A···C5iii3.0700
O4···H11Bi2.8300H8A···C6iii3.0500
O4···H152.6400H8B···O22.4600
O5···H20A2.7000H8B···C13.0100
O5···H20B2.7900H8B···C10iv3.1000
O5···H3ii2.7100H8C···O22.8000
O5···H9Cii2.8600H8C···C12.9700
O5···H10Cii2.6800H9B···H11Cvi2.6000
C3···C19ii3.581 (3)H9C···O5ii2.8600
C6···C6iii3.499 (3)H10A···C133.0900
C7···C10iv3.569 (3)H10A···C7iv2.9100
C8···O22.842 (3)H10A···C8iv3.0600
C9···O43.134 (3)H10B···C12.9300
C9···O12.937 (3)H10C···O5ii2.6800
C10···C7iv3.569 (3)H11A···C4iv3.0300
C10···C13.379 (3)H11B···Sn1i3.3500
C10···O43.245 (3)H11B···O4i2.8300
C10···C133.518 (3)H11B···C9i2.9400
C10···O53.278 (4)H11C···H9Bvii2.6000
C10···O33.314 (2)H12A···C15i3.0000
C10···O13.080 (3)H12B···C5viii2.8300
C11···O22.888 (3)H12B···H5viii2.5200
C11···O4i3.242 (2)H12B···O4i2.9100
C11···Sn1i3.970 (2)H15···O42.6400
C11···O3i3.147 (3)H15···Sn2i3.6200
C12···O3i3.287 (3)H18···H20C2.3500
C12···C13.517 (3)H20A···O52.7000
C12···O4i3.113 (3)H20A···C132.7400
C12···O33.294 (3)H20A···H6iv2.5500
C12···O23.077 (3)H20B···O52.7900
C13···Sn2i4.044 (2)H20B···C3ii3.0900
C19···C3ii3.581 (3)H20B···H3ii2.5400
C20···O52.965 (4)H20C···H182.3500
O1—Sn1—O388.56 (6)C14—C19—C20122.4 (2)
O1—Sn1—O4166.35 (5)C18—C19—C20120.1 (2)
O1—Sn1—C984.75 (8)C2—C3—H3120.00
O1—Sn1—C1090.16 (8)C4—C3—H3120.00
O3—Sn1—O479.26 (6)C3—C4—H4120.00
O3—Sn1—C9114.11 (9)C5—C4—H4120.00
O3—Sn1—C10107.30 (8)C4—C5—H5120.00
O4—Sn1—C994.55 (8)C6—C5—H5120.00
O4—Sn1—C1099.29 (8)C5—C6—H6119.00
C9—Sn1—C10138.08 (11)C7—C6—H6119.00
O2—Sn2—O388.35 (6)C7—C8—H8A109.00
O2—Sn2—C1183.12 (7)C7—C8—H8B109.00
O2—Sn2—C1290.24 (9)C7—C8—H8C109.00
Sn2i—Sn2—O2126.86 (4)H8A—C8—H8B109.00
O2—Sn2—O3i162.12 (6)H8A—C8—H8C109.00
O3—Sn2—C11113.89 (8)H8B—C8—H8C110.00
O3—Sn2—C12105.70 (10)Sn1—C9—H9A109.00
Sn2i—Sn2—O338.99 (4)Sn1—C9—H9B109.00
O3—Sn2—O3i75.78 (5)Sn1—C9—H9C109.00
C11—Sn2—C12139.56 (11)H9A—C9—H9B109.00
Sn2i—Sn2—C11108.32 (7)H9A—C9—H9C109.00
O3i—Sn2—C1195.66 (7)H9B—C9—H9C109.00
Sn2i—Sn2—C12107.47 (8)Sn1—C10—H10A110.00
O3i—Sn2—C12101.83 (9)Sn1—C10—H10B109.00
Sn2i—Sn2—O3i36.80 (4)Sn1—C10—H10C109.00
Sn1—O1—C1123.85 (13)H10A—C10—H10B109.00
Sn2—O2—C1129.00 (14)H10A—C10—H10C109.00
Sn1—O3—Sn2132.78 (7)H10B—C10—H10C109.00
Sn1—O3—Sn2i122.76 (7)Sn2—C11—H11A109.00
Sn2—O3—Sn2i104.22 (6)Sn2—C11—H11B110.00
Sn1—O4—C13115.13 (12)Sn2—C11—H11C110.00
O1—C1—O2123.10 (19)H11A—C11—H11B109.00
O1—C1—C2118.30 (18)H11A—C11—H11C109.00
O2—C1—C2118.57 (19)H11B—C11—H11C110.00
C1—C2—C3116.73 (19)Sn2—C12—H12A109.00
C1—C2—C7122.57 (18)Sn2—C12—H12B109.00
C3—C2—C7120.64 (18)Sn2—C12—H12C109.00
C2—C3—C4120.3 (2)H12A—C12—H12B109.00
C3—C4—C5119.7 (2)H12A—C12—H12C110.00
C4—C5—C6120.0 (2)H12B—C12—H12C109.00
C5—C6—C7122.2 (3)C14—C15—H15119.00
C2—C7—C6117.3 (2)C16—C15—H15119.00
C2—C7—C8123.55 (19)C15—C16—H16120.00
C6—C7—C8119.2 (2)C17—C16—H16120.00
O4—C13—O5123.1 (2)C16—C17—H17120.00
O4—C13—C14114.83 (17)C18—C17—H17120.00
O5—C13—C14122.09 (19)C17—C18—H18119.00
C13—C14—C15118.28 (18)C19—C18—H18119.00
C13—C14—C19121.75 (19)C19—C20—H20A110.00
C15—C14—C19120.0 (2)C19—C20—H20B109.00
C14—C15—C16121.2 (2)C19—C20—H20C109.00
C15—C16—C17119.2 (3)H20A—C20—H20B109.00
C16—C17—C18120.2 (2)H20A—C20—H20C109.00
C17—C18—C19121.9 (2)H20B—C20—H20C109.00
C14—C19—C18117.5 (2)
O3—Sn1—O1—C157.73 (15)C12—Sn2—Sn2i—C12i180.00 (12)
C9—Sn1—O1—C1172.10 (17)O3i—Sn2—Sn2i—O3179.98 (13)
C10—Sn1—O1—C149.57 (17)O3—Sn2—O3i—Sn1i174.92 (9)
O1—Sn1—O3—Sn216.38 (10)O3—Sn2—O3i—Sn2i0.03 (14)
O1—Sn1—O3—Sn2i156.91 (8)C11—Sn2—O3i—Sn1i61.67 (10)
O4—Sn1—O3—Sn2169.83 (11)C11—Sn2—O3i—Sn2i113.25 (8)
O4—Sn1—O3—Sn2i16.88 (8)C12—Sn2—O3i—Sn1i81.66 (12)
C9—Sn1—O3—Sn299.97 (11)C12—Sn2—O3i—Sn2i103.42 (10)
C9—Sn1—O3—Sn2i73.32 (10)Sn1—O1—C1—O242.7 (3)
C10—Sn1—O3—Sn273.34 (12)Sn1—O1—C1—C2135.22 (15)
C10—Sn1—O3—Sn2i113.38 (10)Sn2—O2—C1—O123.7 (3)
O3—Sn1—O4—C13163.73 (16)Sn2—O2—C1—C2158.41 (13)
C9—Sn1—O4—C1382.56 (17)Sn1—O4—C13—O59.5 (3)
C10—Sn1—O4—C1357.73 (17)Sn1—O4—C13—C14170.80 (14)
O3—Sn2—O2—C149.17 (18)O1—C1—C2—C332.3 (3)
C11—Sn2—O2—C1163.47 (19)O1—C1—C2—C7150.43 (19)
C12—Sn2—O2—C156.53 (19)O2—C1—C2—C3145.7 (2)
Sn2i—Sn2—O2—C155.71 (19)O2—C1—C2—C731.6 (3)
O2—Sn2—O3—Sn114.15 (10)C1—C2—C3—C4176.5 (2)
O2—Sn2—O3—Sn2i171.68 (7)C7—C2—C3—C40.8 (3)
C11—Sn2—O3—Sn195.88 (11)C1—C2—C7—C6176.54 (19)
C11—Sn2—O3—Sn2i89.95 (8)C1—C2—C7—C84.7 (3)
C12—Sn2—O3—Sn175.64 (12)C3—C2—C7—C60.6 (3)
C12—Sn2—O3—Sn2i98.54 (9)C3—C2—C7—C8178.2 (2)
Sn2i—Sn2—O3—Sn1174.18 (14)C2—C3—C4—C50.4 (3)
O3i—Sn2—O3—Sn1174.18 (11)C3—C4—C5—C60.1 (4)
O3i—Sn2—O3—Sn2i0.03 (13)C4—C5—C6—C70.3 (4)
O2—Sn2—Sn2i—O310.42 (8)C5—C6—C7—C20.1 (3)
O2—Sn2—Sn2i—O2i180.00 (8)C5—C6—C7—C8178.8 (2)
O2—Sn2—Sn2i—O3i169.58 (8)O4—C13—C14—C1545.0 (3)
O2—Sn2—Sn2i—C11i84.82 (8)O4—C13—C14—C19135.0 (2)
O2—Sn2—Sn2i—C12i76.02 (10)O5—C13—C14—C15134.7 (3)
O3—Sn2—Sn2i—O2i169.58 (8)O5—C13—C14—C1945.3 (3)
O3—Sn2—Sn2i—O3i179.98 (13)C13—C14—C15—C16179.0 (3)
O3—Sn2—Sn2i—C11i74.40 (9)C19—C14—C15—C161.0 (4)
O3—Sn2—Sn2i—C12i86.45 (11)C13—C14—C19—C18179.2 (2)
C11—Sn2—Sn2i—O3105.61 (9)C13—C14—C19—C200.7 (4)
C11—Sn2—Sn2i—O2i84.81 (8)C15—C14—C19—C180.8 (4)
C11—Sn2—Sn2i—O3i74.39 (9)C15—C14—C19—C20179.3 (3)
C11—Sn2—Sn2i—C11i180.00 (9)C14—C15—C16—C171.6 (5)
C11—Sn2—Sn2i—C12i19.16 (11)C15—C16—C17—C180.4 (5)
C12—Sn2—Sn2i—O393.56 (11)C16—C17—C18—C191.5 (5)
C12—Sn2—Sn2i—O2i76.02 (10)C17—C18—C19—C142.1 (4)
C12—Sn2—Sn2i—O3i86.45 (11)C17—C18—C19—C20178.0 (3)
C12—Sn2—Sn2i—C11i19.16 (11)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x+1, y+1, z+1; (v) x, y+1, z; (vi) x1, y, z; (vii) x+1, y, z; (viii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C14–C19 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C10—H10C···O5ii0.962.6783.452 (3)138
C4—H4···Cgii0.932.743.493 (3)139
Symmetry code: (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Sn4(CH3)8(C8H7O2)4O2]
Mr1167.66
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.0413 (2), 10.1280 (2), 12.0910 (3)
α, β, γ (°)83.300 (1), 72.850 (2), 71.876 (1)
V3)1116.24 (4)
Z1
Radiation typeMo Kα
µ (mm1)2.26
Crystal size (mm)0.30 × 0.26 × 0.23
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.514, 0.593
No. of measured, independent and
observed [I > 2σ(I)] reflections
18376, 5470, 4786
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.049, 1.09
No. of reflections5470
No. of parameters250
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.40

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C14–C19 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C10—H10C···O5i0.962.6783.452 (3)138
C4—H4···Cgi0.932.743.493 (3)139
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationAmini, M. M., Abadi, S. H., Mirzaee, M., Lügger, T., Hahn, F. E. & Ng, S. W. (2002). Acta Cryst. E58, m697–m699.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDanish, M., Tahir, M. N., Ahmad, N., Raza, A. R. & Ibrahim, M. (2009). Acta Cryst. E65, m609–m610.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1268-m1269
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds