metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Cyano-1-(4-nitro­benz­yl)pyridinium bis­­(2-thioxo-1,3-di­thiole-4,5-di­thiol­ato-κ2S4,S5)nickelate(III)

aInstitute of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: meichongzhen@163.com

(Received 15 August 2010; accepted 18 September 2010; online 30 September 2010)

In the title salt, (C13H10N3O2)[Ni(C3S5)2], the NiIII cation is S,S′-chelated by two 2-thioxo-1,3-dithiole-4,5-dithiol­ate anions in a distorted square-planar geometry. The complex anion is approximately planar with a maximum deviation of 0.097 (1) Å. In the 1-(4-nitro­benz­yl)-4-cyano­pyridinium cation, the pyridine ring is twisted at a dihedral angle of 73.84 (16)° with respect to the benzene ring. π-π stacking is observed between nearly parallel [dihedral angle = 4.71 (7)°] dithiole and benzene rings, the centroid–centroid distance being 3.791 (2) Å.

Related literature

For background to and applications of dithiol­ate metal complexes, see: Akutagawa & Nakamura (2000[Akutagawa, T. & Nakamura, T. (2000). Coord. Chem. Rev. 198, 297-311.]); Cassoux (1999[Cassoux, P. (1999). Coord. Chem. Rev. 185-186, 213-232.]). For the structure of a complex with a 2-thioxo-1,3-dithiole-4,5-dithiol­ate ligand, see: Zang et al. (2006[Zang, S.-Q., Su, Y. & Tao, R.-J. (2006). Acta Cryst. E62, m1004-m1005.]). For weak inter­molecular inter­actions, see: Egli & Sarkhel (2007[Egli, M. & Sarkhel, S. J. (2007). Acc. Chem. Res. 40, 197-205.]); Tian et al. (2007[Tian, Z.-F., Ren, X.-M., Li, Y.-Z., Song, Y. & Meng, Q.-J. (2007). Inorg. Chem. 46, 8102-8104.]); Cundari et al. (2010[Cundari, T. R., Chilukuri, B., Hudson, J. M., Minot, C., Omary, M. A. & Rabaâ, H. (2010). Organometallics, 29, 795-800.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H10N3O2)[Ni(C3S5)2]

  • Mr = 691.61

  • Monoclinic, P 21 /c

  • a = 8.4896 (17) Å

  • b = 25.789 (5) Å

  • c = 12.043 (3) Å

  • β = 106.181 (3)°

  • V = 2532.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 296 K

  • 0.20 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.738, Tmax = 0.794

  • 12415 measured reflections

  • 4423 independent reflections

  • 3343 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.090

  • S = 1.02

  • 4423 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bis-dithiolate metal ion-pair complexes have been actively studied for a long time as a wide range of conducting and magneticmaterials as well as nonlinear opticalmaterials (Cassoux, 1999). 2-Thioxo-1,3-dithiole-4,5-dithiolate metal complex also is excellent building block employed for the construction of molecular magnetic materials (Zang et al., 2006) apart from its well known electric conductivity molecular conductors (Akutagawa & Nakamura, 2000). We report herein the synthesis and crystal structure of the new ion-pair complex.

The title compound (I) comprises [NiIII(dmit)2]- anions (where dmit = 2-thioxo-1,3-dithiole-4,5-dithiolate) and 1-(4-nitrobenzyl)-4-cyanopyridinium cations (Figure 1). The NiIII ion adopts a square-planar geometry coordinated by four S atoms of two dmit ligands, with Ni—S bond lengths ranging from 2.157 to 2.166 Å. Two [NiIII(dmit)2]- anions form pairs across centres of inversion, with their least squares planes parallel and Ni1···Ni1i= 3.668 Å, S1···S10i= 3.636 Å, [symmetry code: (i) -x, 1 - y, 1 - z]. Neighbouring anion pairs are nearly vertical or parallel arrangements so that S···S interactions in this region include S5···S7ii = 3.606, S5···S9ii = 3.473, S7···S5ii = 3.506, S7···S7ii = 3.471 and S10i···S2iii = 3.496 Å [symmetry codes: (ii) 1 - x, 1 - y, 1 - z; (iii) x, 1.5 - y, 1/2 + z]. The adjacent [NO2CNbzpy]+ cations adopting edge-to-face inversion arrangements are associated together through lone pair-aromatic interactions (lp···π: O2-centroid distance 2.953 Å) (Egli & Sarkhel, 2007) between the oxygen atom of nitro group and the pyridine ring from neighboring cation and CN···π interactions (C10···N1iii distance 3.010 Å) (Tian et al., 2007) between the CN group at the end of the cations and the pyridine ring of the adjacent cation. In addition, there is π···π interaction (centroid-centroid distance 3.625 Å) between phenyl ring of [NO2CNbzpy]+ cation and the ethylene group (C4C5) of [NiIII(dmit)2]- anion and donor-acceptor interaction between anion and cation (S1···C11 iii distance 3.234 Å [symmetry codes (iii) x, 1.5 - y, 1/2 + z]) (Cundari et al., 2010). The weak S···S, CN···π, lp···π, donor-acceptor and π···π interactions lead a three-dimensional supramolecular structure (Figure 2).

Related literature top

For background to and applications of dithiolate metal complexes, see: Akutagawa & Nakamura (2000); Cassoux (1999). For the structure of a complex with a 2-thioxo-1,3-dithiole-4,5-dithiolate ligand, see: Zang et al. (2006). For weak intermolecular interactions, see: Egli & Sarkhel (2007); Tian et al. (2007); Cundari et al. (2010).

Experimental top

4,5-Bis(thiobenzoyl)-1,3-dithiole-2-thione (812 mg, 2.0 mmol) was suspended in dry methanol (20 ml) and sodium (92 mg, 4.0 mmol) was added under a nitrogen atmosphere at room temperature to give a bright-red solution. NiCl2.6H2O (238 mg, 1 mmol) was then added, followed successively by I2 (127 mg, 0.5 mmol) and a solution of 1-(4-nitrobenzyl)-4-cyanopyridinium chloride (276 mg, 1 mmol) in methanol at an interval of approximately 20 min. The solution was stirred for a further 30 min and the resulting solid collected by filtration. Single crystals of the title complound were obtained by evaporation of a dilute acetone solution over 2 weeks at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic H, and C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C) for CH2.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The cation and anion in (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Three-dimensional supramolecular structure of (I). Hydrogen atoms have been omitted for clarity. Dashed lines indicate weak S···S, CN···π, lp···π, donor-acceptor and π···π interactions.
4-Cyano-1-(4-nitrobenzyl)pyridinium bis(2-thioxo-1,3-dithiole-4,5-dithiolato- κ2S4,S5)nickelate(III) top
Crystal data top
(C13H10N3O2)[Ni(C3S5)2]F(000) = 1396
Mr = 691.61Dx = 1.814 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 947 reflections
a = 8.4896 (17) Åθ = 2.4–24.3°
b = 25.789 (5) ŵ = 1.62 mm1
c = 12.043 (3) ÅT = 296 K
β = 106.181 (3)°Block, black
V = 2532.3 (9) Å30.20 × 0.17 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area detector
diffractometer
4423 independent reflections
Radiation source: fine-focus sealed tube3343 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 910
Tmin = 0.738, Tmax = 0.794k = 3021
12415 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.150P]
where P = (Fo2 + 2Fc2)/3
4423 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
(C13H10N3O2)[Ni(C3S5)2]V = 2532.3 (9) Å3
Mr = 691.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4896 (17) ŵ = 1.62 mm1
b = 25.789 (5) ÅT = 296 K
c = 12.043 (3) Å0.20 × 0.17 × 0.15 mm
β = 106.181 (3)°
Data collection top
Bruker SMART APEXII CCD area detector
diffractometer
4423 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3343 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 0.794Rint = 0.043
12415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.02Δρmax = 0.57 e Å3
4423 reflectionsΔρmin = 0.26 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.12504 (5)0.535201 (17)0.42287 (3)0.04673 (14)
O10.2608 (4)0.40743 (10)0.0690 (2)0.0797 (9)
O20.5120 (4)0.39512 (10)0.0279 (2)0.0754 (8)
N10.5275 (4)0.80533 (13)0.0531 (3)0.0746 (10)
N20.4084 (3)0.64870 (9)0.1936 (2)0.0424 (6)
N30.3834 (4)0.41930 (11)0.0065 (2)0.0552 (8)
S10.08507 (13)0.76215 (4)0.75005 (9)0.0690 (3)
S20.05329 (12)0.69214 (4)0.55265 (9)0.0660 (3)
S30.27096 (11)0.67162 (4)0.69657 (8)0.0602 (3)
S40.05363 (11)0.59682 (4)0.40526 (8)0.0620 (3)
S50.29798 (11)0.57297 (4)0.56561 (8)0.0578 (3)
S60.04453 (10)0.49687 (4)0.27893 (8)0.0581 (3)
S70.30541 (10)0.47438 (4)0.44187 (8)0.0559 (3)
S80.01230 (12)0.39818 (4)0.15167 (8)0.0661 (3)
S90.31466 (11)0.37927 (4)0.29563 (8)0.0596 (3)
S100.16951 (15)0.30728 (4)0.10160 (11)0.0842 (4)
C10.0997 (4)0.71136 (13)0.6712 (3)0.0553 (9)
C20.0396 (4)0.63686 (13)0.5171 (3)0.0514 (9)
C30.1933 (4)0.62697 (13)0.5861 (3)0.0499 (9)
C40.0626 (4)0.44299 (13)0.2605 (3)0.0510 (9)
C50.2162 (4)0.43352 (13)0.3297 (3)0.0487 (8)
C60.1579 (4)0.35837 (14)0.1780 (3)0.0602 (10)
C80.4722 (4)0.72766 (12)0.0638 (3)0.0442 (8)
C90.5968 (4)0.70593 (12)0.1495 (3)0.0480 (8)
H90.70350.71840.16430.058*
C100.5612 (4)0.66582 (12)0.2124 (3)0.0472 (8)
H100.64510.65030.26930.057*
C110.2853 (4)0.66928 (12)0.1100 (3)0.0458 (8)
H110.17930.65650.09760.055*
C120.3145 (4)0.70877 (12)0.0432 (3)0.0484 (8)
H120.22950.72280.01530.058*
C130.3706 (4)0.60448 (12)0.2623 (3)0.0511 (9)
H13A0.26370.60970.27490.061*
H13B0.45160.60310.33720.061*
C140.5122 (4)0.52460 (13)0.2208 (3)0.0485 (9)
H140.60520.53480.27810.058*
C150.3716 (4)0.55425 (11)0.1992 (2)0.0404 (7)
C160.2328 (4)0.53870 (12)0.1150 (3)0.0476 (8)
H160.13710.55810.10130.057*
C170.2358 (4)0.49449 (12)0.0513 (3)0.0474 (8)
H170.14350.48410.00640.057*
C180.3785 (4)0.46620 (12)0.0752 (2)0.0415 (8)
C190.5162 (4)0.48020 (13)0.1588 (3)0.0484 (8)
H190.61090.46020.17350.058*
C200.5035 (4)0.77070 (14)0.0025 (3)0.0538 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0354 (2)0.0605 (3)0.0427 (3)0.0008 (2)0.00814 (19)0.0116 (2)
O10.094 (2)0.0649 (18)0.0670 (18)0.0028 (15)0.0001 (16)0.0202 (14)
O20.083 (2)0.0650 (18)0.0817 (19)0.0176 (16)0.0288 (16)0.0093 (14)
N10.084 (2)0.070 (2)0.068 (2)0.0089 (19)0.0177 (19)0.0166 (18)
N20.0533 (17)0.0397 (15)0.0352 (14)0.0012 (13)0.0137 (13)0.0033 (12)
N30.075 (2)0.0465 (19)0.0471 (18)0.0005 (17)0.0216 (17)0.0048 (14)
S10.0714 (7)0.0700 (7)0.0707 (7)0.0025 (5)0.0282 (5)0.0038 (5)
S20.0494 (6)0.0619 (6)0.0801 (7)0.0097 (5)0.0074 (5)0.0082 (5)
S30.0480 (5)0.0662 (6)0.0623 (6)0.0019 (5)0.0082 (4)0.0029 (5)
S40.0433 (5)0.0683 (7)0.0632 (6)0.0080 (4)0.0037 (4)0.0067 (5)
S50.0409 (5)0.0680 (6)0.0569 (6)0.0088 (4)0.0011 (4)0.0029 (5)
S60.0376 (5)0.0763 (7)0.0546 (6)0.0032 (4)0.0031 (4)0.0042 (5)
S70.0403 (5)0.0726 (6)0.0486 (5)0.0074 (4)0.0022 (4)0.0011 (4)
S80.0549 (6)0.0742 (7)0.0610 (6)0.0100 (5)0.0026 (5)0.0021 (5)
S90.0533 (6)0.0602 (6)0.0634 (6)0.0004 (5)0.0133 (5)0.0046 (5)
S100.0937 (9)0.0676 (7)0.0933 (8)0.0168 (6)0.0295 (7)0.0164 (6)
C10.051 (2)0.058 (2)0.062 (2)0.0038 (17)0.0230 (18)0.0135 (18)
C20.0419 (19)0.051 (2)0.061 (2)0.0022 (16)0.0148 (17)0.0148 (17)
C30.046 (2)0.051 (2)0.052 (2)0.0036 (16)0.0117 (16)0.0121 (16)
C40.044 (2)0.062 (2)0.047 (2)0.0052 (17)0.0128 (16)0.0072 (17)
C50.0421 (19)0.060 (2)0.0463 (19)0.0017 (16)0.0159 (16)0.0101 (16)
C60.060 (2)0.066 (2)0.056 (2)0.0156 (19)0.0190 (18)0.0090 (18)
C80.057 (2)0.0373 (19)0.0412 (19)0.0013 (16)0.0175 (16)0.0019 (15)
C90.049 (2)0.049 (2)0.046 (2)0.0029 (16)0.0124 (16)0.0001 (16)
C100.052 (2)0.048 (2)0.0385 (18)0.0043 (17)0.0067 (15)0.0020 (16)
C110.048 (2)0.040 (2)0.051 (2)0.0027 (16)0.0153 (16)0.0069 (16)
C120.053 (2)0.043 (2)0.0460 (19)0.0058 (16)0.0087 (16)0.0009 (16)
C130.071 (2)0.047 (2)0.0395 (18)0.0047 (18)0.0208 (17)0.0023 (16)
C140.048 (2)0.056 (2)0.0364 (18)0.0059 (16)0.0029 (15)0.0038 (16)
C150.050 (2)0.0405 (18)0.0329 (16)0.0041 (15)0.0144 (15)0.0059 (14)
C160.0411 (18)0.046 (2)0.055 (2)0.0015 (15)0.0122 (16)0.0055 (17)
C170.0404 (19)0.046 (2)0.050 (2)0.0060 (16)0.0036 (16)0.0034 (16)
C180.054 (2)0.0370 (18)0.0370 (17)0.0027 (15)0.0175 (15)0.0038 (14)
C190.047 (2)0.050 (2)0.046 (2)0.0050 (16)0.0102 (16)0.0078 (16)
C200.061 (2)0.052 (2)0.047 (2)0.0031 (18)0.0120 (18)0.0024 (18)
Geometric parameters (Å, º) top
Ni1—S52.1570 (10)C2—C31.362 (4)
Ni1—S72.1591 (10)C4—C51.360 (4)
Ni1—S62.1596 (10)C8—C91.375 (4)
Ni1—S42.1661 (10)C8—C121.380 (4)
O1—N31.215 (3)C8—C201.434 (5)
O2—N31.220 (4)C9—C101.365 (4)
N1—C201.132 (4)C9—H90.9300
N2—C101.328 (4)C10—H100.9300
N2—C111.343 (4)C11—C121.362 (4)
N2—C131.495 (4)C11—H110.9300
N3—C181.473 (4)C12—H120.9300
S1—C11.643 (4)C13—C151.503 (4)
S2—C11.714 (4)C13—H13A0.9700
S2—C21.740 (4)C13—H13B0.9700
S3—C11.735 (4)C14—C191.373 (4)
S3—C31.744 (3)C14—C151.379 (4)
S4—C21.707 (4)C14—H140.9300
S5—C31.707 (4)C15—C161.383 (4)
S6—C41.709 (4)C16—C171.378 (4)
S7—C51.714 (3)C16—H160.9300
S8—C61.728 (4)C17—C181.375 (4)
S8—C41.730 (3)C17—H170.9300
S9—C51.736 (4)C18—C191.362 (4)
S9—C61.738 (4)C19—H190.9300
S10—C61.626 (4)
S5—Ni1—S786.47 (4)C9—C8—C20120.7 (3)
S5—Ni1—S6178.98 (4)C12—C8—C20119.6 (3)
S7—Ni1—S692.69 (4)C10—C9—C8118.9 (3)
S5—Ni1—S492.83 (4)C10—C9—H9120.6
S7—Ni1—S4179.28 (4)C8—C9—H9120.6
S6—Ni1—S488.01 (4)N2—C10—C9120.9 (3)
C10—N2—C11121.1 (3)N2—C10—H10119.5
C10—N2—C13120.6 (3)C9—C10—H10119.5
C11—N2—C13118.3 (3)N2—C11—C12120.4 (3)
O1—N3—O2124.0 (3)N2—C11—H11119.8
O1—N3—C18118.4 (3)C12—C11—H11119.8
O2—N3—C18117.7 (3)C11—C12—C8119.0 (3)
C1—S2—C298.72 (17)C11—C12—H12120.5
C1—S3—C397.80 (16)C8—C12—H12120.5
C2—S4—Ni1102.02 (12)N2—C13—C15110.2 (2)
C3—S5—Ni1102.58 (11)N2—C13—H13A109.6
C4—S6—Ni1102.50 (11)C15—C13—H13A109.6
C5—S7—Ni1102.63 (12)N2—C13—H13B109.6
C6—S8—C498.39 (16)C15—C13—H13B109.6
C5—S9—C697.64 (17)H13A—C13—H13B108.1
S1—C1—S2123.4 (2)C19—C14—C15120.7 (3)
S1—C1—S3124.3 (2)C19—C14—H14119.6
S2—C1—S3112.3 (2)C15—C14—H14119.6
C3—C2—S4121.6 (3)C14—C15—C16119.5 (3)
C3—C2—S2115.2 (3)C14—C15—C13120.6 (3)
S4—C2—S2123.19 (19)C16—C15—C13119.8 (3)
C2—C3—S5120.9 (3)C17—C16—C15120.3 (3)
C2—C3—S3115.9 (3)C17—C16—H16119.9
S5—C3—S3123.24 (19)C15—C16—H16119.9
C5—C4—S6121.4 (3)C18—C17—C16118.3 (3)
C5—C4—S8115.6 (3)C18—C17—H17120.9
S6—C4—S8123.02 (19)C16—C17—H17120.9
C4—C5—S7120.7 (3)C19—C18—C17122.6 (3)
C4—C5—S9116.3 (3)C19—C18—N3118.7 (3)
S7—C5—S9123.06 (19)C17—C18—N3118.6 (3)
S10—C6—S8123.9 (2)C18—C19—C14118.5 (3)
S10—C6—S9124.0 (2)C18—C19—H19120.8
S8—C6—S9112.1 (2)C14—C19—H19120.8
C9—C8—C12119.7 (3)N1—C20—C8178.6 (4)
S5—Ni1—S4—C23.08 (12)C6—S9—C5—C40.8 (3)
S6—Ni1—S4—C2177.50 (12)C6—S9—C5—S7179.6 (2)
S7—Ni1—S5—C3177.63 (12)C4—S8—C6—S10179.0 (2)
S4—Ni1—S5—C32.52 (12)C4—S8—C6—S91.1 (2)
S7—Ni1—S6—C42.01 (12)C5—S9—C6—S10179.7 (2)
S4—Ni1—S6—C4177.84 (12)C5—S9—C6—S80.4 (2)
S5—Ni1—S7—C5176.49 (12)C12—C8—C9—C100.2 (5)
S6—Ni1—S7—C52.94 (12)C20—C8—C9—C10178.5 (3)
C2—S2—C1—S1177.9 (2)C11—N2—C10—C92.0 (5)
C2—S2—C1—S32.8 (2)C13—N2—C10—C9179.5 (3)
C3—S3—C1—S1177.6 (2)C8—C9—C10—N21.7 (5)
C3—S3—C1—S23.1 (2)C10—N2—C11—C120.7 (5)
Ni1—S4—C2—C33.3 (3)C13—N2—C11—C12178.4 (3)
Ni1—S4—C2—S2175.84 (18)N2—C11—C12—C80.8 (5)
C1—S2—C2—C31.3 (3)C9—C8—C12—C111.0 (5)
C1—S2—C2—S4177.9 (2)C20—C8—C12—C11177.3 (3)
S4—C2—C3—S51.5 (4)C10—N2—C13—C1593.8 (3)
S2—C2—C3—S5177.70 (18)C11—N2—C13—C1583.8 (4)
S4—C2—C3—S3179.97 (18)C19—C14—C15—C160.7 (5)
S2—C2—C3—S30.7 (4)C19—C14—C15—C13176.3 (3)
Ni1—S5—C3—C21.2 (3)N2—C13—C15—C1493.1 (3)
Ni1—S5—C3—S3177.12 (18)N2—C13—C15—C1684.0 (4)
C1—S3—C3—C22.4 (3)C14—C15—C16—C171.4 (5)
C1—S3—C3—S5176.0 (2)C13—C15—C16—C17175.7 (3)
Ni1—S6—C4—C50.3 (3)C15—C16—C17—C181.1 (5)
Ni1—S6—C4—S8177.69 (18)C16—C17—C18—C190.1 (5)
C6—S8—C4—C51.7 (3)C16—C17—C18—N3179.2 (3)
C6—S8—C4—S6176.4 (2)O1—N3—C18—C19179.0 (3)
S6—C4—C5—S72.4 (4)O2—N3—C18—C190.1 (4)
S8—C4—C5—S7179.46 (18)O1—N3—C18—C170.1 (4)
S6—C4—C5—S9176.42 (18)O2—N3—C18—C17179.0 (3)
S8—C4—C5—S91.7 (4)C17—C18—C19—C140.5 (5)
Ni1—S7—C5—C43.7 (3)N3—C18—C19—C14178.5 (3)
Ni1—S7—C5—S9175.08 (17)C15—C14—C19—C180.2 (5)

Experimental details

Crystal data
Chemical formula(C13H10N3O2)[Ni(C3S5)2]
Mr691.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.4896 (17), 25.789 (5), 12.043 (3)
β (°) 106.181 (3)
V3)2532.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.20 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.738, 0.794
No. of measured, independent and
observed [I > 2σ(I)] reflections
12415, 4423, 3343
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.090, 1.02
No. of reflections4423
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported financially by the North China University of Water Conservancy and Electric Power, China.

References

First citationAkutagawa, T. & Nakamura, T. (2000). Coord. Chem. Rev. 198, 297–311.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCassoux, P. (1999). Coord. Chem. Rev. 185–186, 213–232.  Web of Science CrossRef CAS Google Scholar
First citationCundari, T. R., Chilukuri, B., Hudson, J. M., Minot, C., Omary, M. A. & Rabaâ, H. (2010). Organometallics, 29, 795–800.  Web of Science CrossRef CAS Google Scholar
First citationEgli, M. & Sarkhel, S. J. (2007). Acc. Chem. Res. 40, 197–205.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Z.-F., Ren, X.-M., Li, Y.-Z., Song, Y. & Meng, Q.-J. (2007). Inorg. Chem. 46, 8102–8104.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZang, S.-Q., Su, Y. & Tao, R.-J. (2006). Acta Cryst. E62, m1004–m1005.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds