organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2563-o2564

4-{[5-(4-Chloro­phen­yl)-1-(4-fluoro­phen­yl)-1H-pyrazol-3-yl]carbon­yl}-N-(4-cyano­phen­yl)piperazine-1-carboxamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 3 September 2010; accepted 8 September 2010; online 15 September 2010)

In the title compound, C28H22ClFN6O2, the piperazine ring adopts a chair conformation and the least-squares plane through the four coplanar atoms forms dihedral angles of 69.37 (13) and 56.56 (12)°, respectively, with the pyrazole and cyano­phenyl rings. The dihedral angles formed between the pyrazole and the attached fluoro- and chloro­phenyl rings are 34.16 (10) and 73.27 (12)°, respectively. In the crystal, inter­molecular N—H⋯O, C—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules into sheets parallel to the ac plane.

Related literature

For background to pyrazole derivatives and their microbial activity, see: Ragavan et al. (2009[Ragavan, R. V., Vijayakumar, V. & Sucheta Kumari, N. (2009). Eur. J. Med. Chem. 44, 3852-3857.], 2010[Ragavan, R. V., Vijayakumar, V. & Sucheta Kumari, N. (2010). Eur. J. Med. Chem. 45, 1173-1180.]). For the synthetic procedure, see: Ragavan et al. (2010[Ragavan, R. V., Vijayakumar, V. & Sucheta Kumari, N. (2010). Eur. J. Med. Chem. 45, 1173-1180.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Yeap, C. S., Chidan Kumar, C. S., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o361-o362.]); Shahani et al. (2010[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010). Acta Cryst. E66, o2286-o2287.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C28H22ClFN6O2

  • Mr = 528.97

  • Monoclinic, P 21 /c

  • a = 9.9221 (3) Å

  • b = 21.3339 (7) Å

  • c = 12.7201 (4) Å

  • β = 111.629 (1)°

  • V = 2502.97 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.36 × 0.26 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.985

  • 19192 measured reflections

  • 5660 independent reflections

  • 4272 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.116

  • S = 1.07

  • 5660 reflections

  • 347 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H1N5⋯O1i 0.87 (3) 2.14 (3) 2.958 (3) 157 (2)
C2—H2A⋯N2ii 0.93 2.49 3.386 (3) 161
C4—H4A⋯O1iii 0.93 2.42 3.310 (3) 161
C7—H7A⋯O2iv 0.93 2.54 3.312 (3) 140
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The antibacterial and antifungal activities of azoles have been widely studied and some of them are used in clinical practice as antimicrobial agents. However, azole-resistant strains have led to the development of new antimicrobial compounds. In particular, pyrazole derivatives are extensively studied and used as antimicrobial agents. Pyrazoles form an important class of heterocyclic compound and many pyrazole derivatives are reported to have a broad spectrum of biological activities, such as anti-inflammatory, antifungal, herbicidal, antitumor, cytotoxic and antiviral activities; they are also used in molecular modelling. Pyrazole derivatives also act as anti-angiogenic agents, A3 adenosine receptor antagonists, neuropeptide YY5 receptor antagonists as well as kinase inhibitor for the treatment of type 2 diabetes, hyperlipidemia, obesity and thrombopiotinmimetics. Recently urea derivatives of pyrazoles have been reported as potent inhibitors of p38 kinase. Since the high electronegativity of halogens (particularly chlorine and fluorine) in the aromatic part of drug molecules play an important role in enhancing their biological activity, we are interested in compounds having 4-fluoro- or 4-chloro-substitution in 1,5-diaryl pyrazoles. The background to pyrazole derivatives and their microbial activities habe been reported in reccent years (Ragavan et al., 2009, 2010). The crystal structure of the title compound is reported here.

In the title compound (Fig. 1) the piperazine ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) of Q = 0.540 (2) Å, Θ = 1.3 (2)°, ϕ = 235 (21)° and the plane through the coplanar atoms (N4/C19/N3/C17) forms dihedral angles of 69.37 (13) and 56.56 (12)°, respectively, with the pyrazole and cyanophenyl rings. The dihedral angles formed between the pyrazole and attached fluoro- and chlorophenyl rings are 34.16 (10) and 73.27 (12)°, respectively. Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those in related crystal structures (Fun et al., 2010; Shahani et al., 2010).

In the crystal packing (Fig. 2), intermolecular N5—H1N5···O1, C2—H2A···N2, C4—H4A···O1 and C7—H7A···O2 hydrogen bonds (Table 1) link the molecules into two-dimensional sheets parallel to the ac plane.

Related literature top

For background to pyrazole derivatives and their microbial activity, see: Ragavan et al. (2009, 2010). For the synthetic procedure, see: Ragavan et al. (2010). For ring conformations, see: Cremer & Pople (1975). For reference bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2010); Shahani et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The compound has been synthesized using a method reported in the literature (Ragavan et al., 2010) and recrystallized using a 1:1 mixture of ethanol-chloroform. Yield = 77%. M. p. = 485.3–486 K.

Refinement top

Atom H1N5 was located in a difference Fourier map and was refined freely [N—H = 0.87 (3) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93 or 0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
4-{[5-(4-Chlorophenyl)-1-(4-fluorophenyl)-1H-pyrazol-3-yl]carbonyl}- N-(4-cyanophenyl)piperazine-1-carboxamide top
Crystal data top
C28H22ClFN6O2F(000) = 1096
Mr = 528.97Dx = 1.404 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5338 reflections
a = 9.9221 (3) Åθ = 2.4–27.3°
b = 21.3339 (7) ŵ = 0.20 mm1
c = 12.7201 (4) ÅT = 100 K
β = 111.629 (1)°Plate, colourless
V = 2502.97 (14) Å30.36 × 0.26 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5660 independent reflections
Radiation source: fine-focus sealed tube4272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 27.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1211
Tmin = 0.931, Tmax = 0.985k = 2724
19192 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0294P)2 + 2.8225P]
where P = (Fo2 + 2Fc2)/3
5660 reflections(Δ/σ)max < 0.001
347 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C28H22ClFN6O2V = 2502.97 (14) Å3
Mr = 528.97Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9221 (3) ŵ = 0.20 mm1
b = 21.3339 (7) ÅT = 100 K
c = 12.7201 (4) Å0.36 × 0.26 × 0.08 mm
β = 111.629 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5660 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4272 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.985Rint = 0.037
19192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.26 e Å3
5660 reflectionsΔρmin = 0.35 e Å3
347 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.47534 (7)0.60803 (3)0.78980 (5)0.03029 (16)
F10.48142 (15)0.22562 (7)0.89619 (12)0.0304 (3)
N10.81146 (19)0.34593 (9)0.69103 (14)0.0161 (4)
N20.89747 (19)0.31063 (9)0.65254 (14)0.0164 (4)
N31.04762 (19)0.34908 (9)0.44459 (14)0.0174 (4)
N41.0136 (2)0.35012 (9)0.21385 (15)0.0203 (4)
N51.1177 (2)0.35113 (10)0.07780 (16)0.0194 (4)
N61.2635 (2)0.45747 (11)0.37105 (17)0.0335 (5)
O11.14153 (16)0.28689 (7)0.59902 (12)0.0193 (3)
O20.91589 (17)0.41027 (8)0.05706 (13)0.0236 (4)
C10.7918 (2)0.29390 (11)0.85563 (18)0.0197 (5)
H1A0.89050.29990.89480.024*
C20.7083 (2)0.26399 (11)0.90742 (19)0.0220 (5)
H2A0.74930.25030.98190.026*
C30.5637 (2)0.25525 (11)0.84547 (19)0.0216 (5)
C40.4962 (2)0.27504 (11)0.73509 (19)0.0228 (5)
H4A0.39780.26810.69590.027*
C50.5800 (2)0.30562 (11)0.68465 (18)0.0203 (5)
H5A0.53800.32000.61060.024*
C60.7266 (2)0.31466 (10)0.74509 (18)0.0163 (5)
C70.7134 (2)0.45597 (11)0.79798 (18)0.0209 (5)
H7A0.75930.42460.84940.025*
C80.6372 (2)0.50256 (11)0.82822 (19)0.0227 (5)
H8A0.63030.50210.89920.027*
C90.5715 (2)0.54962 (11)0.75187 (19)0.0213 (5)
C100.5806 (2)0.55132 (11)0.64628 (19)0.0218 (5)
H10A0.53650.58350.59610.026*
C110.6562 (2)0.50443 (11)0.61567 (18)0.0194 (5)
H11A0.66290.50540.54470.023*
C120.7220 (2)0.45589 (11)0.69021 (18)0.0177 (5)
C130.8020 (2)0.40700 (11)0.65574 (17)0.0166 (5)
C140.8854 (2)0.41079 (11)0.58986 (17)0.0176 (5)
H14A0.90070.44600.55260.021*
C150.9423 (2)0.35043 (11)0.59080 (17)0.0163 (5)
C161.0502 (2)0.32613 (10)0.54447 (17)0.0157 (4)
C171.1727 (2)0.33981 (11)0.41143 (18)0.0192 (5)
H17A1.24160.31200.46520.023*
H17B1.22040.37970.41340.023*
C181.1283 (2)0.31192 (11)0.29329 (17)0.0205 (5)
H18A1.21120.31070.27030.025*
H18B1.09390.26940.29340.025*
C190.8884 (2)0.35880 (11)0.24632 (18)0.0202 (5)
H19A0.84190.31870.24490.024*
H19B0.81890.38610.19210.024*
C200.9325 (2)0.38715 (11)0.36402 (17)0.0195 (5)
H20A0.96680.42970.36340.023*
H20B0.84930.38860.38670.023*
C211.0089 (2)0.37302 (11)0.11281 (18)0.0179 (5)
C221.1497 (2)0.37577 (11)0.01271 (17)0.0185 (5)
C231.2352 (3)0.33979 (11)0.05514 (19)0.0235 (5)
H23A1.26880.30090.02300.028*
C241.2707 (3)0.36094 (12)0.1441 (2)0.0261 (5)
H24A1.32680.33610.17220.031*
C251.2229 (2)0.41924 (11)0.19194 (18)0.0204 (5)
C261.1417 (3)0.45604 (12)0.1474 (2)0.0255 (5)
H26A1.11150.49560.17750.031*
C271.1050 (3)0.43481 (11)0.0591 (2)0.0247 (5)
H27A1.05020.46000.03040.030*
C281.2494 (3)0.44038 (12)0.29033 (19)0.0242 (5)
H1N51.148 (3)0.3133 (14)0.098 (2)0.033 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0278 (3)0.0295 (4)0.0347 (3)0.0067 (3)0.0129 (3)0.0071 (3)
F10.0281 (8)0.0372 (9)0.0311 (8)0.0038 (7)0.0170 (6)0.0075 (7)
N10.0167 (9)0.0172 (10)0.0156 (9)0.0006 (8)0.0074 (7)0.0003 (8)
N20.0161 (9)0.0184 (10)0.0156 (9)0.0001 (8)0.0069 (7)0.0017 (8)
N30.0154 (9)0.0217 (10)0.0151 (9)0.0004 (8)0.0056 (7)0.0006 (8)
N40.0192 (10)0.0268 (11)0.0163 (9)0.0060 (8)0.0081 (7)0.0040 (8)
N50.0244 (11)0.0174 (11)0.0190 (9)0.0042 (9)0.0110 (8)0.0024 (8)
N60.0404 (13)0.0391 (14)0.0255 (11)0.0110 (11)0.0175 (10)0.0008 (10)
O10.0193 (8)0.0207 (9)0.0175 (8)0.0024 (7)0.0063 (6)0.0022 (7)
O20.0264 (9)0.0278 (10)0.0190 (8)0.0088 (7)0.0111 (7)0.0068 (7)
C10.0176 (11)0.0217 (13)0.0187 (11)0.0025 (9)0.0055 (9)0.0024 (9)
C20.0236 (12)0.0258 (14)0.0167 (11)0.0039 (10)0.0076 (9)0.0062 (10)
C30.0255 (13)0.0209 (13)0.0237 (11)0.0025 (10)0.0153 (10)0.0007 (10)
C40.0152 (11)0.0278 (14)0.0241 (12)0.0018 (10)0.0058 (9)0.0017 (10)
C50.0214 (12)0.0241 (13)0.0148 (10)0.0016 (10)0.0060 (9)0.0011 (10)
C60.0191 (11)0.0147 (11)0.0176 (10)0.0008 (9)0.0096 (9)0.0004 (9)
C70.0233 (12)0.0220 (13)0.0165 (10)0.0017 (10)0.0062 (9)0.0002 (10)
C80.0253 (12)0.0255 (13)0.0190 (11)0.0005 (10)0.0102 (9)0.0040 (10)
C90.0162 (11)0.0194 (12)0.0279 (12)0.0015 (9)0.0076 (9)0.0064 (10)
C100.0188 (12)0.0188 (13)0.0262 (12)0.0011 (10)0.0063 (9)0.0028 (10)
C110.0179 (11)0.0211 (13)0.0189 (10)0.0033 (9)0.0064 (8)0.0005 (9)
C120.0167 (11)0.0170 (12)0.0198 (10)0.0033 (9)0.0073 (8)0.0043 (9)
C130.0172 (11)0.0173 (12)0.0131 (10)0.0010 (9)0.0030 (8)0.0008 (9)
C140.0192 (11)0.0181 (12)0.0163 (10)0.0030 (9)0.0076 (9)0.0009 (9)
C150.0167 (11)0.0185 (12)0.0124 (10)0.0027 (9)0.0038 (8)0.0016 (9)
C160.0160 (11)0.0164 (12)0.0139 (10)0.0046 (9)0.0045 (8)0.0041 (9)
C170.0164 (11)0.0245 (13)0.0170 (10)0.0016 (9)0.0066 (9)0.0003 (10)
C180.0201 (12)0.0274 (13)0.0154 (10)0.0049 (10)0.0083 (9)0.0025 (10)
C190.0177 (11)0.0265 (13)0.0165 (10)0.0026 (10)0.0064 (9)0.0027 (10)
C200.0192 (11)0.0226 (13)0.0176 (10)0.0035 (10)0.0080 (9)0.0020 (9)
C210.0185 (11)0.0184 (12)0.0164 (10)0.0021 (9)0.0060 (9)0.0023 (9)
C220.0207 (12)0.0224 (13)0.0119 (10)0.0030 (10)0.0056 (8)0.0028 (9)
C230.0296 (13)0.0205 (13)0.0227 (11)0.0054 (10)0.0124 (10)0.0034 (10)
C240.0289 (13)0.0304 (15)0.0233 (12)0.0052 (11)0.0146 (10)0.0003 (11)
C250.0220 (12)0.0234 (13)0.0161 (10)0.0040 (10)0.0076 (9)0.0015 (9)
C260.0349 (14)0.0199 (13)0.0250 (12)0.0020 (11)0.0150 (10)0.0028 (10)
C270.0339 (14)0.0200 (13)0.0259 (12)0.0034 (11)0.0179 (11)0.0004 (10)
C280.0252 (13)0.0265 (14)0.0203 (12)0.0063 (10)0.0077 (10)0.0034 (10)
Geometric parameters (Å, º) top
Cl1—C91.742 (2)C8—H8A0.9300
F1—C31.367 (2)C9—C101.379 (3)
N1—N21.358 (2)C10—C111.389 (3)
N1—C131.370 (3)C10—H10A0.9300
N1—C61.433 (3)C11—C121.393 (3)
N2—C151.339 (3)C11—H11A0.9300
N3—C161.353 (3)C12—C131.472 (3)
N3—C171.464 (3)C13—C141.380 (3)
N3—C201.467 (3)C14—C151.405 (3)
N4—C211.360 (3)C14—H14A0.9300
N4—C191.458 (3)C15—C161.492 (3)
N4—C181.460 (3)C17—C181.523 (3)
N5—C211.392 (3)C17—H17A0.9700
N5—C221.404 (3)C17—H17B0.9700
N5—H1N50.87 (3)C18—H18A0.9700
N6—C281.146 (3)C18—H18B0.9700
O1—C161.241 (3)C19—C201.522 (3)
O2—C211.226 (3)C19—H19A0.9700
C1—C61.386 (3)C19—H19B0.9700
C1—C21.389 (3)C20—H20A0.9700
C1—H1A0.9300C20—H20B0.9700
C2—C31.372 (3)C22—C231.392 (3)
C2—H2A0.9300C22—C271.392 (3)
C3—C41.380 (3)C23—C241.380 (3)
C4—C51.386 (3)C23—H23A0.9300
C4—H4A0.9300C24—C251.389 (3)
C5—C61.386 (3)C24—H24A0.9300
C5—H5A0.9300C25—C261.387 (3)
C7—C81.387 (3)C25—C281.443 (3)
C7—C121.404 (3)C26—C271.378 (3)
C7—H7A0.9300C26—H26A0.9300
C8—C91.382 (3)C27—H27A0.9300
N2—N1—C13112.69 (17)C15—C14—H14A127.2
N2—N1—C6118.25 (17)N2—C15—C14111.51 (18)
C13—N1—C6128.21 (18)N2—C15—C16116.95 (19)
C15—N2—N1104.40 (17)C14—C15—C16131.30 (19)
C16—N3—C17119.79 (18)O1—C16—N3121.78 (19)
C16—N3—C20126.63 (18)O1—C16—C15119.71 (18)
C17—N3—C20113.48 (17)N3—C16—C15118.49 (19)
C21—N4—C19119.10 (18)N3—C17—C18111.66 (17)
C21—N4—C18126.94 (18)N3—C17—H17A109.3
C19—N4—C18113.76 (17)C18—C17—H17A109.3
C21—N5—C22125.0 (2)N3—C17—H17B109.3
C21—N5—H1N5116.6 (18)C18—C17—H17B109.3
C22—N5—H1N5115.4 (18)H17A—C17—H17B108.0
C6—C1—C2119.4 (2)N4—C18—C17109.47 (18)
C6—C1—H1A120.3N4—C18—H18A109.8
C2—C1—H1A120.3C17—C18—H18A109.8
C3—C2—C1118.1 (2)N4—C18—H18B109.8
C3—C2—H2A121.0C17—C18—H18B109.8
C1—C2—H2A121.0H18A—C18—H18B108.2
F1—C3—C2118.2 (2)N4—C19—C20111.31 (18)
F1—C3—C4118.1 (2)N4—C19—H19A109.4
C2—C3—C4123.7 (2)C20—C19—H19A109.4
C3—C4—C5117.8 (2)N4—C19—H19B109.4
C3—C4—H4A121.1C20—C19—H19B109.4
C5—C4—H4A121.1H19A—C19—H19B108.0
C6—C5—C4119.7 (2)N3—C20—C19109.55 (18)
C6—C5—H5A120.2N3—C20—H20A109.8
C4—C5—H5A120.2C19—C20—H20A109.8
C5—C6—C1121.3 (2)N3—C20—H20B109.8
C5—C6—N1118.75 (19)C19—C20—H20B109.8
C1—C6—N1119.91 (19)H20A—C20—H20B108.2
C8—C7—C12120.5 (2)O2—C21—N4122.4 (2)
C8—C7—H7A119.8O2—C21—N5122.7 (2)
C12—C7—H7A119.8N4—C21—N5114.94 (19)
C9—C8—C7119.3 (2)C23—C22—C27118.6 (2)
C9—C8—H8A120.3C23—C22—N5117.7 (2)
C7—C8—H8A120.3C27—C22—N5123.6 (2)
C10—C9—C8121.4 (2)C24—C23—C22121.0 (2)
C10—C9—Cl1119.32 (18)C24—C23—H23A119.5
C8—C9—Cl1119.31 (18)C22—C23—H23A119.5
C9—C10—C11119.3 (2)C23—C24—C25120.2 (2)
C9—C10—H10A120.3C23—C24—H24A119.9
C11—C10—H10A120.3C25—C24—H24A119.9
C10—C11—C12120.7 (2)C26—C25—C24119.0 (2)
C10—C11—H11A119.7C26—C25—C28119.8 (2)
C12—C11—H11A119.7C24—C25—C28121.2 (2)
C11—C12—C7118.8 (2)C27—C26—C25121.0 (2)
C11—C12—C13119.52 (19)C27—C26—H26A119.5
C7—C12—C13121.7 (2)C25—C26—H26A119.5
N1—C13—C14105.71 (19)C26—C27—C22120.3 (2)
N1—C13—C12123.74 (19)C26—C27—H27A119.9
C14—C13—C12130.5 (2)C22—C27—H27A119.9
C13—C14—C15105.69 (19)N6—C28—C25176.8 (3)
C13—C14—H14A127.2
C13—N1—N2—C150.5 (2)C13—C14—C15—N20.4 (2)
C6—N1—N2—C15169.86 (18)C13—C14—C15—C16173.7 (2)
C6—C1—C2—C31.1 (3)C17—N3—C16—O114.7 (3)
C1—C2—C3—F1179.8 (2)C20—N3—C16—O1169.2 (2)
C1—C2—C3—C40.7 (4)C17—N3—C16—C15163.51 (19)
F1—C3—C4—C5179.3 (2)C20—N3—C16—C1512.6 (3)
C2—C3—C4—C50.2 (4)N2—C15—C16—O133.1 (3)
C3—C4—C5—C60.7 (3)C14—C15—C16—O1140.7 (2)
C4—C5—C6—C10.2 (3)N2—C15—C16—N3148.6 (2)
C4—C5—C6—N1179.5 (2)C14—C15—C16—N337.6 (3)
C2—C1—C6—C50.7 (3)C16—N3—C17—C18128.3 (2)
C2—C1—C6—N1179.6 (2)C20—N3—C17—C1855.1 (3)
N2—N1—C6—C5102.4 (2)C21—N4—C18—C17130.4 (2)
C13—N1—C6—C566.2 (3)C19—N4—C18—C1754.9 (2)
N2—N1—C6—C177.3 (3)N3—C17—C18—N453.1 (2)
C13—N1—C6—C1114.1 (2)C21—N4—C19—C20128.6 (2)
C12—C7—C8—C91.1 (3)C18—N4—C19—C2056.3 (3)
C7—C8—C9—C100.2 (4)C16—N3—C20—C19129.4 (2)
C7—C8—C9—Cl1179.84 (18)C17—N3—C20—C1954.4 (2)
C8—C9—C10—C110.6 (3)N4—C19—C20—N353.7 (2)
Cl1—C9—C10—C11179.42 (17)C19—N4—C21—O213.6 (3)
C9—C10—C11—C120.3 (3)C18—N4—C21—O2172.0 (2)
C10—C11—C12—C71.5 (3)C19—N4—C21—N5166.6 (2)
C10—C11—C12—C13179.7 (2)C18—N4—C21—N57.9 (3)
C8—C7—C12—C111.9 (3)C22—N5—C21—O211.2 (3)
C8—C7—C12—C13179.9 (2)C22—N5—C21—N4168.7 (2)
N2—N1—C13—C140.7 (2)C21—N5—C22—C23164.2 (2)
C6—N1—C13—C14168.42 (19)C21—N5—C22—C2718.1 (3)
N2—N1—C13—C12176.73 (18)C27—C22—C23—C242.4 (4)
C6—N1—C13—C1214.1 (3)N5—C22—C23—C24179.8 (2)
C11—C12—C13—N1148.1 (2)C22—C23—C24—C250.9 (4)
C7—C12—C13—N133.7 (3)C23—C24—C25—C261.2 (4)
C11—C12—C13—C1435.1 (3)C23—C24—C25—C28175.3 (2)
C7—C12—C13—C14143.0 (2)C24—C25—C26—C271.8 (4)
N1—C13—C14—C150.6 (2)C28—C25—C26—C27174.8 (2)
C12—C13—C14—C15176.6 (2)C25—C26—C27—C220.2 (4)
N1—N2—C15—C140.0 (2)C23—C22—C27—C261.8 (3)
N1—N2—C15—C16175.01 (17)N5—C22—C27—C26179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H1N5···O1i0.87 (3)2.14 (3)2.958 (3)157 (2)
C2—H2A···N2ii0.932.493.386 (3)161
C4—H4A···O1iii0.932.423.310 (3)161
C7—H7A···O2iv0.932.543.312 (3)140
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y, z; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC28H22ClFN6O2
Mr528.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.9221 (3), 21.3339 (7), 12.7201 (4)
β (°) 111.629 (1)
V3)2502.97 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.36 × 0.26 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.931, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
19192, 5660, 4272
Rint0.037
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.116, 1.07
No. of reflections5660
No. of parameters347
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H1N5···O1i0.87 (3)2.14 (3)2.958 (3)157 (2)
C2—H2A···N2ii0.932.493.386 (3)161.4
C4—H4A···O1iii0.93002.42003.310 (3)161.00
C7—H7A···O2iv0.93002.54003.312 (3)140.00
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y, z; (iv) x, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL thanks the Malaysian government and USM for the award of a Research Fellowship. VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Yeap, C. S., Chidan Kumar, C. S., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o361–o362.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRagavan, R. V., Vijayakumar, V. & Sucheta Kumari, N. (2009). Eur. J. Med. Chem. 44, 3852–3857.  PubMed CAS Google Scholar
First citationRagavan, R. V., Vijayakumar, V. & Sucheta Kumari, N. (2010). Eur. J. Med. Chem. 45, 1173–1180.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010). Acta Cryst. E66, o2286–o2287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2563-o2564
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds