metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1260-m1261

Tri-μ-sulfato-κ6O:O′-bis­­[aqua­(1,10-phenanthroline-κ2N,N′)indium(III)] dihydrate

aDepartment of Biotechnology, Yuanpei University, HsinChu 30015, Taiwan, and bDepartment of General Education Center, Yuanpei University, No. 306, Yuanpei St, HsinChu 30015, Taiwan
*Correspondence e-mail: lush@mail.ypu.edu.tw

(Received 5 September 2010; accepted 10 September 2010; online 15 September 2010)

In the title dinuclear InIII compound, [In2(SO4)3(C12H8N2)2(H2O)2]·2H2O, each InIII cation is coordinated by a 1,10-phenanthroline (phen) ligand, a water mol­ecule and three sulfate O atoms in a distorted InN2O4 octa­hedral geometry. Three sulfate anions bridge two InIII cations, forming the dinuclear entities. O—H⋯O and weak C—H⋯O hydrogen bonding is observed in the crystal structure. The crystal structure is further consolidated by ππ stacking between nearly parallel phen ring systems [dihedral angle = 4.2 (4)°], the centroid–centroid distance between benzene rings of adjacent phen ligands being 3.528 (9) Å.

Related literature

For structures of indium complexes with Lewis base ligands, see: Ahmadi et al. (2008[Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306-m1307.]); Kalateh et al. (2008[Kalateh, K., Ahmadi, R., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1353-m1354.]); Xiao & Zhan (2010[Xiao, Z. & Zhan, D. (2010). Acta Cryst. E66, m1040-m1041.]). For the crystal structure of an indium compound with a sulfonate bridging ligand, see: Ramezanipour et al. (2005[Ramezanipour, F., Aghabozorg, H., Shokrollahi, A., Shamsipur, M., Stoeckli-Evans, H., Soleimannejad, J. & Sheshmani, S. (2005). J. Mol. Struct. 779, 77-86.]).

[Scheme 1]

Experimental

Crystal data
  • [In2(SO4)3(C12H8N2)2(H2O)2]·2H2O

  • Mr = 950.32

  • Triclinic, [P \overline 1]

  • a = 10.5909 (2) Å

  • b = 12.0354 (2) Å

  • c = 13.3593 (3) Å

  • α = 79.904 (1)°

  • β = 79.606 (1)°

  • γ = 64.727 (1)°

  • V = 1505.32 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.83 mm−1

  • T = 295 K

  • 0.18 × 0.12 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.789, Tmax = 0.850

  • 14402 measured reflections

  • 5277 independent reflections

  • 4377 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.224

  • S = 1.17

  • 5277 reflections

  • 406 parameters

  • H-atom parameters constrained

  • Δρmax = 3.41 e Å−3

  • Δρmin = −1.32 e Å−3

Table 1
Selected bond lengths (Å)

In1—N1 2.240 (11)
In1—N2 2.228 (11)
In1—O1 2.109 (9)
In1—O5 2.187 (9)
In1—O9 2.075 (10)
In1—O13 2.206 (9)
In2—N3 2.247 (12)
In2—N4 2.246 (11)
In2—O2 2.109 (9)
In2—O6 2.103 (10)
In2—O10 2.146 (9)
In2—O14 2.159 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13A⋯O4i 0.81 1.94 2.602 (15) 138
O13—H13B⋯O12ii 0.84 1.94 2.637 (16) 139
O14—H14A⋯O8iii 0.82 1.85 2.667 (17) 173
O14—H14B⋯O16 0.87 1.76 2.565 (19) 152
O15—H15A⋯O12 0.90 1.99 2.841 (18) 156
O15—H15B⋯O7 0.89 2.12 2.887 (19) 143
O16—H16A⋯O4iii 0.82 2.01 2.808 (19) 165
O16—H16B⋯O15iv 0.85 1.88 2.72 (2) 166
C8—H8⋯O10v 0.93 2.53 3.27 (2) 137
C9—H9⋯O12v 0.93 2.54 3.425 (19) 158
C11—H11⋯O11i 0.93 2.41 3.24 (2) 148
C15—H15⋯O15vi 0.93 2.56 3.28 (2) 135
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v) x, y-1, z; (vi) x-1, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

There are several reports on coordination of Lewis base to indium metal, such as tris(benzimidazol-2-ylmethyl)amine, [InCl2(C24H21N7)]Cl (Xiao & Zhan, 2010), 5,5'-dimethyl-2,2'-bipyridine, [InCl3(C12H12N2)(CH4O)] (Kalateh et al., 2008) and 4,4'-dimethyl-2,2'-bipyridine, [InCl3(C12H12N2)(C2H6OS)] (Ahmadi et al., 2008). The sulfonato ligand exhibits a bridging mode in a In(III) compound (Ramezanipour et al., 2005).

In the structure, the InIII atom is six-coordinated within a slightly distorted octahedral coordination geometry defined by 1,10-phenanthroline-N atoms, three sulfate-O atoms and aqua molecule as shown in Fig. 1 and Table 1). In the crystal structure, there are several O—H···O and C—H···O hydrogen bonds (Table 2 and Fig. 2). The supra-molecular structure is consolidated by π-π stacking between nearly parallel phen rings systems [dihedral angle 4.2 (4)°], the centroids distance between benzene rings Cg7 (C4—C9)···Cg8 (C16—C21) of adjacent phen ligands is 3.528 (9) Å [symmetry code: x, -1+y, z].

Related literature top

For structures of indium complexes with Lewis base ligands, see: Ahmadi et al. (2008); Kalateh et al. (2008); Xiao & Zhan (2010). For the crystal structure of an indium compound with a sulfonate bridging ligand, see: Ramezanipour et al. (2005).

Experimental top

The reaction of benzoic acid (0.176 g, 1.0 mmol) and sodium hydroxide (0.04 g, 1.0 mmol) in methanol/water (1:1, 10 ml) at room temperature for one hour produced a colorless solutions, to which 1,10-phenanthroline (0.218 g, 1 mmol) and In2(SO4)3.6H2O (91.0 mg, 0.50 mmol) in water (5 ml) was added. The resulting solution was stirred for one hour at 323 K and the precipitate was filtered. Colorless crystals were obtained by slow evaporation of the filtrate for more than five days.

Refinement top

The water H atoms were placed in chemical sensible positions and refined in riding mode with Uiso(H) = 1.5Ueq(O). The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C). The precise of the structure is low.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldric, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing for the title compound. Hydrogen-bonding associations are shown as dotted lines.
Tri-µ-sulfato-κ6O:O'-bis[aqua(1,10-phenanthroline- κ2N,N')indium(III)] dihydrate top
Crystal data top
[In2(SO4)3(C12H8N2)2(H2O)2]·2H2OZ = 2
Mr = 950.32F(000) = 940
Triclinic, P1Dx = 2.097 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5909 (2) ÅCell parameters from 10717 reflections
b = 12.0354 (2) Åθ = 2.0–25.0°
c = 13.3593 (3) ŵ = 1.83 mm1
α = 79.904 (1)°T = 295 K
β = 79.606 (1)°Prism, colorless
γ = 64.727 (1)°0.18 × 0.12 × 0.04 mm
V = 1505.32 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5277 independent reflections
Radiation source: fine-focus sealed tube4377 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scanh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1314
Tmin = 0.789, Tmax = 0.850l = 1515
14402 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.224H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0492P)2 + 58.7561P]
where P = (Fo2 + 2Fc2)/3
5277 reflections(Δ/σ)max = 0.003
406 parametersΔρmax = 3.41 e Å3
0 restraintsΔρmin = 1.32 e Å3
Crystal data top
[In2(SO4)3(C12H8N2)2(H2O)2]·2H2Oγ = 64.727 (1)°
Mr = 950.32V = 1505.32 (5) Å3
Triclinic, P1Z = 2
a = 10.5909 (2) ÅMo Kα radiation
b = 12.0354 (2) ŵ = 1.83 mm1
c = 13.3593 (3) ÅT = 295 K
α = 79.904 (1)°0.18 × 0.12 × 0.04 mm
β = 79.606 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5277 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4377 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 0.850Rint = 0.079
14402 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.224H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0492P)2 + 58.7561P]
where P = (Fo2 + 2Fc2)/3
5277 reflectionsΔρmax = 3.41 e Å3
406 parametersΔρmin = 1.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.23687 (10)0.37849 (8)0.12705 (7)0.0204 (3)
In20.15197 (10)0.63043 (9)0.34430 (7)0.0205 (3)
S10.0558 (3)0.6360 (3)0.1863 (3)0.0227 (7)
S20.2944 (4)0.3255 (3)0.3720 (3)0.0226 (7)
S30.3709 (3)0.5796 (3)0.1245 (3)0.0225 (7)
O10.0541 (10)0.5445 (9)0.1186 (7)0.030 (2)
O20.0126 (9)0.6094 (9)0.2926 (7)0.0259 (12)
O30.0774 (11)0.7586 (10)0.1424 (8)0.037 (3)
O40.1878 (11)0.6163 (11)0.1984 (8)0.037 (3)
O50.1989 (9)0.3469 (9)0.2939 (7)0.0259 (12)
O60.3012 (10)0.4480 (9)0.3727 (8)0.029 (2)
O70.4358 (11)0.2357 (10)0.3495 (8)0.035 (2)
O80.2261 (10)0.2921 (10)0.4705 (8)0.032 (2)
O90.3816 (10)0.4486 (9)0.1378 (8)0.031 (2)
O100.2435 (9)0.6503 (9)0.1889 (7)0.0259 (12)
O110.3554 (11)0.6339 (10)0.0190 (8)0.041 (3)
O120.4971 (11)0.5716 (10)0.1598 (8)0.035 (2)
O130.2881 (10)0.4015 (10)0.0407 (7)0.0319 (17)
H13A0.23060.43100.08130.048*
H13B0.37220.37200.06840.048*
O140.0542 (10)0.6127 (10)0.4992 (7)0.0319 (17)
H14A0.03150.63650.51100.048*
H14B0.09060.62700.54660.048*
N10.4033 (12)0.1854 (10)0.1249 (9)0.026 (3)
N20.1239 (12)0.2648 (11)0.1099 (9)0.024 (2)
N30.0258 (13)0.8347 (11)0.3484 (9)0.029 (3)
N40.2974 (13)0.7026 (11)0.3855 (9)0.027 (3)
C10.5403 (15)0.1495 (15)0.1316 (12)0.036 (4)
H10.57550.20840.13080.043*
C20.6308 (16)0.0235 (15)0.1399 (13)0.039 (4)
H20.72520.00020.14580.047*
C30.5828 (18)0.0640 (14)0.1396 (12)0.038 (4)
H30.64390.14720.14400.046*
C40.4372 (17)0.0271 (13)0.1323 (12)0.035 (4)
C50.3541 (15)0.0995 (13)0.1217 (10)0.025 (3)
C60.2044 (13)0.1400 (13)0.1147 (10)0.023 (3)
C70.1516 (18)0.0558 (15)0.1097 (11)0.034 (2)
C80.241 (2)0.0743 (14)0.1168 (13)0.043 (3)
H80.20510.13140.11280.051*
C90.377 (2)0.1128 (15)0.1294 (13)0.043 (3)
H90.43340.19710.13650.051*
C100.0089 (18)0.1022 (15)0.0970 (11)0.034 (2)
H100.02990.04780.09070.041*
C110.0732 (17)0.2247 (17)0.0936 (13)0.043 (4)
H110.16840.25470.08690.051*
C120.0121 (15)0.3057 (14)0.1005 (12)0.033 (3)
H120.06810.39000.09850.040*
C130.1113 (17)0.8982 (16)0.3400 (12)0.038 (4)
H130.16350.85470.33390.046*
C140.181 (2)1.0270 (15)0.3400 (14)0.049 (5)
H140.27481.06860.32950.059*
C150.106 (2)1.0893 (16)0.3558 (12)0.045 (4)
H150.15111.17440.35790.054*
C160.0386 (19)1.0274 (15)0.3690 (12)0.040 (4)
C170.0940 (16)0.9010 (14)0.3676 (11)0.030 (3)
C180.2413 (15)0.8307 (13)0.3847 (10)0.026 (3)
C190.3237 (18)0.8895 (14)0.3983 (12)0.035 (4)
C200.260 (2)1.0237 (17)0.3947 (13)0.049 (5)
H200.31371.06500.40220.058*
C210.126 (2)1.0879 (15)0.3809 (14)0.048 (5)
H210.08691.17360.37890.057*
C220.4654 (19)0.8164 (19)0.4137 (14)0.048 (3)
H220.52250.85390.42330.057*
C230.5219 (19)0.6850 (19)0.4148 (14)0.048 (3)
H230.61480.63490.42530.057*
C240.4313 (16)0.6369 (16)0.3995 (12)0.035 (4)
H240.46650.55170.39890.042*
O150.6347 (12)0.3469 (12)0.2823 (12)0.059 (4)
H15A0.56900.41700.25460.089*
H15B0.61000.28500.31130.089*
O160.1901 (16)0.5776 (15)0.6508 (10)0.069 (5)
H16A0.20240.51270.68780.104*
H16B0.23240.61220.67390.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.0203 (5)0.0179 (5)0.0237 (5)0.0076 (4)0.0032 (4)0.0041 (4)
In20.0198 (5)0.0197 (5)0.0224 (5)0.0078 (4)0.0016 (4)0.0048 (4)
S10.0180 (16)0.0237 (17)0.0250 (17)0.0057 (13)0.0037 (13)0.0053 (13)
S20.0238 (17)0.0209 (17)0.0225 (17)0.0089 (14)0.0027 (13)0.0015 (13)
S30.0217 (17)0.0234 (17)0.0238 (17)0.0114 (14)0.0011 (13)0.0022 (13)
O10.024 (5)0.028 (5)0.028 (5)0.002 (4)0.006 (4)0.011 (4)
O20.020 (3)0.034 (3)0.023 (3)0.015 (2)0.004 (2)0.008 (2)
O30.038 (6)0.026 (6)0.034 (6)0.002 (5)0.003 (5)0.003 (5)
O40.033 (6)0.049 (7)0.036 (6)0.020 (5)0.016 (5)0.003 (5)
O50.020 (3)0.034 (3)0.023 (3)0.015 (2)0.004 (2)0.008 (2)
O60.031 (5)0.023 (5)0.031 (5)0.010 (4)0.004 (4)0.002 (4)
O70.027 (5)0.028 (6)0.041 (6)0.004 (5)0.004 (5)0.002 (5)
O80.025 (5)0.038 (6)0.030 (5)0.012 (5)0.003 (4)0.002 (5)
O90.030 (6)0.027 (5)0.037 (6)0.013 (5)0.000 (4)0.008 (4)
O100.020 (3)0.034 (3)0.023 (3)0.015 (2)0.004 (2)0.008 (2)
O110.039 (6)0.038 (6)0.023 (5)0.006 (5)0.014 (5)0.008 (5)
O120.027 (5)0.036 (6)0.046 (6)0.018 (5)0.002 (5)0.006 (5)
O130.023 (4)0.052 (5)0.022 (4)0.025 (4)0.003 (3)0.009 (3)
O140.023 (4)0.052 (5)0.022 (4)0.025 (4)0.003 (3)0.009 (3)
N10.030 (7)0.020 (6)0.024 (6)0.005 (5)0.008 (5)0.004 (5)
N20.023 (6)0.026 (6)0.026 (6)0.013 (5)0.006 (5)0.002 (5)
N30.030 (7)0.027 (7)0.029 (7)0.009 (5)0.004 (5)0.011 (5)
N40.036 (7)0.026 (6)0.024 (6)0.018 (6)0.010 (5)0.001 (5)
C10.017 (7)0.039 (9)0.040 (9)0.001 (6)0.006 (6)0.005 (7)
C20.020 (7)0.035 (9)0.046 (10)0.004 (7)0.005 (7)0.002 (7)
C30.044 (10)0.023 (8)0.034 (9)0.004 (7)0.015 (7)0.000 (6)
C40.039 (9)0.018 (7)0.042 (9)0.006 (7)0.007 (7)0.004 (6)
C50.035 (8)0.023 (7)0.016 (6)0.011 (6)0.001 (6)0.007 (5)
C60.015 (6)0.026 (7)0.025 (7)0.007 (6)0.005 (5)0.010 (6)
C70.051 (7)0.041 (6)0.026 (5)0.033 (6)0.001 (5)0.008 (5)
C80.059 (7)0.022 (6)0.044 (7)0.018 (6)0.010 (6)0.007 (5)
C90.059 (7)0.022 (6)0.044 (7)0.018 (6)0.010 (6)0.007 (5)
C100.051 (7)0.041 (6)0.026 (5)0.033 (6)0.001 (5)0.008 (5)
C110.027 (8)0.056 (11)0.047 (10)0.019 (8)0.000 (7)0.009 (8)
C120.022 (7)0.027 (8)0.047 (9)0.008 (6)0.007 (7)0.002 (7)
C130.034 (9)0.039 (9)0.032 (8)0.005 (7)0.006 (7)0.008 (7)
C140.053 (11)0.026 (9)0.050 (11)0.006 (8)0.022 (9)0.000 (8)
C150.057 (11)0.031 (9)0.032 (9)0.002 (8)0.000 (8)0.013 (7)
C160.057 (11)0.028 (8)0.032 (9)0.014 (8)0.007 (8)0.003 (7)
C170.034 (8)0.024 (7)0.031 (8)0.010 (6)0.005 (6)0.004 (6)
C180.030 (8)0.030 (8)0.015 (6)0.014 (6)0.009 (5)0.002 (6)
C190.048 (10)0.028 (8)0.035 (8)0.022 (7)0.004 (7)0.004 (7)
C200.084 (15)0.038 (10)0.040 (10)0.039 (11)0.008 (9)0.006 (8)
C210.075 (14)0.019 (8)0.053 (11)0.025 (9)0.000 (10)0.005 (7)
C220.042 (7)0.066 (8)0.048 (7)0.029 (7)0.012 (6)0.013 (7)
C230.042 (7)0.066 (8)0.048 (7)0.029 (7)0.012 (6)0.013 (7)
C240.030 (8)0.040 (9)0.037 (9)0.015 (7)0.013 (7)0.003 (7)
O150.028 (6)0.042 (7)0.107 (12)0.014 (6)0.023 (7)0.009 (7)
O160.086 (11)0.102 (12)0.050 (8)0.071 (10)0.044 (8)0.038 (8)
Geometric parameters (Å, º) top
In1—N12.240 (11)C3—C41.43 (2)
In1—N22.228 (11)C3—H30.9300
In1—O12.109 (9)C4—C51.39 (2)
In1—O52.187 (9)C4—C91.43 (2)
In1—O92.075 (10)C5—C61.462 (19)
In1—O132.206 (9)C6—C71.37 (2)
In2—N32.247 (12)C7—C101.40 (2)
In2—N42.246 (11)C7—C81.44 (2)
In2—O22.109 (9)C8—C91.34 (3)
In2—O62.103 (10)C8—H80.9300
In2—O102.146 (9)C9—H90.9300
In2—O142.159 (9)C10—C111.35 (2)
S1—O31.425 (11)C10—H100.9300
S1—O41.491 (11)C11—C121.40 (2)
S1—O11.504 (10)C11—H110.9300
S1—O21.509 (10)C12—H120.9300
S2—O71.440 (10)C13—C141.40 (2)
S2—O81.461 (10)C13—H130.9300
S2—O51.497 (10)C14—C151.36 (3)
S2—O61.509 (10)C14—H140.9300
S3—O111.451 (10)C15—C161.42 (3)
S3—O121.456 (11)C15—H150.9300
S3—O101.464 (10)C16—C171.38 (2)
S3—O91.512 (10)C16—C211.44 (2)
O13—H13A0.8112C17—C181.46 (2)
O13—H13B0.8450C18—C191.39 (2)
O14—H14A0.8198C19—C221.41 (2)
O14—H14B0.8726C19—C201.46 (2)
N1—C11.341 (19)C20—C211.33 (3)
N1—C51.351 (18)C20—H200.9300
N2—C121.331 (18)C21—H210.9300
N2—C61.371 (18)C22—C231.43 (3)
N3—C131.34 (2)C22—H220.9300
N3—C171.362 (19)C23—C241.37 (2)
N4—C241.326 (19)C23—H230.9300
N4—C181.394 (19)C24—H240.9300
C1—C21.40 (2)O15—H15A0.9033
C1—H10.9300O15—H15B0.8951
C2—C31.35 (2)O16—H16A0.8201
C2—H20.9300O16—H16B0.8501
O9—In1—O199.7 (4)N1—C1—H1119.8
O9—In1—O591.1 (4)C2—C1—H1119.8
O1—In1—O593.0 (4)C3—C2—C1121.0 (15)
O9—In1—O1387.6 (4)C3—C2—H2119.5
O1—In1—O1390.4 (4)C1—C2—H2119.5
O5—In1—O13176.5 (4)C2—C3—C4119.2 (14)
O9—In1—N2167.3 (4)C2—C3—H3120.4
O1—In1—N292.8 (4)C4—C3—H3120.4
O5—In1—N290.8 (4)C5—C4—C3116.8 (14)
O13—In1—N289.8 (4)C5—C4—C9119.8 (15)
O9—In1—N192.2 (4)C3—C4—C9123.3 (14)
O1—In1—N1167.8 (4)N1—C5—C4123.0 (14)
O5—In1—N189.7 (4)N1—C5—C6118.8 (12)
O13—In1—N187.2 (4)C4—C5—C6118.0 (13)
N2—In1—N175.3 (4)C7—C6—N2123.0 (13)
O6—In2—O2103.9 (4)C7—C6—C5120.3 (13)
O6—In2—O1093.0 (4)N2—C6—C5116.6 (12)
O2—In2—O1090.0 (3)C6—C7—C10117.1 (15)
O6—In2—O1488.1 (4)C6—C7—C8120.3 (15)
O2—In2—O1488.6 (4)C10—C7—C8122.6 (14)
O10—In2—O14178.4 (4)C9—C8—C7119.7 (16)
O6—In2—N490.1 (4)C9—C8—H8120.2
O2—In2—N4165.7 (4)C7—C8—H8120.2
O10—In2—N486.4 (4)C8—C9—C4121.6 (15)
O14—In2—N494.7 (4)C8—C9—H9119.2
O6—In2—N3162.6 (4)C4—C9—H9119.2
O2—In2—N392.0 (4)C11—C10—C7121.1 (14)
O10—In2—N393.8 (4)C11—C10—H10119.5
O14—In2—N385.4 (4)C7—C10—H10119.5
N4—In2—N374.4 (4)C10—C11—C12118.7 (15)
O3—S1—O4111.4 (7)C10—C11—H11120.6
O3—S1—O1109.8 (6)C12—C11—H11120.6
O4—S1—O1108.3 (6)N2—C12—C11121.7 (15)
O3—S1—O2111.8 (6)N2—C12—H12119.2
O4—S1—O2105.6 (6)C11—C12—H12119.2
O1—S1—O2109.9 (6)N3—C13—C14123.5 (17)
O7—S2—O8112.4 (6)N3—C13—H13118.2
O7—S2—O5114.4 (6)C14—C13—H13118.2
O8—S2—O5106.6 (6)C15—C14—C13118.1 (17)
O7—S2—O6107.7 (6)C15—C14—H14121.0
O8—S2—O6109.7 (6)C13—C14—H14121.0
O5—S2—O6105.9 (6)C14—C15—C16121.5 (16)
O11—S3—O12113.5 (7)C14—C15—H15119.3
O11—S3—O10108.3 (6)C16—C15—H15119.3
O12—S3—O10111.7 (6)C17—C16—C15114.6 (16)
O11—S3—O9110.9 (7)C17—C16—C21120.9 (16)
O12—S3—O9105.8 (6)C15—C16—C21124.5 (16)
O10—S3—O9106.5 (6)N3—C17—C16126.2 (15)
S1—O1—In1140.6 (6)N3—C17—C18116.2 (13)
S1—O2—In2129.8 (5)C16—C17—C18117.6 (14)
S2—O5—In1128.9 (5)C19—C18—N4120.9 (13)
S2—O6—In2131.2 (6)C19—C18—C17121.2 (14)
S3—O9—In1131.6 (6)N4—C18—C17118.0 (13)
S3—O10—In2136.9 (6)C18—C19—C22118.4 (15)
In1—O13—H13A124.8C18—C19—C20118.3 (16)
In1—O13—H13B121.1C22—C19—C20123.3 (16)
H13A—O13—H13B113.7C21—C20—C19120.9 (16)
In2—O14—H14A120.1C21—C20—H20119.5
In2—O14—H14B116.0C19—C20—H20119.5
H14A—O14—H14B112.8C20—C21—C16121.1 (15)
C1—N1—C5119.4 (13)C20—C21—H21119.4
C1—N1—In1126.4 (11)C16—C21—H21119.4
C5—N1—In1114.1 (9)C19—C22—C23120.3 (16)
C12—N2—C6118.5 (12)C19—C22—H22119.8
C12—N2—In1126.6 (10)C23—C22—H22119.8
C6—N2—In1114.9 (8)C24—C23—C22116.3 (17)
C13—N3—C17115.7 (13)C24—C23—H23121.9
C13—N3—In2127.4 (11)C22—C23—H23121.9
C17—N3—In2116.7 (9)N4—C24—C23125.0 (16)
C24—N4—C18119.1 (13)N4—C24—H24117.5
C24—N4—In2126.0 (10)C23—C24—H24117.5
C18—N4—In2114.5 (9)H15A—O15—H15B118.7
N1—C1—C2120.4 (16)H16A—O16—H16B106.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O4i0.811.942.602 (15)138
O13—H13B···O12ii0.841.942.637 (16)139
O14—H14A···O8iii0.821.852.667 (17)173
O14—H14B···O160.871.762.565 (19)152
O15—H15A···O120.901.992.841 (18)156
O15—H15B···O70.892.122.887 (19)143
O16—H16A···O4iii0.822.012.808 (19)165
O16—H16B···O15iv0.851.882.72 (2)166
C8—H8···O10v0.932.533.27 (2)137
C9—H9···O12v0.932.543.425 (19)158
C11—H11···O11i0.932.413.24 (2)148
C15—H15···O15vi0.932.563.28 (2)135
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x, y1, z; (vi) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[In2(SO4)3(C12H8N2)2(H2O)2]·2H2O
Mr950.32
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)10.5909 (2), 12.0354 (2), 13.3593 (3)
α, β, γ (°)79.904 (1), 79.606 (1), 64.727 (1)
V3)1505.32 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.83
Crystal size (mm)0.18 × 0.12 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.789, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
14402, 5277, 4377
Rint0.079
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.224, 1.17
No. of reflections5277
No. of parameters406
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0492P)2 + 58.7561P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.41, 1.32

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 1999), SHELXL97 (Sheldrick, 2008), SHELXS97 (Sheldric, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Selected bond lengths (Å) top
In1—N12.240 (11)In2—N32.247 (12)
In1—N22.228 (11)In2—N42.246 (11)
In1—O12.109 (9)In2—O22.109 (9)
In1—O52.187 (9)In2—O62.103 (10)
In1—O92.075 (10)In2—O102.146 (9)
In1—O132.206 (9)In2—O142.159 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O4i0.811.942.602 (15)138
O13—H13B···O12ii0.841.942.637 (16)139
O14—H14A···O8iii0.821.852.667 (17)173
O14—H14B···O160.871.762.565 (19)152
O15—H15A···O120.901.992.841 (18)156
O15—H15B···O70.892.122.887 (19)143
O16—H16A···O4iii0.822.012.808 (19)165
O16—H16B···O15iv0.851.882.72 (2)166
C8—H8···O10v0.932.533.27 (2)137
C9—H9···O12v0.932.543.425 (19)158
C11—H11···O11i0.932.413.24 (2)148
C15—H15···O15vi0.932.563.28 (2)135
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x, y1, z; (vi) x1, y+1, z.
 

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

First citationAhmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKalateh, K., Ahmadi, R., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1353–m1354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamezanipour, F., Aghabozorg, H., Shokrollahi, A., Shamsipur, M., Stoeckli-Evans, H., Soleimannejad, J. & Sheshmani, S. (2005). J. Mol. Struct. 779, 77–86.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z. & Zhan, D. (2010). Acta Cryst. E66, m1040–m1041.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1260-m1261
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds