metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3-amino­pyrazine-2-carboxyl­ato-κ2N1,O)di­aqua­manganese(II) mono­hydrate

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 30 August 2010; accepted 1 September 2010; online 8 September 2010)

In the title compound, [Mn(C5H4N3O2)2(H2O)2]·H2O, the MnII cation, located on a twofold rotation axis, is N,O-chelated by two 3-amino­pyrazine-2-carboxyl­ate anions and coordin­ated by two water mol­ecules in a distorted octa­hedral geometry. The uncoordinated water mol­ecules lies on a twofold rotation axis. Adjacent mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds into a three-dimensional network motif.

Related literature

For the isostructural magnesium analog, see: Ptasiewicz-Bak & Leciejewicz (1997[Ptasiewicz-Bak, H. & Leciejewicz, J. (1997). Pol. J. Chem. 71, 1350-1358.]); Marsh (2004[Marsh, R. E. (2004). Acta Cryst. B60, 252-253.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C5H4N3O2)2(H2O)2]·H2O

  • Mr = 385.21

  • Orthorhombic, F d d 2

  • a = 8.3107 (6) Å

  • b = 29.5862 (17) Å

  • c = 12.3791 (7) Å

  • V = 3043.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.875, Tmax = 0.930

  • 7239 measured reflections

  • 1684 independent reflections

  • 1086 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.165

  • S = 1.14

  • 1684 reflections

  • 126 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.90 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 775 Friedel pairs

  • Flack parameter: −0.02 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O2i 0.84 (7) 1.89 (3) 2.704 (7) 162 (9)
O1w—H12⋯N2ii 0.84 (7) 2.02 (4) 2.792 (7) 152 (9)
O2w—H2⋯O1 0.84 (7) 2.10 (4) 2.902 (7) 159 (10)
N3—H31⋯O2 0.88 (7) 2.17 (9) 2.690 (8) 118 (8)
N3—H32⋯O2wiii 0.88 (3) 2.15 (3) 3.001 (7) 161 (9)
Symmetry codes: (i) [-x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 4}}, -y+{\script{3\over 4}}, z+{\script{1\over 4}}]; (iii) [-x-{\script{1\over 4}}, y+{\script{1\over 4}}, z-{\script{1\over 4}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure of Mg(H2O)2(C5H4N3O2)2.H2O was described in the Cc space group (Ptasiewicz-Bak & Leciejewicz, 1997); the space group was revised to the Fdd2 space group (Marsh, 2004). The manganese analog (Scheme I) is isostructural; The water-coordinated manganese atom is N,O-chelated by the carboxylate ion (Fig. 2) in an octahedral environment. The mononuclear and lattice water both lie on a twofold rotation axis. Adjacent molecules are linked by O–H···O and N–H···O hydrogen bonds into a three-dimensional network motif.

Related literature top

For the isostructural magnesium analog, see: Ptasiewicz-Bak & Leciejewicz (1997); Marsh (2004).

Experimental top

Manganese acetate (1 mmol) and 2-aminopyrazine-3-carboxylic acid (2 mmol) and sodium hydroxide (2 mmol) were dissolved in a small volume of water to give a light yellow solution. Prismatic crystals separated from the solution after a few days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amino H-atoms and water H-atoms were located in a difference Fourier map, and were refined with a distance restraints of N–H 0.88±0.01 and O–H 0.84±0.01 Å; their temperature factors were tied to those of the parent atoms by a factor of 1.5 times.

The final difference Fourier map was featureless.

The second value in the WGHT is somewhat large. Using a smaller value led to a deeper hole in the final difference Fourier map and a larger Goodness-of-fit.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Mn(H2O)2(C5H4N3O2)2.H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The Mn and lattice water molecule lie on a twofold rotation axis. Symmetry-related atoms are not labeled.
Bis(3-aminopyrazine-2-carboxylato-κ2N1,O)diaquamanganese(II) monohydrate top
Crystal data top
[Mn(C5H4N3O2)2(H2O)2]·H2OF(000) = 1576
Mr = 385.21Dx = 1.681 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 4731 reflections
a = 8.3107 (6) Åθ = 3.0–27.4°
b = 29.5862 (17) ŵ = 0.92 mm1
c = 12.3791 (7) ÅT = 293 K
V = 3043.8 (3) Å3Prism, yellow
Z = 80.15 × 0.10 × 0.08 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1684 independent reflections
Radiation source: fine-focus sealed tube1086 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 10.000 pixels mm-1θmax = 27.4°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 3838
Tmin = 0.875, Tmax = 0.930l = 1615
7239 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0722P)2 + 15.3101P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.165(Δ/σ)max = 0.001
S = 1.14Δρmax = 0.50 e Å3
1684 reflectionsΔρmin = 0.90 e Å3
126 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.0014 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 775 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (5)
Crystal data top
[Mn(C5H4N3O2)2(H2O)2]·H2OV = 3043.8 (3) Å3
Mr = 385.21Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 8.3107 (6) ŵ = 0.92 mm1
b = 29.5862 (17) ÅT = 293 K
c = 12.3791 (7) Å0.15 × 0.10 × 0.08 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1684 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1086 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.930Rint = 0.056
7239 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.0722P)2 + 15.3101P]
where P = (Fo2 + 2Fc2)/3
S = 1.14Δρmax = 0.50 e Å3
1684 reflectionsΔρmin = 0.90 e Å3
126 parametersAbsolute structure: Flack (1983), 775 Friedel pairs
6 restraintsAbsolute structure parameter: 0.02 (5)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.25000.25000.53687 (11)0.0378 (4)
O10.0649 (6)0.26569 (16)0.4190 (4)0.0457 (11)
O20.0500 (7)0.31796 (16)0.3169 (4)0.0606 (16)
O1W0.0675 (8)0.24512 (17)0.6593 (4)0.0561 (16)
H110.084 (11)0.225 (2)0.706 (5)0.084*
H120.006 (9)0.267 (2)0.675 (8)0.084*
O2W0.25000.25000.5133 (9)0.069 (3)
H20.164 (7)0.248 (4)0.478 (7)0.104*
N10.2472 (6)0.32757 (14)0.5175 (4)0.0348 (13)
N20.2176 (7)0.41941 (18)0.4774 (5)0.0515 (16)
N30.0251 (9)0.4054 (2)0.3489 (6)0.0634 (19)
H310.048 (9)0.391 (3)0.311 (7)0.095*
H320.035 (11)0.4344 (8)0.335 (8)0.095*
C10.0468 (8)0.30645 (19)0.3886 (5)0.0409 (14)
C20.1439 (7)0.34192 (19)0.4439 (5)0.0349 (12)
C30.1271 (8)0.3890 (2)0.4229 (5)0.0427 (14)
C40.3184 (10)0.4035 (2)0.5501 (7)0.0587 (19)
H40.38080.42410.58860.070*
C50.3368 (9)0.3572 (2)0.5727 (6)0.0503 (17)
H50.40950.34740.62480.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0457 (7)0.0301 (6)0.0376 (7)0.0012 (7)0.0000.000
O10.051 (3)0.035 (2)0.051 (3)0.001 (2)0.009 (2)0.000 (2)
O20.076 (4)0.050 (2)0.055 (4)0.010 (2)0.035 (3)0.000 (2)
O1W0.070 (4)0.048 (3)0.050 (3)0.010 (3)0.019 (3)0.008 (2)
O2W0.044 (4)0.055 (4)0.109 (10)0.009 (4)0.0000.000
N10.041 (2)0.030 (2)0.033 (4)0.001 (2)0.009 (3)0.003 (2)
N20.056 (4)0.039 (3)0.059 (4)0.015 (3)0.008 (3)0.004 (3)
N30.075 (5)0.042 (3)0.073 (5)0.001 (3)0.029 (4)0.019 (3)
C10.050 (4)0.033 (3)0.040 (3)0.001 (3)0.001 (3)0.003 (3)
C20.041 (3)0.034 (3)0.030 (3)0.002 (2)0.008 (3)0.003 (2)
C30.046 (4)0.037 (3)0.044 (4)0.001 (3)0.001 (3)0.006 (3)
C40.063 (4)0.045 (4)0.068 (5)0.019 (3)0.014 (4)0.013 (4)
C50.055 (4)0.043 (3)0.053 (4)0.007 (3)0.021 (3)0.006 (3)
Geometric parameters (Å, º) top
Mn1—O1Wi2.149 (6)N1—C51.338 (8)
Mn1—O1W2.149 (6)N2—C41.316 (10)
Mn1—O12.170 (5)N2—C31.352 (8)
Mn1—O1i2.170 (5)N3—C31.339 (8)
Mn1—N1i2.308 (4)N3—H310.88 (7)
Mn1—N12.308 (4)N3—H320.88 (3)
O1—C11.273 (7)C1—C21.490 (8)
O2—C11.245 (8)C2—C31.424 (8)
O1W—H110.84 (7)C4—C51.409 (9)
O1W—H120.84 (7)C4—H40.9300
O2W—H20.84 (7)C5—H50.9300
N1—C21.322 (7)
O1Wi—Mn1—O1W90.3 (4)C5—N1—Mn1126.3 (4)
O1Wi—Mn1—O1163.73 (16)C4—N2—C3117.2 (6)
O1W—Mn1—O189.33 (18)C3—N3—H31129 (7)
O1Wi—Mn1—O1i89.33 (18)C3—N3—H32115 (6)
O1W—Mn1—O1i163.73 (16)H31—N3—H32115 (9)
O1—Mn1—O1i95.5 (3)O2—C1—O1123.1 (6)
O1Wi—Mn1—N1i97.65 (18)O2—C1—C2119.0 (5)
O1W—Mn1—N1i90.79 (18)O1—C1—C2117.9 (6)
O1—Mn1—N1i98.61 (18)N1—C2—C3120.2 (5)
O1i—Mn1—N1i73.16 (17)N1—C2—C1116.2 (5)
O1Wi—Mn1—N190.79 (18)C3—C2—C1123.5 (5)
O1W—Mn1—N197.65 (18)N3—C3—N2116.9 (6)
O1—Mn1—N173.16 (17)N3—C3—C2122.7 (6)
O1i—Mn1—N198.61 (18)N2—C3—C2120.3 (6)
N1i—Mn1—N1168.0 (3)N2—C4—C5123.5 (7)
C1—O1—Mn1119.0 (4)N2—C4—H4118.2
Mn1—O1W—H11115 (6)C5—C4—H4118.2
Mn1—O1W—H12122 (7)N1—C5—C4118.4 (6)
H11—O1W—H12119 (10)N1—C5—H5120.8
C2—N1—C5120.2 (5)C4—C5—H5120.8
C2—N1—Mn1113.4 (4)
O1Wi—Mn1—O1—C114.2 (12)Mn1—N1—C2—C3179.6 (5)
O1W—Mn1—O1—C1102.9 (5)C5—N1—C2—C1178.6 (6)
O1i—Mn1—O1—C192.7 (5)Mn1—N1—C2—C11.0 (7)
N1i—Mn1—O1—C1166.4 (5)O2—C1—C2—N1178.5 (6)
N1—Mn1—O1—C14.7 (5)O1—C1—C2—N13.0 (9)
O1Wi—Mn1—N1—C2179.9 (4)O2—C1—C2—C33.0 (9)
O1W—Mn1—N1—C289.8 (4)O1—C1—C2—C3175.5 (6)
O1—Mn1—N1—C22.8 (4)C4—N2—C3—N3179.9 (8)
O1i—Mn1—N1—C290.4 (4)C4—N2—C3—C20.7 (10)
N1i—Mn1—N1—C244.8 (4)N1—C2—C3—N3179.6 (7)
O1Wi—Mn1—N1—C50.6 (6)C1—C2—C3—N31.9 (10)
O1W—Mn1—N1—C589.8 (6)N1—C2—C3—N20.5 (10)
O1—Mn1—N1—C5176.8 (6)C1—C2—C3—N2178.9 (6)
O1i—Mn1—N1—C590.0 (6)C3—N2—C4—C50.5 (13)
N1i—Mn1—N1—C5135.6 (5)C2—N1—C5—C40.2 (10)
Mn1—O1—C1—O2175.7 (5)Mn1—N1—C5—C4179.8 (5)
Mn1—O1—C1—C25.8 (8)N2—C4—C5—N10.0 (13)
C5—N1—C2—C30.0 (9)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O2ii0.84 (7)1.89 (3)2.704 (7)162 (9)
O1w—H12···N2iii0.84 (7)2.02 (4)2.792 (7)152 (9)
O2w—H2···O10.84 (7)2.10 (4)2.902 (7)159 (10)
N3—H31···O20.88 (7)2.17 (9)2.690 (8)118 (8)
N3—H32···O2wiv0.88 (3)2.15 (3)3.001 (7)161 (9)
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x1/4, y+3/4, z+1/4; (iv) x1/4, y+1/4, z1/4.

Experimental details

Crystal data
Chemical formula[Mn(C5H4N3O2)2(H2O)2]·H2O
Mr385.21
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)293
a, b, c (Å)8.3107 (6), 29.5862 (17), 12.3791 (7)
V3)3043.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.15 × 0.10 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.875, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
7239, 1684, 1086
Rint0.056
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.165, 1.14
No. of reflections1684
No. of parameters126
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0722P)2 + 15.3101P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.50, 0.90
Absolute structureFlack (1983), 775 Friedel pairs
Absolute structure parameter0.02 (5)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O2i0.84 (7)1.89 (3)2.704 (7)162 (9)
O1w—H12···N2ii0.84 (7)2.02 (4)2.792 (7)152 (9)
O2w—H2···O10.84 (7)2.10 (4)2.902 (7)159 (10)
N3—H31···O20.88 (7)2.17 (9)2.690 (8)118 (8)
N3—H32···O2wiii0.88 (3)2.15 (3)3.001 (7)161 (9)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1/4, y+3/4, z+1/4; (iii) x1/4, y+1/4, z1/4.
 

Acknowledgements

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMarsh, R. E. (2004). Acta Cryst. B60, 252–253.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPtasiewicz-Bak, H. & Leciejewicz, J. (1997). Pol. J. Chem. 71, 1350–1358.  CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds