organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3,5-Tri­nitro-2,4-bis­­(2-phenyl­ethen­yl)benzene

aState Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: guozr531408@sohu.com

(Received 25 August 2010; accepted 28 August 2010; online 4 September 2010)

In the title compound, C22H15N3O6, the central benzene ring and one of the phenyl rings are essentially parallel to each other, making a dihedral angle of 1.35 (16)°. The dihedral angle between the two phenyl rings is 83.56 (19)°. Intra­molecular C—H⋯N and C—H⋯O hydrogen bonds occur. In the crystal, mol­ecules are linked through C—H⋯O hydrogen bonds. Furthermore, offset face-to-face ππ inter­actions with centroid–centroid distances of 3.644 (2) Å help to stabilize the crystal structure.

Related literature

For the preparation, see: Peng et al. (1995[Peng, X. H., Chen, T. Y., Lu, C. X. & Sun, R. K. (1995). Org. Prep. Proceed. Int. 27, 475-479.]). For general background to trinitro­benzene and its derivatives, see: Ott & Benziger (1987[Ott, D. G. & Benziger, T. M. (1987). J. Energ. Mater, 5, 343-354.]); Kuperman et al. (2006[Kuperman, R. G., Checkai, R. T., Simini, M., Phillips, C. T., Kolakowski, J. E. & Kurnas, C. W. (2006). Environ. Toxicol. Chem. 25, 1368-1375.]). The title compound may be useful as a high energy explosive, see: Peng et al. (1995[Peng, X. H., Chen, T. Y., Lu, C. X. & Sun, R. K. (1995). Org. Prep. Proceed. Int. 27, 475-479.]). For a related structure, see: Bryden (1972[Bryden, J. H. (1972). Acta Cryst. B28, 1395-1398.]).

[Scheme 1]

Experimental

Crystal data
  • C22H15N3O6

  • Mr = 417.37

  • Triclinic, [P \overline 1]

  • a = 7.0762 (14) Å

  • b = 8.6625 (17) Å

  • c = 16.717 (3) Å

  • α = 101.660 (3)°

  • β = 92.616 (3)°

  • γ = 105.122 (3)°

  • V = 963.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.32 × 0.28 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS and SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.577, Tmax = 1.000

  • 5265 measured reflections

  • 3363 independent reflections

  • 2146 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.236

  • S = 0.98

  • 3363 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O2 0.93 2.60 3.398 (4) 144
C16—H16⋯N1 0.93 2.42 2.980 (4) 119
C18—H18⋯O5i 0.93 2.48 3.387 (4) 166
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SADABS and SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Trinitrobenzene and its derivatives have been extensively reported for use as energetic materials (Ott & Benziger, 1987; Kuperman et al., 2006). The title compound may be useful as a high energy explosive (Peng et al., 1995), and here we present its crystal structure.

In the title compound (Fig. 1), the bond distances and bond angles are similar to those in 2,4,6-trintro-m-xylene (Bryden, 1972). The planes of two rings (C9—C14) and (C17—C22) are approximately parallel, with a dihedral angle of 1.35 (16)°. The two phenyl rings, (C1—C6) and (C17—C22), form a dihedral angle of 83.56 (19)°. The short distance of 3.644 (2) Å (symmetry code: -x,-y,1 - z) between the centroids of the two parallel rings (C9—C14) and (C17—C22) indicates the existence of offset face-to-face π-π interactions. Molecules are linked through C—H···O hydrogen bonds (Table 1), which help to stabilize the crystal structure. Intramolecular C—H···N and C—H···O hydrogen bonds are also present. There is a short intermolecular contact C15···C15 (1-x, -y, 1-z) of 3.185 (4) Å.

Related literature top

For the preparation, see: Peng et al. (1995). For general background to trinitrobenzene and its derivatives, see: Ott & Benziger (1987); Kuperman et al. (2006). The title compound may be useful as a high energy explosive, see: Peng et al. (1995). For a related structure, see: Bryden (1972).

Experimental top

The title compound was synthesized using 2,4,6-trinitro-m-xylene and benzaldehyde as the starting materials, according to the literature method (Peng et al., 1995). Single crystals suitable for X–ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93 Å; Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed along the a-axis. Intermolecular hydrogen bonds are shown as dashed lines.
1,3,5-Trinitro-2,4-bis(2-phenylethenyl)benzene top
Crystal data top
C22H15N3O6Z = 2
Mr = 417.37F(000) = 432
Triclinic, P1Dx = 1.439 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0762 (14) ÅCell parameters from 1118 reflections
b = 8.6625 (17) Åθ = 2.5–22.8°
c = 16.717 (3) ŵ = 0.11 mm1
α = 101.660 (3)°T = 293 K
β = 92.616 (3)°Block, colorless
γ = 105.122 (3)°0.32 × 0.28 × 0.22 mm
V = 963.5 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3363 independent reflections
Radiation source: fine-focus sealed tube2146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 88
Tmin = 0.577, Tmax = 1.000k = 109
5265 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.236H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.1716P)2]
where P = (Fo2 + 2Fc2)/3
3363 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C22H15N3O6γ = 105.122 (3)°
Mr = 417.37V = 963.5 (3) Å3
Triclinic, P1Z = 2
a = 7.0762 (14) ÅMo Kα radiation
b = 8.6625 (17) ŵ = 0.11 mm1
c = 16.717 (3) ÅT = 293 K
α = 101.660 (3)°0.32 × 0.28 × 0.22 mm
β = 92.616 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3363 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2146 reflections with I > 2σ(I)
Tmin = 0.577, Tmax = 1.000Rint = 0.020
5265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.236H-atom parameters constrained
S = 0.98Δρmax = 0.66 e Å3
3363 reflectionsΔρmin = 0.26 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4557 (4)0.2087 (3)0.37673 (15)0.0606 (7)
O20.1502 (4)0.1919 (3)0.34477 (15)0.0629 (7)
O30.0777 (6)0.3754 (4)0.12446 (17)0.1042 (13)
O40.0663 (6)0.5709 (4)0.18422 (17)0.0944 (11)
O50.2954 (4)0.4565 (3)0.47219 (15)0.0599 (7)
O60.1092 (4)0.3227 (3)0.53578 (14)0.0558 (7)
N10.2829 (5)0.1337 (3)0.35892 (14)0.0450 (7)
N20.0966 (4)0.4259 (4)0.18514 (18)0.0576 (8)
N30.2018 (4)0.3561 (3)0.47819 (16)0.0413 (6)
C10.5959 (7)0.1705 (4)0.0976 (2)0.0659 (11)
H10.69730.14940.12720.079*
C20.6401 (8)0.2529 (5)0.0357 (2)0.0796 (13)
H20.76910.28600.02300.096*
C30.4936 (11)0.2845 (6)0.0061 (3)0.0892 (16)
H30.52280.33980.04820.107*
C40.3043 (10)0.2385 (6)0.0110 (3)0.0914 (16)
H40.20570.26290.01870.110*
C50.2581 (7)0.1525 (5)0.0745 (2)0.0739 (12)
H50.12890.11990.08690.089*
C60.4058 (6)0.1181 (4)0.11752 (19)0.0533 (9)
C70.3715 (6)0.0306 (4)0.18496 (19)0.0502 (9)
H70.48200.04130.22020.060*
C80.2044 (5)0.0607 (4)0.20150 (18)0.0479 (8)
H80.09010.07560.16770.057*
C90.1924 (4)0.1401 (4)0.27196 (18)0.0403 (7)
C100.1482 (5)0.3101 (4)0.26559 (18)0.0417 (8)
C110.1561 (4)0.3773 (4)0.33316 (18)0.0413 (8)
H110.13380.48990.32710.050*
C120.1978 (4)0.2745 (3)0.40967 (17)0.0369 (7)
C130.2335 (4)0.1039 (3)0.42426 (17)0.0352 (7)
C140.2324 (4)0.0458 (3)0.35209 (17)0.0358 (7)
C150.2759 (4)0.0028 (3)0.50832 (17)0.0351 (7)
H150.32530.04960.54700.042*
C160.2545 (4)0.1434 (4)0.53706 (17)0.0390 (7)
H160.20980.19600.49990.047*
C170.2962 (4)0.2302 (3)0.62389 (17)0.0367 (7)
C180.3403 (5)0.3997 (4)0.6440 (2)0.0480 (8)
H180.34050.45700.60260.058*
C190.3838 (6)0.4843 (4)0.7246 (2)0.0557 (9)
H190.41470.59820.73720.067*
C200.3820 (5)0.4014 (4)0.7870 (2)0.0559 (9)
H200.41240.45890.84140.067*
C210.3350 (5)0.2343 (4)0.76815 (19)0.0519 (9)
H210.33130.17810.81020.062*
C220.2930 (5)0.1474 (4)0.68758 (18)0.0433 (8)
H220.26240.03350.67570.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0682 (18)0.0454 (14)0.0558 (15)0.0073 (13)0.0013 (12)0.0152 (11)
O20.0861 (19)0.0507 (15)0.0599 (16)0.0323 (14)0.0044 (13)0.0132 (12)
O30.180 (4)0.072 (2)0.0320 (16)0.007 (2)0.0013 (17)0.0030 (14)
O40.155 (3)0.0493 (18)0.0638 (19)0.0272 (18)0.0128 (18)0.0140 (14)
O50.0746 (17)0.0522 (15)0.0633 (16)0.0263 (13)0.0098 (12)0.0245 (12)
O60.0698 (16)0.0471 (14)0.0498 (15)0.0096 (12)0.0190 (12)0.0151 (11)
N10.0638 (19)0.0409 (15)0.0280 (14)0.0108 (15)0.0040 (12)0.0074 (11)
N20.068 (2)0.0486 (19)0.0429 (18)0.0054 (15)0.0006 (14)0.0056 (14)
N30.0465 (16)0.0338 (14)0.0398 (15)0.0042 (12)0.0049 (12)0.0084 (11)
C10.096 (3)0.047 (2)0.053 (2)0.015 (2)0.020 (2)0.0127 (17)
C20.125 (4)0.057 (3)0.051 (2)0.011 (3)0.022 (3)0.015 (2)
C30.159 (5)0.058 (3)0.046 (2)0.019 (3)0.017 (3)0.014 (2)
C40.147 (5)0.075 (3)0.057 (3)0.041 (3)0.009 (3)0.017 (2)
C50.110 (3)0.065 (3)0.053 (2)0.030 (2)0.006 (2)0.020 (2)
C60.086 (3)0.0400 (18)0.0337 (18)0.0197 (18)0.0083 (17)0.0050 (14)
C70.069 (2)0.048 (2)0.0352 (18)0.0197 (18)0.0029 (15)0.0086 (14)
C80.059 (2)0.051 (2)0.0295 (17)0.0140 (17)0.0004 (14)0.0042 (14)
C90.0413 (17)0.0392 (17)0.0362 (17)0.0080 (13)0.0004 (13)0.0038 (13)
C100.0440 (18)0.0400 (17)0.0330 (16)0.0072 (14)0.0008 (13)0.0035 (13)
C110.0452 (18)0.0293 (16)0.0442 (18)0.0058 (13)0.0052 (14)0.0019 (13)
C120.0367 (16)0.0353 (16)0.0368 (17)0.0074 (12)0.0032 (12)0.0074 (13)
C130.0317 (16)0.0353 (16)0.0356 (16)0.0074 (12)0.0013 (12)0.0042 (12)
C140.0377 (17)0.0320 (15)0.0344 (16)0.0067 (12)0.0027 (12)0.0039 (12)
C150.0393 (17)0.0313 (16)0.0318 (15)0.0043 (12)0.0002 (12)0.0083 (12)
C160.0436 (18)0.0398 (17)0.0335 (16)0.0118 (13)0.0001 (13)0.0083 (13)
C170.0361 (16)0.0396 (17)0.0317 (16)0.0097 (13)0.0021 (12)0.0031 (13)
C180.065 (2)0.0358 (17)0.0421 (18)0.0130 (15)0.0056 (15)0.0073 (14)
C190.078 (2)0.0366 (18)0.046 (2)0.0108 (17)0.0036 (17)0.0008 (15)
C200.072 (2)0.050 (2)0.0381 (19)0.0164 (18)0.0009 (16)0.0058 (16)
C210.070 (2)0.057 (2)0.0328 (17)0.0241 (18)0.0047 (15)0.0125 (15)
C220.055 (2)0.0367 (16)0.0390 (17)0.0126 (14)0.0058 (14)0.0087 (13)
Geometric parameters (Å, º) top
O1—N11.217 (3)C8—H80.9300
O2—N11.211 (3)C9—C141.394 (4)
O3—N21.199 (4)C9—C101.404 (4)
O4—N21.214 (4)C10—C111.376 (4)
O5—N31.216 (3)C11—C121.372 (4)
O6—N31.218 (3)C11—H110.9300
N1—C141.481 (4)C12—C131.401 (4)
N2—C101.472 (4)C13—C141.398 (4)
N3—C121.465 (4)C13—C151.469 (4)
C1—C21.376 (5)C15—C161.311 (4)
C1—C61.382 (5)C15—H150.9300
C1—H10.9300C16—C171.471 (4)
C2—C31.341 (7)C16—H160.9300
C2—H20.9300C17—C181.385 (4)
C3—C41.356 (7)C17—C221.397 (4)
C3—H30.9300C18—C191.376 (4)
C4—C51.420 (6)C18—H180.9300
C4—H40.9300C19—C201.379 (5)
C5—C61.370 (5)C19—H190.9300
C5—H50.9300C20—C211.364 (5)
C6—C71.476 (5)C20—H200.9300
C7—C81.315 (5)C21—C221.381 (4)
C7—H70.9300C21—H210.9300
C8—C91.475 (4)C22—H220.9300
O2—N1—O1126.0 (3)C9—C10—N2121.2 (3)
O2—N1—C14117.4 (3)C12—C11—C10118.6 (3)
O1—N1—C14116.5 (3)C12—C11—H11120.7
O3—N2—O4122.9 (3)C10—C11—H11120.7
O3—N2—C10119.5 (3)C11—C12—C13124.4 (3)
O4—N2—C10117.5 (3)C11—C12—N3115.1 (3)
O5—N3—O6124.5 (3)C13—C12—N3120.5 (2)
O5—N3—C12116.7 (3)C14—C13—C12113.1 (3)
O6—N3—C12118.8 (2)C14—C13—C15126.0 (3)
C2—C1—C6122.2 (4)C12—C13—C15120.9 (3)
C2—C1—H1118.9C9—C14—C13126.6 (3)
C6—C1—H1118.9C9—C14—N1114.9 (3)
C3—C2—C1118.7 (5)C13—C14—N1118.4 (2)
C3—C2—H2120.7C16—C15—C13129.8 (3)
C1—C2—H2120.7C16—C15—H15115.1
C2—C3—C4122.1 (5)C13—C15—H15115.1
C2—C3—H3118.9C15—C16—C17124.7 (3)
C4—C3—H3118.9C15—C16—H16117.7
C3—C4—C5119.3 (5)C17—C16—H16117.7
C3—C4—H4120.3C18—C17—C22118.3 (3)
C5—C4—H4120.3C18—C17—C16119.5 (3)
C6—C5—C4119.4 (5)C22—C17—C16122.2 (3)
C6—C5—H5120.3C19—C18—C17120.8 (3)
C4—C5—H5120.3C19—C18—H18119.6
C5—C6—C1118.3 (4)C17—C18—H18119.6
C5—C6—C7123.0 (4)C18—C19—C20120.4 (3)
C1—C6—C7118.6 (3)C18—C19—H19119.8
C8—C7—C6128.2 (3)C20—C19—H19119.8
C8—C7—H7115.9C21—C20—C19119.4 (3)
C6—C7—H7115.9C21—C20—H20120.3
C7—C8—C9122.1 (3)C19—C20—H20120.3
C7—C8—H8118.9C20—C21—C22120.9 (3)
C9—C8—H8118.9C20—C21—H21119.5
C14—C9—C10114.8 (3)C22—C21—H21119.5
C14—C9—C8120.5 (3)C21—C22—C17120.1 (3)
C10—C9—C8124.7 (3)C21—C22—H22120.0
C11—C10—C9122.3 (3)C17—C22—H22120.0
C11—C10—N2116.5 (3)
C6—C1—C2—C30.7 (6)C11—C12—C13—C143.0 (4)
C1—C2—C3—C40.2 (7)N3—C12—C13—C14177.4 (2)
C2—C3—C4—C50.6 (7)C11—C12—C13—C15179.6 (3)
C3—C4—C5—C60.1 (6)N3—C12—C13—C150.0 (4)
C4—C5—C6—C10.7 (5)C10—C9—C14—C130.4 (5)
C4—C5—C6—C7179.5 (4)C8—C9—C14—C13177.6 (3)
C2—C1—C6—C51.1 (5)C10—C9—C14—N1178.9 (3)
C2—C1—C6—C7180.0 (3)C8—C9—C14—N10.8 (4)
C5—C6—C7—C818.2 (5)C12—C13—C14—C92.8 (4)
C1—C6—C7—C8163.0 (4)C15—C13—C14—C9179.9 (3)
C6—C7—C8—C9179.5 (3)C12—C13—C14—N1175.6 (2)
C7—C8—C9—C1465.4 (4)C15—C13—C14—N11.7 (4)
C7—C8—C9—C10112.4 (4)O2—N1—C14—C974.1 (3)
C14—C9—C10—C113.9 (4)O1—N1—C14—C9104.5 (3)
C8—C9—C10—C11174.0 (3)O2—N1—C14—C13107.4 (3)
C14—C9—C10—N2178.0 (3)O1—N1—C14—C1374.1 (3)
C8—C9—C10—N24.0 (5)C14—C13—C15—C1626.2 (5)
O3—N2—C10—C11176.3 (3)C12—C13—C15—C16156.8 (3)
O4—N2—C10—C110.5 (5)C13—C15—C16—C17177.8 (3)
O3—N2—C10—C95.6 (5)C15—C16—C17—C18156.0 (3)
O4—N2—C10—C9177.7 (3)C15—C16—C17—C2224.0 (5)
C9—C10—C11—C123.8 (5)C22—C17—C18—C191.4 (5)
N2—C10—C11—C12178.1 (3)C16—C17—C18—C19178.7 (3)
C10—C11—C12—C130.1 (5)C17—C18—C19—C200.8 (5)
C10—C11—C12—N3179.5 (3)C18—C19—C20—C210.5 (6)
O5—N3—C12—C1147.8 (4)C19—C20—C21—C221.2 (5)
O6—N3—C12—C11130.5 (3)C20—C21—C22—C170.6 (5)
O5—N3—C12—C13132.5 (3)C18—C17—C22—C210.7 (5)
O6—N3—C12—C1349.1 (4)C16—C17—C22—C21179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O20.932.603.398 (4)144
C16—H16···N10.932.422.980 (4)119
C18—H18···O5i0.932.483.387 (4)166
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H15N3O6
Mr417.37
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0762 (14), 8.6625 (17), 16.717 (3)
α, β, γ (°)101.660 (3), 92.616 (3), 105.122 (3)
V3)963.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.28 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.577, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5265, 3363, 2146
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.236, 0.98
No. of reflections3363
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.26

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O20.932.603.398 (4)144
C16—H16···N10.932.422.980 (4)119
C18—H18···O5i0.932.483.387 (4)166
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the State Key Laboratory of Explosion Science and Technology Foundation (YBKT09–10, SKLEST–ZZ–09–10), Beijing Institute of Technology.

References

First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS and SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBryden, J. H. (1972). Acta Cryst. B28, 1395–1398.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKuperman, R. G., Checkai, R. T., Simini, M., Phillips, C. T., Kolakowski, J. E. & Kurnas, C. W. (2006). Environ. Toxicol. Chem. 25, 1368–1375.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtt, D. G. & Benziger, T. M. (1987). J. Energ. Mater, 5, 343–354.  CrossRef CAS Google Scholar
First citationPeng, X. H., Chen, T. Y., Lu, C. X. & Sun, R. K. (1995). Org. Prep. Proceed. Int. 27, 475–479.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds