organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Methyl-2-pyridyl N-acetyl-1-thio-β-D-glucosa­minide methanol monosolvate

aFaculty of Materials Science and Chemical Engineering, Ningbo University, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: lianghongze@nbu.edu.cn

(Received 31 August 2010; accepted 9 September 2010; online 15 September 2010)

In the title compound, C14H20N2O5S·CH4O, the pyran­ose and pyridine rings are linked through an S atom. The pyran­ose ring has a normal chair conformation. An intra­molecular O—H⋯N hydrogen bond occurs. Inter­molecular O—H⋯O, N—H⋯O, O—H⋯N and weak C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For applications of glucopyran­osides, see: Ashry et al. (2006[Ashry, E. S. H., Awad, L. F. & Atta, A. I. (2006). Tetrahedron, 62, 2943-2998.]). For the structure of an α-D-glucosa­minide, see: Harrison et al. (2007[Harrison, W. T. A., Yathirajan, H. S., Narayana, B., Sreevidya, T. V. & Sarojini, B. K. (2007). Acta Cryst. E63, o3248.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20N2O5S·CH4O

  • Mr = 360.42

  • Orthorhombic, P 21 21 21

  • a = 7.3841 (15) Å

  • b = 14.041 (3) Å

  • c = 17.038 (4) Å

  • V = 1766.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.51 × 0.27 × 0.2 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.950

  • 12687 measured reflections

  • 3173 independent reflections

  • 2997 reflections with I > 2σ(I)

  • Rint = 0.161

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.170

  • S = 1.05

  • 3173 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.70 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1334 Fiedel pairs

  • Flack parameter: 0.01 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.15 2.925 (4) 149
O2—H2A⋯O3ii 0.82 2.02 2.794 (3) 156
O3—H3A⋯O4ii 0.82 1.88 2.646 (3) 155
O4—H4A⋯O6iii 0.82 1.82 2.637 (4) 176
O6—H6⋯N2 0.82 1.98 2.795 (4) 175
C8—H8A⋯O5iv 0.93 2.48 3.329 (4) 151
C12—H12C⋯O1v 0.96 2.58 3.520 (4) 165
C15—H15C⋯O3vi 0.96 2.56 3.367 (5) 142
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (vi) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thioglycosides are widely employed as biological inhibitors, glycosyl donors and enzyme resistant ligands for affinity chromatography (Ashry et al., 2006). Here we report the crystal structure of the title compound (Scheme 1). The title compound crystallizes exclusively as the β anomer. The molecule contains a pyranose ring and a pyridine ring linked by a sulfur atom. The pyranose ring has a normal chair conformation, similar to that found in an α-D-glucosaminide (Harrison et al. 2007). The extensive hydrogen bonding network is present in the crystal structure, involving O—H···O, O—H···N and N—H···O hydrogen bonding (Table 1). Weak intermolecular C—H···O hydrogen bonding is also present in the crystal structure.

Related literature top

For applications of glucopyranosides, see: Ashry et al. (2006). For the structure of an α-D-glucosaminide, see: Harrison et al. (2007).

Experimental top

6'-Methyl-2'-pyridyl-2,3,4,6-tetraacetyl-1-thio-β-D-glucosaminide (1.5 g, 3.3 mmol) was dissolved in MeOH (10 ml) and one equivalent MeONa was added. The process of deacetylation was monitored by 1H NMR. After removal of the solvent, the solid residue was washed with ethanol and ether, and then crystallized from H2O/MeOH to give the title compound (0.23 g) as colorless crystals.

Refinement top

H atoms were placed in calculated positions and treated using a riding-model, C–H = 0.93–0.98 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C), N–H = 0.86 with Uiso(H) = 1.2Ueq(N), O—H = 0.82 Å with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) showing the labeling of the non-H atoms and 50% probability ellipsoids. Dashed line indicates the hydrogen bonding.
6-Methyl-2-pyridyl N-acetyl-1-thio-β-D-glucosaminide methanol monosolvate top
Crystal data top
C14H20N2O5S·CH4OF(000) = 768
Mr = 360.42Dx = 1.355 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 12040 reflections
a = 7.3841 (15) Åθ = 1.9–24.5°
b = 14.041 (3) ŵ = 0.22 mm1
c = 17.038 (4) ÅT = 296 K
V = 1766.5 (6) Å3Block, colourless
Z = 40.51 × 0.27 × 0.2 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3173 independent reflections
Radiation source: fine-focus sealed tube2997 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.161
Detector resolution: 0 pixels mm-1θmax = 25.2°, θmin = 1.9°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1616
Tmin = 0.932, Tmax = 0.950l = 2020
12687 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.1077P)2 + 0.760P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
3173 reflectionsΔρmax = 0.56 e Å3
222 parametersΔρmin = 0.70 e Å3
0 restraintsAbsolute structure: Flack (1983), 1334 Fiedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (12)
Crystal data top
C14H20N2O5S·CH4OV = 1766.5 (6) Å3
Mr = 360.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3841 (15) ŵ = 0.22 mm1
b = 14.041 (3) ÅT = 296 K
c = 17.038 (4) Å0.51 × 0.27 × 0.2 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3173 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2997 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.950Rint = 0.161
12687 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.170Δρmax = 0.56 e Å3
S = 1.05Δρmin = 0.70 e Å3
3173 reflectionsAbsolute structure: Flack (1983), 1334 Fiedel pairs
222 parametersAbsolute structure parameter: 0.01 (12)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.80502 (12)0.14422 (6)0.34312 (4)0.0246 (2)
O10.6461 (3)0.24215 (17)0.23124 (11)0.0209 (5)
O20.3258 (3)0.26631 (17)0.13049 (12)0.0238 (5)
H2A0.30870.26600.08290.036*
O30.7290 (3)0.28865 (18)0.02141 (12)0.0243 (5)
H3A0.63760.32040.01350.036*
O40.9501 (3)0.12909 (17)0.04864 (13)0.0237 (5)
H4A0.86950.09060.03920.036*
O51.0621 (4)0.03011 (17)0.24234 (16)0.0327 (6)
O60.8051 (4)0.00609 (19)0.51072 (18)0.0449 (8)
H60.79820.05170.50480.067*
N11.0936 (4)0.1246 (2)0.20602 (15)0.0221 (6)
H1A1.16890.17110.20240.027*
N20.8034 (4)0.1914 (2)0.49004 (14)0.0232 (6)
C10.8218 (5)0.2112 (2)0.25267 (16)0.0205 (6)
H1B0.90100.26650.26040.025*
C20.9047 (4)0.1441 (2)0.19007 (17)0.0191 (6)
H2C0.83690.08410.18910.023*
C30.8913 (4)0.1928 (2)0.10900 (16)0.0179 (6)
H3B0.97730.24600.10960.021*
C40.7073 (4)0.2349 (2)0.09201 (15)0.0186 (6)
H4B0.61900.18370.08370.022*
C50.6461 (4)0.2985 (2)0.15999 (16)0.0189 (6)
H5A0.73110.35160.16580.023*
C60.4550 (4)0.3376 (2)0.14950 (17)0.0211 (7)
H6A0.41810.36900.19760.025*
H6B0.45620.38500.10810.025*
C70.8079 (5)0.2318 (2)0.41830 (17)0.0220 (7)
C80.8187 (5)0.3293 (2)0.40626 (18)0.0272 (7)
H8A0.81970.35490.35590.033*
C90.8281 (6)0.3875 (3)0.4726 (2)0.0360 (9)
H9A0.83830.45320.46710.043*
C100.8221 (5)0.3470 (3)0.5465 (2)0.0343 (8)
H10A0.82650.38530.59100.041*
C110.8095 (5)0.2491 (3)0.55384 (17)0.0268 (7)
C120.8040 (6)0.2002 (3)0.63295 (18)0.0342 (8)
H12A0.79560.13260.62550.051*
H12B0.70050.22210.66190.051*
H12C0.91230.21490.66160.051*
C131.1595 (5)0.0380 (2)0.22624 (18)0.0258 (8)
C141.3633 (5)0.0325 (3)0.2284 (2)0.0370 (9)
H14A1.39970.03070.24310.055*
H14B1.40890.07730.26610.055*
H14C1.41110.04730.17750.055*
C150.9488 (6)0.0426 (3)0.4639 (3)0.0419 (10)
H15A1.03110.00800.45110.063*
H15B0.90020.06910.41640.063*
H15C1.01200.09120.49250.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0396 (5)0.0254 (4)0.0087 (4)0.0002 (4)0.0009 (3)0.0015 (3)
O10.0240 (12)0.0320 (12)0.0068 (9)0.0013 (9)0.0010 (8)0.0021 (9)
O20.0240 (11)0.0350 (12)0.0124 (10)0.0047 (10)0.0019 (9)0.0012 (9)
O30.0243 (12)0.0387 (14)0.0100 (10)0.0057 (11)0.0008 (8)0.0050 (9)
O40.0247 (11)0.0313 (12)0.0150 (10)0.0001 (10)0.0048 (9)0.0054 (9)
O50.0398 (15)0.0250 (13)0.0333 (14)0.0013 (11)0.0009 (12)0.0023 (11)
O60.0568 (19)0.0269 (13)0.0509 (17)0.0004 (15)0.0235 (16)0.0076 (12)
N10.0221 (14)0.0258 (14)0.0184 (13)0.0009 (11)0.0029 (11)0.0024 (11)
N20.0258 (14)0.0322 (15)0.0117 (12)0.0010 (13)0.0009 (11)0.0008 (10)
C10.0252 (15)0.0290 (16)0.0073 (12)0.0010 (14)0.0000 (12)0.0004 (12)
C20.0237 (15)0.0215 (15)0.0120 (13)0.0002 (13)0.0007 (11)0.0014 (12)
C30.0224 (15)0.0246 (16)0.0068 (13)0.0012 (12)0.0020 (12)0.0024 (12)
C40.0223 (16)0.0270 (16)0.0064 (13)0.0029 (13)0.0026 (11)0.0002 (11)
C50.0271 (16)0.0219 (14)0.0078 (13)0.0031 (13)0.0002 (11)0.0009 (12)
C60.0238 (16)0.0288 (16)0.0107 (13)0.0020 (13)0.0010 (12)0.0013 (12)
C70.0218 (15)0.0331 (17)0.0111 (13)0.0014 (15)0.0003 (12)0.0026 (12)
C80.0349 (18)0.0301 (17)0.0167 (15)0.0039 (15)0.0015 (15)0.0009 (12)
C90.045 (2)0.0299 (18)0.0335 (19)0.0033 (17)0.0035 (18)0.0029 (15)
C100.0397 (19)0.041 (2)0.0221 (16)0.0042 (18)0.0008 (16)0.0115 (15)
C110.0231 (15)0.045 (2)0.0124 (14)0.0043 (15)0.0010 (13)0.0036 (14)
C120.042 (2)0.052 (2)0.0090 (14)0.0022 (19)0.0021 (15)0.0020 (14)
C130.039 (2)0.0228 (16)0.0155 (14)0.0028 (15)0.0014 (14)0.0017 (12)
C140.036 (2)0.034 (2)0.041 (2)0.0059 (16)0.0039 (17)0.0026 (16)
C150.035 (2)0.037 (2)0.054 (3)0.0018 (18)0.009 (2)0.0094 (19)
Geometric parameters (Å, º) top
S1—C71.776 (3)C4—C51.531 (4)
S1—C11.810 (3)C4—H4B0.9800
O1—C11.416 (4)C5—C61.524 (4)
O1—C51.449 (3)C5—H5A0.9800
O2—C61.420 (4)C6—H6A0.9700
O2—H2A0.8200C6—H6B0.9700
O3—C41.429 (3)C7—C81.386 (5)
O3—H3A0.8200C8—C91.397 (5)
O4—C31.431 (4)C8—H8A0.9300
O4—H4A0.8200C9—C101.382 (5)
O5—C131.227 (4)C9—H9A0.9300
O6—C151.423 (5)C10—C111.383 (5)
O6—H60.8200C10—H10A0.9300
N1—C131.355 (4)C11—C121.513 (4)
N1—C21.447 (4)C12—H12A0.9600
N1—H1A0.8600C12—H12B0.9600
N2—C71.348 (4)C12—H12C0.9600
N2—C111.357 (4)C13—C141.507 (6)
C1—C21.550 (4)C14—H14A0.9600
C1—H1B0.9800C14—H14B0.9600
C2—C31.545 (4)C14—H14C0.9600
C2—H2C0.9800C15—H15A0.9600
C3—C41.510 (5)C15—H15B0.9600
C3—H3B0.9800C15—H15C0.9600
C7—S1—C1104.68 (15)O2—C6—H6A108.9
C1—O1—C5112.5 (2)C5—C6—H6A108.9
C6—O2—H2A109.5O2—C6—H6B108.9
C4—O3—H3A109.5C5—C6—H6B108.9
C3—O4—H4A109.5H6A—C6—H6B107.7
C15—O6—H6109.5N2—C7—C8123.4 (3)
C13—N1—C2124.3 (3)N2—C7—S1111.3 (2)
C13—N1—H1A117.9C8—C7—S1125.3 (2)
C2—N1—H1A117.9C7—C8—C9117.5 (3)
C7—N2—C11118.3 (3)C7—C8—H8A121.3
O1—C1—C2111.8 (2)C9—C8—H8A121.3
O1—C1—S1108.4 (2)C10—C9—C8119.6 (3)
C2—C1—S1107.3 (2)C10—C9—H9A120.2
O1—C1—H1B109.8C8—C9—H9A120.2
C2—C1—H1B109.8C9—C10—C11119.5 (3)
S1—C1—H1B109.8C9—C10—H10A120.2
N1—C2—C3108.2 (2)C11—C10—H10A120.2
N1—C2—C1111.5 (3)N2—C11—C10121.6 (3)
C3—C2—C1108.7 (2)N2—C11—C12116.2 (3)
N1—C2—H2C109.5C10—C11—C12122.2 (3)
C3—C2—H2C109.5C11—C12—H12A109.5
C1—C2—H2C109.5C11—C12—H12B109.5
O4—C3—C4112.3 (2)H12A—C12—H12B109.5
O4—C3—C2110.2 (2)C11—C12—H12C109.5
C4—C3—C2113.7 (2)H12A—C12—H12C109.5
O4—C3—H3B106.7H12B—C12—H12C109.5
C4—C3—H3B106.7O5—C13—N1123.1 (3)
C2—C3—H3B106.7O5—C13—C14122.6 (3)
O3—C4—C3105.5 (2)N1—C13—C14114.3 (3)
O3—C4—C5111.2 (2)C13—C14—H14A109.5
C3—C4—C5110.4 (2)C13—C14—H14B109.5
O3—C4—H4B109.9H14A—C14—H14B109.5
C3—C4—H4B109.9C13—C14—H14C109.5
C5—C4—H4B109.9H14A—C14—H14C109.5
O1—C5—C6107.1 (2)H14B—C14—H14C109.5
O1—C5—C4108.3 (2)O6—C15—H15A109.5
C6—C5—C4113.2 (3)O6—C15—H15B109.5
O1—C5—H5A109.3H15A—C15—H15B109.5
C6—C5—H5A109.3O6—C15—H15C109.5
C4—C5—H5A109.3H15A—C15—H15C109.5
O2—C6—C5113.3 (3)H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.152.925 (4)149
O2—H2A···O3ii0.822.022.794 (3)156
O3—H3A···O4ii0.821.882.646 (3)155
O4—H4A···O6iii0.821.822.637 (4)176
O6—H6···N20.821.982.795 (4)175
C8—H8A···O5iv0.932.483.329 (4)151
C12—H12C···O1v0.962.583.520 (4)165
C15—H15C···O3vi0.962.563.367 (5)142
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z; (iii) x+3/2, y, z1/2; (iv) x+2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+1; (vi) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H20N2O5S·CH4O
Mr360.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.3841 (15), 14.041 (3), 17.038 (4)
V3)1766.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.51 × 0.27 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.932, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
12687, 3173, 2997
Rint0.161
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.170, 1.05
No. of reflections3173
No. of parameters222
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.70
Absolute structureFlack (1983), 1334 Fiedel pairs
Absolute structure parameter0.01 (12)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.152.925 (4)149
O2—H2A···O3ii0.822.022.794 (3)156
O3—H3A···O4ii0.821.882.646 (3)155
O4—H4A···O6iii0.821.822.637 (4)176
O6—H6···N20.821.982.795 (4)175
C8—H8A···O5iv0.932.483.329 (4)151
C12—H12C···O1v0.962.583.520 (4)165
C15—H15C···O3vi0.962.563.367 (5)142
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z; (iii) x+3/2, y, z1/2; (iv) x+2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+1; (vi) x+2, y1/2, z+1/2.
 

Acknowledgements

This project was sponsored by the Cultivation Program of Young and Middle-aged Academic Leaders in Zhejiang Higher Education Institutions, the Natural Science Foundation of Ningbo City (Nos. 2009 A610047 and 2010 A610027) and the K. C. Wong Magna Fund of Ningbo University. We thank Professor X. Li for help with the structural analysis.

References

First citationAshry, E. S. H., Awad, L. F. & Atta, A. I. (2006). Tetrahedron, 62, 2943–2998.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Narayana, B., Sreevidya, T. V. & Sarojini, B. K. (2007). Acta Cryst. E63, o3248.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds