organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3-Cyano­phen­yl)-N-phenyl­oxirane-2-carboxamide

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: kangtairan@yahoo.com.cn

(Received 5 September 2010; accepted 18 September 2010; online 25 September 2010)

In the title compound, C16H12N2O2, both terminal benzene rings are located at the same side of the central epoxide ring, showing a cis conformation. The epoxide ring makes dihedral angles of 76.59 (10) and 62.40 (11)° with the phenyl and cyano­phenyl rings, respectively. Inter­molecular N—H⋯O and weak C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For the use of epoxide-containing compounds as building blocks in synthesis, see: Meth-Cohn & Chen (1999[Meth-Cohn, O. & Chen, Y. (1999). Tetrahedron Lett. 40, 6069-6072.]); Porter & Skidmore (2000[Porter, M. J. & Skidmore, J. (2000). Chem. Commun. pp. 1215-1225.]); Righi et al. (1996[Righi, G., Rumboldt, G. & Bonini, C. (1996). J. Org. Chem. 61, 3557-3560.]); Thijs et al. (1990[Thijs, L., Porskamp, J. J. M., van Loon, A. A. W. M., Derks, M. P. W., Feenstra, R. W., Legters, J. & Zwanenburg, B. (1990). Tetrahedron, 46, 2611-2614.]). For related structures, see: Chen & Kang (2009a[Chen, L.-M. & Kang, T.-R. (2009a). Acta Cryst. E65, o3126.],b[Chen, L.-M. & Kang, T.-R. (2009b). Acta Cryst. E65, o3137.]); He (2009[He, L. (2009). Acta Cryst. E65, o2052.]); He et al. (2009[He, L., Qin, H.-M. & Chen, L.-M. (2009). Acta Cryst. E65, o2999.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O2

  • Mr = 264.28

  • Orthorhombic, P 21 21 21

  • a = 5.459 (2) Å

  • b = 11.141 (7) Å

  • c = 21.844 (5) Å

  • V = 1328.6 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 K

  • 0.36 × 0.32 × 0.26 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • 9766 measured reflections

  • 2078 independent reflections

  • 1378 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.072

  • S = 1.00

  • 2078 reflections

  • 181 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H4⋯O1i 0.86 2.46 3.239 (3) 151 (1)
C11—H11⋯O1i 0.93 2.56 3.467 (3) 165 (1)
C12—H12⋯O2ii 0.93 2.55 3.302 (3) 139 (1)
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

α, β-epoxides are key intermediates for synthesizing some natural products (Porter & Skidmore, 2000; Righi et al., 1996). Selective ring opening reactions of oxiranes also provide powerful and efficient routes to a variety of useful compounds including 2,3-epoxyketone (Meth-Cohn et al., 1999), aziridinecarboxylate (Thijs et al., 1990). Various effective systems have been developed over the years for the preparation of chiral epoxides. As a part of our interest in the synthsis of epoxides ring systems (Chen & Kang, 2009a,b; He, 2009, He et al. (2009)), we synthesis the title compound by using Darzens reaction. We report herein the crystal structure of the title compound.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The cyanophenyl ring and N-phenylformamide units adopts a cis conformation with respect to the epoxides ring, the dihedral angle between the two phenyl ring is 84.75 (6)°. Epoxide ring makes dihedral angles of 76.59 (10)° and 62.40 (11)° with phenyl rings C1—C6 and C10—C15, respectively. The crystal packing is stabilized by C—H···O and N—H···O hydrogen bonding (Table 1).

Related literature top

For the use of epoxide-containing compounds as building blocks in synthesis, see: Meth-Cohn et al. (1999); Porter & Skidmore (2000); Righi et al. (1996); Thijs et al. (1990). For related structures, see: Chen & Kang (2009a,b); He (2009); He et al. (2009).

Experimental top

2-Chloro-N-phenylacetamide (0.17 g, 1.0 mmol) and sodium ethanolate (0.14 g, 2.0 mmol) were dissolved in acetonitrile (2 ml). To the solution was added 3-formylbenzonitrile (0.131 g, 1.0 mmol) at 298 K, the solution was stirred for 60 min and removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel to give compound (I). Crystals suitable for X-ray analysis were obtained by dissolving the title compound (0.02 g) in ethyl acetate (2 ml) and evaporating the solvent slowly at room temperature for about 1 d.

Refinement top

H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and N—H = 0.86 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C,N). As no significant anomalous scattering, Friedel pairs were merged.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
3-(3-Cyanophenyl)-N-phenyloxirane-2-carboxamide top
Crystal data top
C16H12N2O2Dx = 1.321 Mg m3
Mr = 264.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3256 reflections
a = 5.459 (2) Åθ = 3.3–29.0°
b = 11.141 (7) ŵ = 0.09 mm1
c = 21.844 (5) ÅT = 291 K
V = 1328.6 (10) Å3Block, colorless
Z = 40.36 × 0.32 × 0.26 mm
F(000) = 552
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
1378 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.042
Graphite monochromatorθmax = 29.2°, θmin = 3.3°
Detector resolution: 15.9149 pixels mm-1h = 73
ω scansk = 1515
9766 measured reflectionsl = 2927
2078 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0322P)2]
where P = (Fo2 + 2Fc2)/3
2078 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C16H12N2O2V = 1328.6 (10) Å3
Mr = 264.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.459 (2) ŵ = 0.09 mm1
b = 11.141 (7) ÅT = 291 K
c = 21.844 (5) Å0.36 × 0.32 × 0.26 mm
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
1378 reflections with I > 2σ(I)
9766 measured reflectionsRint = 0.042
2078 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.072H-atom parameters constrained
S = 1.00Δρmax = 0.14 e Å3
2078 reflectionsΔρmin = 0.18 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.2729 (2)1.02915 (12)0.76684 (6)0.0522 (4)
O10.2382 (2)0.87594 (13)0.69492 (6)0.0540 (4)
N10.1739 (3)0.86142 (13)0.67637 (7)0.0416 (4)
H40.31350.89140.68640.050*
C40.1740 (3)0.76926 (15)0.63124 (8)0.0350 (4)
C30.3670 (3)0.68860 (17)0.63104 (9)0.0430 (5)
H30.49060.69460.66020.052*
C60.0019 (4)0.67021 (17)0.54450 (8)0.0453 (5)
H60.12520.66390.51530.054*
C100.1794 (3)0.85668 (17)0.83606 (8)0.0389 (4)
C20.3746 (4)0.59914 (18)0.58733 (9)0.0481 (5)
H20.50470.54530.58660.058*
C10.1884 (4)0.58954 (18)0.54452 (9)0.0446 (5)
H10.19230.52820.51570.053*
C90.1163 (3)0.97731 (17)0.81328 (9)0.0429 (5)
H90.06151.03370.84490.051*
C50.0106 (3)0.76092 (17)0.58780 (8)0.0423 (5)
H50.13910.81570.58780.051*
C80.0212 (4)1.00240 (16)0.75099 (9)0.0442 (4)
H80.08671.07240.74790.053*
C150.0302 (3)0.80528 (19)0.88008 (9)0.0470 (5)
H150.10750.84660.89370.056*
C110.3875 (4)0.79694 (18)0.81664 (9)0.0491 (5)
H110.49050.83180.78780.059*
C140.0830 (3)0.6931 (2)0.90422 (9)0.0504 (5)
C70.0260 (4)0.90608 (17)0.70496 (8)0.0397 (4)
C120.4420 (4)0.68306 (19)0.84092 (10)0.0567 (6)
H120.58030.64180.82770.068*
C160.0707 (4)0.6410 (2)0.94879 (11)0.0735 (7)
C130.2917 (4)0.6330 (2)0.88396 (10)0.0552 (5)
H130.32920.55790.89990.066*
N20.1971 (5)0.5975 (2)0.98491 (12)0.1095 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0630 (9)0.0466 (8)0.0469 (8)0.0178 (7)0.0058 (7)0.0050 (6)
O10.0430 (7)0.0614 (10)0.0576 (9)0.0045 (7)0.0059 (7)0.0130 (7)
N10.0377 (8)0.0450 (9)0.0421 (9)0.0068 (7)0.0002 (7)0.0096 (8)
C40.0367 (9)0.0361 (10)0.0323 (10)0.0069 (8)0.0031 (8)0.0022 (8)
C30.0356 (9)0.0477 (12)0.0457 (11)0.0025 (9)0.0070 (9)0.0043 (10)
C60.0479 (11)0.0535 (12)0.0344 (10)0.0047 (10)0.0047 (9)0.0005 (10)
C100.0424 (10)0.0417 (10)0.0327 (10)0.0036 (9)0.0020 (8)0.0081 (9)
C20.0424 (10)0.0458 (12)0.0561 (13)0.0033 (10)0.0024 (10)0.0049 (10)
C10.0531 (12)0.0429 (11)0.0376 (11)0.0061 (10)0.0074 (9)0.0057 (9)
C90.0511 (10)0.0401 (11)0.0375 (11)0.0015 (9)0.0085 (9)0.0064 (9)
C50.0446 (10)0.0454 (11)0.0370 (11)0.0053 (10)0.0027 (9)0.0009 (9)
C80.0537 (11)0.0371 (10)0.0418 (11)0.0009 (9)0.0034 (9)0.0023 (9)
C150.0455 (10)0.0526 (12)0.0429 (12)0.0048 (10)0.0038 (10)0.0010 (10)
C110.0448 (10)0.0616 (14)0.0408 (11)0.0010 (10)0.0056 (9)0.0048 (11)
C140.0535 (12)0.0542 (13)0.0435 (12)0.0022 (11)0.0021 (10)0.0068 (11)
C70.0475 (11)0.0356 (10)0.0359 (10)0.0027 (9)0.0026 (9)0.0031 (9)
C120.0561 (13)0.0611 (15)0.0529 (13)0.0186 (11)0.0003 (11)0.0095 (12)
C160.0719 (16)0.0759 (16)0.0726 (17)0.0088 (14)0.0115 (14)0.0317 (15)
C130.0690 (14)0.0470 (12)0.0496 (12)0.0069 (12)0.0081 (11)0.0007 (10)
N20.1022 (19)0.111 (2)0.115 (2)0.0091 (16)0.0281 (17)0.0571 (17)
Geometric parameters (Å, º) top
O2—C91.447 (2)C2—H20.9300
O2—C81.448 (2)C1—H10.9300
O1—C71.226 (2)C9—C81.483 (3)
N1—C71.352 (2)C9—H90.9800
N1—C41.423 (2)C5—H50.9300
N1—H40.8600C8—C71.493 (3)
C4—C31.384 (2)C8—H80.9800
C4—C51.387 (2)C15—C141.387 (3)
C3—C21.381 (3)C15—H150.9300
C3—H30.9300C11—C121.407 (2)
C6—C11.374 (3)C11—H110.9300
C6—C51.385 (3)C14—C131.394 (3)
C6—H60.9300C14—C161.411 (2)
C10—C111.383 (3)C12—C131.367 (3)
C10—C151.384 (2)C12—H120.9300
C10—C91.474 (3)C16—N21.155 (3)
C2—C11.385 (3)C13—H130.9300
C9—O2—C861.64 (11)C6—C5—C4119.40 (18)
C7—N1—C4125.86 (15)C6—C5—H5120.3
C7—N1—H4117.1C4—C5—H5120.3
C4—N1—H4117.1O2—C8—C959.14 (12)
C3—C4—C5120.47 (17)O2—C8—C7118.21 (15)
C3—C4—N1118.09 (16)C9—C8—C7122.89 (16)
C5—C4—N1121.43 (16)O2—C8—H8115.0
C2—C3—C4119.58 (17)C9—C8—H8115.0
C2—C3—H3120.2C7—C8—H8115.0
C4—C3—H3120.2C10—C15—C14120.97 (18)
C1—C6—C5120.21 (18)C10—C15—H15119.5
C1—C6—H6119.9C14—C15—H15119.5
C5—C6—H6119.9C10—C11—C12119.47 (18)
C11—C10—C15119.82 (18)C10—C11—H11120.3
C11—C10—C9121.80 (17)C12—C11—H11120.3
C15—C10—C9118.31 (17)C15—C14—C13118.82 (19)
C3—C2—C1120.03 (18)C15—C14—C16120.7 (2)
C3—C2—H2120.0C13—C14—C16120.5 (2)
C1—C2—H2120.0O1—C7—N1125.40 (18)
C6—C1—C2120.31 (17)O1—C7—C8118.70 (17)
C6—C1—H1119.8N1—C7—C8115.87 (16)
C2—C1—H1119.8C13—C12—C11120.00 (19)
O2—C9—C10117.57 (16)C13—C12—H12120.0
O2—C9—C859.22 (12)C11—C12—H12120.0
C10—C9—C8124.29 (16)N2—C16—C14179.4 (3)
O2—C9—H9114.7C12—C13—C14120.9 (2)
C10—C9—H9114.7C12—C13—H13119.5
C8—C9—H9114.7C14—C13—H13119.5
C7—N1—C4—C3143.99 (18)C10—C9—C8—C71.4 (3)
C7—N1—C4—C537.1 (3)C11—C10—C15—C141.4 (3)
C5—C4—C3—C20.2 (3)C9—C10—C15—C14178.62 (18)
N1—C4—C3—C2179.08 (17)C15—C10—C11—C121.5 (3)
C4—C3—C2—C10.8 (3)C9—C10—C11—C12178.54 (18)
C5—C6—C1—C20.8 (3)C10—C15—C14—C130.8 (3)
C3—C2—C1—C61.3 (3)C10—C15—C14—C16179.6 (2)
C8—O2—C9—C10115.39 (18)C4—N1—C7—O12.2 (3)
C11—C10—C9—O23.5 (3)C4—N1—C7—C8179.70 (15)
C15—C10—C9—O2179.39 (15)O2—C8—C7—O1174.09 (18)
C11—C10—C9—C873.5 (3)C9—C8—C7—O1104.4 (2)
C15—C10—C9—C8109.4 (2)O2—C8—C7—N17.6 (2)
C1—C6—C5—C40.2 (3)C9—C8—C7—N177.4 (2)
C3—C4—C5—C60.7 (3)C10—C11—C12—C130.9 (3)
N1—C4—C5—C6179.55 (16)C11—C12—C13—C140.3 (3)
C9—O2—C8—C7113.41 (19)C15—C14—C13—C120.2 (3)
C10—C9—C8—O2104.2 (2)C16—C14—C13—C12179.8 (2)
O2—C9—C8—C7105.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O1i0.862.463.239 (3)151 (1)
C11—H11···O1i0.932.563.467 (3)165 (1)
C12—H12···O2ii0.932.553.302 (3)139 (1)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H12N2O2
Mr264.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)5.459 (2), 11.141 (7), 21.844 (5)
V3)1328.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.32 × 0.26
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9766, 2078, 1378
Rint0.042
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.072, 1.00
No. of reflections2078
No. of parameters181
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O1i0.862.463.239 (3)150.8 (2)
C11—H11···O1i0.932.563.467 (3)165.4 (3)
C12—H12···O2ii0.932.553.302 (3)138.7 (1)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

The diffraction measurements were made at the Centre for Testing and Analysis, Sichuan University. We acknowledge financial support from China West Normal University.

References

First citationChen, L.-M. & Kang, T.-R. (2009a). Acta Cryst. E65, o3126.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, L.-M. & Kang, T.-R. (2009b). Acta Cryst. E65, o3137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHe, L. (2009). Acta Cryst. E65, o2052.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, L., Qin, H.-M. & Chen, L.-M. (2009). Acta Cryst. E65, o2999.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeth-Cohn, O. & Chen, Y. (1999). Tetrahedron Lett. 40, 6069–6072.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPorter, M. J. & Skidmore, J. (2000). Chem. Commun. pp. 1215–1225.  Web of Science CrossRef Google Scholar
First citationRighi, G., Rumboldt, G. & Bonini, C. (1996). J. Org. Chem. 61, 3557–3560.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThijs, L., Porskamp, J. J. M., van Loon, A. A. W. M., Derks, M. P. W., Feenstra, R. W., Legters, J. & Zwanenburg, B. (1990). Tetrahedron, 46, 2611–2614.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds