organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-(2,4-di­chloro­phen­yl)-6-(6-meth­­oxy-2-naphth­yl)-2-oxo­cyclo­hex-3-ene-1-carboxyl­ate

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cSeQuent Scientific Limited, New Mangalore 575 011, India, dDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India, and eDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 10 August 2010; accepted 31 August 2010; online 4 September 2010)

In the title compound, C26H22Cl2O4, the cyclo­hexenone ring adopts an approximate half-chair conformation, with two C atoms displaced by −0.485 (6) and 0.218 (6) Å from the plane of the other four ring atoms. The dihedral angles between its four almost coplanar [maximum deviation = 0.006 (2) Å] atoms and the benzene and naphthalene ring systems are 59.26 (13) and 79.94 (9)°, respectively. The dihedral angle between the aromatic rings systems is 77.14 (7)°. A short intra­molecular C—H⋯Cl contact generates an S(6) ring. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯Cl inter­actions to generate a three-dimensional network.

Related literature

For related structures and background references, see: Li et al. (2009a[Li, H., Mayekar, A. N., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009a). Acta Cryst. E65, o1186.],b[Li, H., Mayekar, A. N., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009b). Acta Cryst. E65, o1533.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22Cl2O4

  • Mr = 469.34

  • Monoclinic, P 21 /c

  • a = 14.2156 (4) Å

  • b = 5.8647 (2) Å

  • c = 27.3752 (9) Å

  • β = 94.840 (2)°

  • V = 2274.14 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 120 K

  • 0.20 × 0.10 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 24499 measured reflections

  • 5209 independent reflections

  • 3171 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.160

  • S = 1.05

  • 5209 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.49 3.411 (4) 164
C8—H8A⋯O4ii 0.99 2.52 3.388 (4) 146
C8—H8B⋯Cl2 0.99 2.69 3.365 (3) 125
C12—H12⋯O1iii 0.95 2.42 3.354 (4) 168
C14—H14⋯O4ii 0.95 2.33 3.270 (4) 170
C17—H17⋯Cl1iv 0.95 2.76 3.635 (3) 153
Symmetry codes: (i) -x, -y+2, -z; (ii) x, y+1, z; (iii) -x, -y+1, -z; (iv) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SCALEPACK and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure of the title compound, (I), (Fig. 1), was determined as part of our ongoing structural studies (Li et al., 2009a,b) of substituted cyclohexenones.

The cyclohexenone ring (C7–C12) in (I) adopts an approximate half-chair conformation with C7/C8/C11/C12 statistically coplanar [r.m.s. deviation = 0.0004 Å; individual deviations = 0.0006 (19), -0.0003 (9), 0.0003 (9) and -0.006 (2) Å, respectively] and C9 and C10 displaced from their mean plane by -0.485 (6) and 0.218 (6) Å, respectively. Unlike the equivalent atoms in the related structures ethyl 6-(6-methoxy-2-naphthyl)-4-(4-methylphenyl)-2-oxocyclohex-3- ene-1-carboxylate, (II), (Li et al., 2009a) and ethyl 6-(6-methoxy-2-naphthyl)-2-oxo-4-(2-thienyl)cyclohex-3- ene-1-carboxylate, (III), (Li et al., 2009b), C9 and C10 in (I) do not display positional disorder. Both atoms are stereogenic centres: in the arbitrarily chosen asymmetric molecule, C9 has R configuration and C10 has S, but crystal symmetry generates a racemic mixture of enantiomers.

The dihedral angles between C7/C8/C11/C12 and the benzene (C1–C6) and naphthalene (C13–C22) ring systems are 59.26 (13) and 79.94 (9)°, respectively. The dihedral angle between the aromatic rings systems in (I) is 77.14 (7)°: equivalent values in (II) and (III) are 73.10 (5) and 86.04 (16)°, respectively. The naphthalene ring system (atoms C13–C22) in (I) shows rather high deviations from planarity: the r.m.s. deviation is 0.044Å and maximum deviations are 0.074 (2)Å for C13 and -0.055 (2) for C21. If the two benzene rings (C13/C14/C15/C16/C21/C22 and C16–C21) are considered separately, their r.m.s. deviations are 0.018 and 0.007 Å, respectively, and the dihedral angle between them is 4.85 (16)°. Atom C23 of the terminal methyl group is displaced from the naphthalene ring by 0.466 (4) Å. A short intramolecular C8—H8B···Cl2 contact (Table 1) generates an S(6) ring.

In the crystal, the molecules are linked by C—H···O and C—H···Cl interactions to generate a three-dimensional network.

Related literature top

For related structures and background references, see: Li et al. (2009a,b).

Experimental top

(2E)-1-(2,4-Dichlorophenyl)-3-(6-methoxy-2-naphthyl)prop-2-en-1-one (1.8 g, 5 mmol) and ethyl acetoacetate (0.65 g, 5 mmol) were refluxed for 4 hr in 15 ml of ethanol in the presence of 0.8 ml 10% NaOH. The mixture was cooled to room temperature and the reaction mass was filtered and recrystallized using acetonitrile to yield colourless blocks of (I) (m.p.: 393–395 K).

Refinement top

The hydrogen atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating rigid-group model was applied to the methyl group.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).
Ethyl 4-(2,4-dichlorophenyl)-6-(6-methoxy-2-naphthyl)-2-oxocyclohex-3-ene- 1-carboxylate top
Crystal data top
C26H22Cl2O4F(000) = 976
Mr = 469.34Dx = 1.371 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19625 reflections
a = 14.2156 (4) Åθ = 2.9–27.5°
b = 5.8647 (2) ŵ = 0.32 mm1
c = 27.3752 (9) ÅT = 120 K
β = 94.840 (2)°Block, colourless
V = 2274.14 (13) Å30.20 × 0.10 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3171 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.081
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ω and ϕ scansh = 1818
24499 measured reflectionsk = 77
5209 independent reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0569P)2 + 1.4128P]
where P = (Fo2 + 2Fc2)/3
5209 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C26H22Cl2O4V = 2274.14 (13) Å3
Mr = 469.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.2156 (4) ŵ = 0.32 mm1
b = 5.8647 (2) ÅT = 120 K
c = 27.3752 (9) Å0.20 × 0.10 × 0.07 mm
β = 94.840 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3171 reflections with I > 2σ(I)
24499 measured reflectionsRint = 0.081
5209 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.05Δρmax = 0.39 e Å3
5209 reflectionsΔρmin = 0.32 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2743 (2)1.2107 (5)0.05812 (11)0.0325 (7)
C20.3364 (2)1.0439 (5)0.04033 (11)0.0317 (7)
H20.39621.02770.05300.038*
C30.3101 (2)0.9003 (5)0.00372 (10)0.0271 (7)
C40.2229 (2)0.9190 (5)0.01610 (10)0.0268 (7)
C50.1630 (2)1.0922 (6)0.00319 (11)0.0337 (8)
H50.10311.11000.00930.040*
C60.1876 (2)1.2388 (6)0.03978 (12)0.0364 (8)
H60.14571.35580.05190.044*
C70.18917 (19)0.7672 (5)0.05408 (10)0.0256 (7)
C80.2417 (2)0.7606 (5)0.10417 (10)0.0279 (7)
H8A0.22940.90380.12170.033*
H8B0.31030.75290.10050.033*
C90.21375 (19)0.5572 (5)0.13528 (10)0.0272 (7)
H90.23800.41570.12030.033*
C100.10628 (19)0.5373 (6)0.13368 (11)0.0304 (7)
H100.08100.67800.14860.036*
C110.0638 (2)0.5189 (6)0.08069 (11)0.0312 (7)
C120.1079 (2)0.6548 (5)0.04425 (11)0.0311 (7)
H120.07740.66390.01210.037*
C130.26075 (19)0.5753 (5)0.18738 (10)0.0256 (7)
C140.24668 (19)0.7727 (5)0.21574 (10)0.0274 (7)
H140.20400.88690.20310.033*
C150.29374 (19)0.8015 (5)0.26125 (10)0.0249 (6)
H150.28190.93350.27990.030*
C160.35953 (18)0.6376 (5)0.28076 (9)0.0203 (6)
C170.41590 (18)0.6728 (5)0.32532 (10)0.0220 (6)
H170.40880.80830.34370.026*
C180.48025 (19)0.5124 (5)0.34184 (10)0.0232 (6)
C190.49063 (19)0.3078 (5)0.31567 (10)0.0239 (6)
H190.53510.19650.32800.029*
C200.43709 (19)0.2697 (5)0.27280 (10)0.0237 (6)
H200.44430.13110.25560.028*
C210.37076 (18)0.4340 (5)0.25358 (10)0.0213 (6)
C220.31971 (19)0.4083 (5)0.20690 (10)0.0235 (6)
H220.32670.27190.18890.028*
C230.5480 (2)0.7485 (5)0.40688 (11)0.0318 (7)
H23A0.59840.74510.43360.048*
H23B0.48790.78520.42020.048*
H23C0.56240.86470.38290.048*
C240.0723 (2)0.3334 (6)0.16028 (11)0.0324 (7)
C250.0480 (3)0.1826 (8)0.20559 (15)0.0657 (12)
H25A0.08500.23420.23260.079*
H25B0.00140.07640.21950.079*
C260.1126 (3)0.0587 (8)0.16739 (18)0.0768 (14)
H26A0.14570.06400.18320.115*
H26B0.07500.00620.14240.115*
H26C0.15880.16620.15190.115*
O10.00458 (15)0.3976 (4)0.06997 (8)0.0436 (6)
O20.54118 (13)0.5310 (3)0.38362 (7)0.0301 (5)
O30.00269 (15)0.3819 (4)0.18412 (9)0.0468 (6)
O40.10805 (16)0.1490 (4)0.15843 (9)0.0468 (6)
Cl10.30566 (6)1.39074 (16)0.10447 (3)0.0484 (3)
Cl20.38884 (5)0.68373 (14)0.01551 (3)0.0360 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0409 (18)0.0292 (18)0.0274 (17)0.0051 (15)0.0038 (14)0.0047 (14)
C20.0321 (16)0.0368 (19)0.0272 (16)0.0022 (15)0.0085 (13)0.0014 (15)
C30.0288 (15)0.0312 (17)0.0210 (15)0.0002 (13)0.0014 (12)0.0018 (13)
C40.0297 (15)0.0310 (17)0.0193 (15)0.0038 (14)0.0005 (12)0.0004 (13)
C50.0286 (16)0.043 (2)0.0297 (17)0.0020 (15)0.0037 (13)0.0088 (15)
C60.0388 (18)0.0384 (19)0.0318 (18)0.0057 (15)0.0021 (15)0.0072 (15)
C70.0262 (15)0.0312 (17)0.0195 (15)0.0029 (13)0.0025 (12)0.0003 (13)
C80.0254 (15)0.0380 (18)0.0198 (15)0.0001 (14)0.0003 (12)0.0000 (13)
C90.0273 (15)0.0326 (18)0.0211 (15)0.0001 (13)0.0006 (12)0.0021 (13)
C100.0255 (15)0.0407 (19)0.0247 (16)0.0023 (14)0.0008 (13)0.0023 (14)
C110.0257 (15)0.0404 (19)0.0265 (17)0.0059 (15)0.0041 (13)0.0032 (15)
C120.0301 (16)0.0409 (19)0.0215 (15)0.0027 (15)0.0026 (13)0.0041 (14)
C130.0266 (15)0.0308 (17)0.0190 (15)0.0062 (13)0.0002 (12)0.0028 (13)
C140.0251 (15)0.0311 (17)0.0254 (16)0.0000 (13)0.0009 (13)0.0041 (14)
C150.0249 (14)0.0259 (16)0.0241 (15)0.0023 (13)0.0036 (12)0.0004 (13)
C160.0198 (13)0.0254 (16)0.0157 (13)0.0001 (12)0.0020 (11)0.0037 (12)
C170.0241 (14)0.0233 (15)0.0186 (14)0.0013 (12)0.0015 (11)0.0012 (12)
C180.0245 (14)0.0294 (16)0.0156 (14)0.0020 (13)0.0015 (11)0.0011 (13)
C190.0260 (14)0.0231 (16)0.0226 (15)0.0009 (13)0.0017 (12)0.0010 (13)
C200.0285 (15)0.0214 (16)0.0218 (15)0.0022 (12)0.0051 (12)0.0011 (12)
C210.0210 (14)0.0238 (16)0.0194 (14)0.0037 (12)0.0033 (11)0.0010 (12)
C220.0262 (14)0.0252 (16)0.0194 (14)0.0062 (13)0.0027 (12)0.0005 (13)
C230.0350 (17)0.0341 (18)0.0250 (16)0.0030 (14)0.0046 (13)0.0031 (14)
C240.0263 (16)0.041 (2)0.0288 (17)0.0013 (15)0.0035 (13)0.0014 (16)
C250.062 (3)0.081 (3)0.058 (3)0.017 (2)0.029 (2)0.015 (2)
C260.055 (3)0.074 (3)0.104 (4)0.025 (2)0.019 (3)0.006 (3)
O10.0360 (12)0.0607 (16)0.0325 (13)0.0196 (12)0.0070 (10)0.0123 (12)
O20.0363 (12)0.0296 (12)0.0221 (11)0.0050 (9)0.0103 (9)0.0021 (9)
O30.0386 (13)0.0583 (16)0.0455 (14)0.0024 (12)0.0160 (11)0.0035 (13)
O40.0385 (13)0.0447 (16)0.0560 (16)0.0066 (12)0.0034 (12)0.0070 (13)
Cl10.0578 (6)0.0480 (6)0.0407 (5)0.0047 (4)0.0109 (4)0.0188 (4)
Cl20.0380 (4)0.0395 (5)0.0312 (4)0.0087 (4)0.0071 (3)0.0055 (4)
Geometric parameters (Å, º) top
C1—C21.378 (4)C14—H140.9500
C1—C61.380 (4)C15—C161.414 (4)
C1—Cl11.737 (3)C15—H150.9500
C2—C31.384 (4)C16—C171.417 (4)
C2—H20.9500C16—C211.423 (4)
C3—C41.399 (4)C17—C181.362 (4)
C3—Cl21.745 (3)C17—H170.9500
C4—C51.400 (4)C18—O21.379 (3)
C4—C71.479 (4)C18—C191.412 (4)
C5—C61.387 (4)C19—C201.362 (4)
C5—H50.9500C19—H190.9500
C6—H60.9500C20—C211.418 (4)
C7—C121.338 (4)C20—H200.9500
C7—C81.506 (4)C21—C221.423 (4)
C8—C91.537 (4)C22—H220.9500
C8—H8A0.9900C23—O21.425 (3)
C8—H8B0.9900C23—H23A0.9800
C9—C131.527 (4)C23—H23B0.9800
C9—C101.529 (4)C23—H23C0.9800
C9—H91.0000C24—O41.198 (4)
C10—C241.501 (4)C24—O31.328 (4)
C10—C111.528 (4)C25—O31.480 (4)
C10—H101.0000C25—C261.517 (6)
C11—O11.220 (3)C25—H25A0.9900
C11—C121.459 (4)C25—H25B0.9900
C12—H120.9500C26—H26A0.9800
C13—C221.368 (4)C26—H26B0.9800
C13—C141.417 (4)C26—H26C0.9800
C14—C151.374 (4)
C2—C1—C6121.4 (3)C15—C14—H14119.4
C2—C1—Cl1119.6 (2)C13—C14—H14119.4
C6—C1—Cl1119.0 (2)C14—C15—C16121.0 (3)
C1—C2—C3118.9 (3)C14—C15—H15119.5
C1—C2—H2120.5C16—C15—H15119.5
C3—C2—H2120.5C15—C16—C17122.3 (3)
C2—C3—C4122.4 (3)C15—C16—C21118.2 (2)
C2—C3—Cl2117.1 (2)C17—C16—C21119.5 (2)
C4—C3—Cl2120.5 (2)C18—C17—C16120.0 (3)
C3—C4—C5116.2 (3)C18—C17—H17120.0
C3—C4—C7125.2 (3)C16—C17—H17120.0
C5—C4—C7118.6 (3)C17—C18—O2125.3 (3)
C6—C5—C4122.7 (3)C17—C18—C19120.9 (2)
C6—C5—H5118.7O2—C18—C19113.8 (2)
C4—C5—H5118.7C20—C19—C18120.1 (3)
C1—C6—C5118.4 (3)C20—C19—H19119.9
C1—C6—H6120.8C18—C19—H19119.9
C5—C6—H6120.8C19—C20—C21120.9 (3)
C12—C7—C4118.7 (3)C19—C20—H20119.5
C12—C7—C8121.6 (3)C21—C20—H20119.5
C4—C7—C8119.3 (2)C20—C21—C16118.5 (2)
C7—C8—C9113.1 (2)C20—C21—C22122.3 (3)
C7—C8—H8A109.0C16—C21—C22119.2 (2)
C9—C8—H8A109.0C13—C22—C21121.6 (3)
C7—C8—H8B109.0C13—C22—H22119.2
C9—C8—H8B109.0C21—C22—H22119.2
H8A—C8—H8B107.8O2—C23—H23A109.5
C13—C9—C10112.9 (2)O2—C23—H23B109.5
C13—C9—C8110.5 (2)H23A—C23—H23B109.5
C10—C9—C8110.4 (2)O2—C23—H23C109.5
C13—C9—H9107.6H23A—C23—H23C109.5
C10—C9—H9107.6H23B—C23—H23C109.5
C8—C9—H9107.6O4—C24—O3125.1 (3)
C24—C10—C11106.7 (2)O4—C24—C10123.0 (3)
C24—C10—C9114.1 (2)O3—C24—C10111.9 (3)
C11—C10—C9110.3 (2)O3—C25—C26111.3 (3)
C24—C10—H10108.6O3—C25—H25A109.4
C11—C10—H10108.6C26—C25—H25A109.4
C9—C10—H10108.6O3—C25—H25B109.4
O1—C11—C12122.2 (3)C26—C25—H25B109.4
O1—C11—C10120.8 (3)H25A—C25—H25B108.0
C12—C11—C10116.9 (2)C25—C26—H26A109.5
C7—C12—C11123.0 (3)C25—C26—H26B109.5
C7—C12—H12118.5H26A—C26—H26B109.5
C11—C12—H12118.5C25—C26—H26C109.5
C22—C13—C14118.7 (3)H26A—C26—H26C109.5
C22—C13—C9121.4 (3)H26B—C26—H26C109.5
C14—C13—C9119.8 (3)C18—O2—C23117.1 (2)
C15—C14—C13121.1 (3)C24—O3—C25114.9 (3)
C6—C1—C2—C30.8 (5)C8—C9—C13—C22120.9 (3)
Cl1—C1—C2—C3179.4 (2)C10—C9—C13—C1467.7 (3)
C1—C2—C3—C40.3 (4)C8—C9—C13—C1456.4 (3)
C1—C2—C3—Cl2177.1 (2)C22—C13—C14—C152.5 (4)
C2—C3—C4—C50.0 (4)C9—C13—C14—C15174.9 (3)
Cl2—C3—C4—C5177.3 (2)C13—C14—C15—C161.6 (4)
C2—C3—C4—C7178.0 (3)C14—C15—C16—C17173.6 (3)
Cl2—C3—C4—C70.7 (4)C14—C15—C16—C214.4 (4)
C3—C4—C5—C60.1 (5)C15—C16—C17—C18178.1 (3)
C7—C4—C5—C6178.3 (3)C21—C16—C17—C180.0 (4)
C2—C1—C6—C51.0 (5)C16—C17—C18—O2177.6 (2)
Cl1—C1—C6—C5179.2 (2)C16—C17—C18—C191.3 (4)
C4—C5—C6—C10.6 (5)C17—C18—C19—C201.1 (4)
C3—C4—C7—C12122.5 (3)O2—C18—C19—C20177.9 (2)
C5—C4—C7—C1255.4 (4)C18—C19—C20—C210.4 (4)
C3—C4—C7—C863.4 (4)C19—C20—C21—C161.7 (4)
C5—C4—C7—C8118.6 (3)C19—C20—C21—C22174.4 (3)
C12—C7—C8—C920.0 (4)C15—C16—C21—C20179.6 (2)
C4—C7—C8—C9166.2 (3)C17—C16—C21—C201.4 (4)
C7—C8—C9—C13173.5 (2)C15—C16—C21—C223.4 (4)
C7—C8—C9—C1047.9 (3)C17—C16—C21—C22174.8 (2)
C13—C9—C10—C2459.8 (3)C14—C13—C22—C213.5 (4)
C8—C9—C10—C24176.0 (3)C9—C13—C22—C21173.9 (2)
C13—C9—C10—C11179.8 (3)C20—C21—C22—C13175.5 (3)
C8—C9—C10—C1156.0 (3)C16—C21—C22—C130.6 (4)
C24—C10—C11—O119.1 (4)C11—C10—C24—O481.0 (4)
C9—C10—C11—O1143.5 (3)C9—C10—C24—O441.0 (4)
C24—C10—C11—C12161.8 (3)C11—C10—C24—O396.8 (3)
C9—C10—C11—C1237.4 (4)C9—C10—C24—O3141.2 (3)
C4—C7—C12—C11173.8 (3)C17—C18—O2—C2310.7 (4)
C8—C7—C12—C110.1 (5)C19—C18—O2—C23168.3 (2)
O1—C11—C12—C7171.8 (3)O4—C24—O3—C255.8 (5)
C10—C11—C12—C79.1 (5)C10—C24—O3—C25172.0 (3)
C10—C9—C13—C22114.9 (3)C26—C25—O3—C2481.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.493.411 (4)164
C8—H8A···O4ii0.992.523.388 (4)146
C8—H8B···Cl20.992.693.365 (3)125
C12—H12···O1iii0.952.423.354 (4)168
C14—H14···O4ii0.952.333.270 (4)170
C17—H17···Cl1iv0.952.763.635 (3)153
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H22Cl2O4
Mr469.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)14.2156 (4), 5.8647 (2), 27.3752 (9)
β (°) 94.840 (2)
V3)2274.14 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.20 × 0.10 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
24499, 5209, 3171
Rint0.081
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.160, 1.05
No. of reflections5209
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.32

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor 1997), and SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.493.411 (4)164
C8—H8A···O4ii0.992.523.388 (4)146
C8—H8B···Cl20.992.693.365 (3)125
C12—H12···O1iii0.952.423.354 (4)168
C14—H14···O4ii0.952.333.270 (4)170
C17—H17···Cl1iv0.952.763.635 (3)153
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x, y+5/2, z+1/2.
 

Acknowledgements

ANM thanks the University of Mysore for research facilities. HSY thanks the University of Mysore for sanctioning sabbatical leave.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, H., Mayekar, A. N., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009a). Acta Cryst. E65, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H., Mayekar, A. N., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009b). Acta Cryst. E65, o1533.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds