metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[bis­­(μ4-adipato-1:2:1′:2′κ4O1:O1′:O4:O4′)bis­­(N,N-di­methyl­formamide)-1κO,2κO-dicopper(II)]

aHunan Medical Technical Secondary School, Changsha, Hunan 410014, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 September 2010; accepted 8 September 2010; online 15 September 2010)

In the title polymeric complex, [Cu2(C6H8O4)2(C3H7NO)2]n, the carboxyl­ate groups of the approximately U-shaped adipate dianion each bridge a pair of inversion-related, DMF-coordinated copper(II) atoms, generating a ribbon motif that runs along the b axis. The geometry of the copper(II) atom is distorted square-pyramidal; the apical site is occupied by the O atom of the DMF mol­ecule whereas the four basal sites are occupied by carboxyl­ate O atoms.

Related literature

For the crystal structure of diaquaadipatocopper(II), see: Bakalbassis et al. (2001[Bakalbassis, E. G., Korabik, M., Michailides, A., Mrozinski, J., Raptopoulou, C., Skoulika, S., Terzis, A. & Tsaousis, D. (2001). J. Chem. Soc. Dalton Trans. pp. 850-857.]); Zheng et al. (2001[Zheng, Y.-Q., Pan, A.-Y. & Lin, J.-L. (2001). Z. Kristallogr. New Cryst. Struct. 216, 263-264.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C6H8O4)2(C3H7NO)2]

  • Mr = 561.52

  • Monoclinic, P 21 /n

  • a = 9.4764 (5) Å

  • b = 8.2618 (5) Å

  • c = 15.0990 (8) Å

  • β = 106.259 (1)°

  • V = 1134.85 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.93 mm−1

  • T = 173 K

  • 0.45 × 0.40 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.477, Tmax = 0.761

  • 5917 measured reflections

  • 2428 independent reflections

  • 2153 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.072

  • S = 1.03

  • 2428 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9683 (14)
Cu1—O2i 1.9716 (14)
Cu1—O3ii 1.9695 (13)
Cu1—O4iii 1.9584 (14)
Cu1—O5 2.1646 (15)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Copper adipate furnishes a number of adducts with oxygen- and nitrogen-donor ligands. The parent compound itself exists as dihydrate, with the copper atom in a square-planar environment (Bakalbassis et al., 2001; Zheng et al., 2001). The four-coordinate nature explains the ability of the compound to expand the coordination number of the metal atom. In the present study, the DMF solvent used in the synthesis functions as donor ligand. The DMF adduct is formally the dicopper diadipate bis-adduct (Scheme I). The carboxyl –CO2 ends of the approximately U-shape adipate dianion of polymeric Cu2(C6H8O4)2(C3H7NO)2 each bridges a pair of inversion-related, DMF-coordinated copper atoms (Fig. 1) to generate a ribbon motif that runs along the b-axis of the monoclinic unit cell. The geometry of the copper atom is a square pyramid; the apical site is occupied by the O atom of the DMF molecule whereas the four basal sites are occupied by the O atoms of the carboxyl ends.

Related literature top

For the crystal structure of diaquaadipatocopper, see: Bakalbassis et al. (2001); Zheng et al. (2001).

Experimental top

(1H-Benzimidazol-2-yl)-methanol (0.074 g, 0.5 mmol) was dissolved in a methanol/DMF mixture (v/v 1:1, 20 ml) and to this was added copper nitrate trihydrate (0.241 g, 1 mmol) followed by adipic acid (0.073 g, 0.5 mmol). The mixture was filtered and then set aside. Blue crystals were isolated after two weeks.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of the ribbon structure of Cu2(C6H8O4)2(C3H7NO)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
catena-Poly[bis(µ4-adipato- 1:2:1':2'κ4O1:O1':O4:O4') bis(N,N-dimethylformamide)-1κO,2κO-dicopper(II)] top
Crystal data top
[Cu2(C6H8O4)2(C3H7NO)2]F(000) = 580
Mr = 561.52Dx = 1.643 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4192 reflections
a = 9.4764 (5) Åθ = 2.3–27.0°
b = 8.2618 (5) ŵ = 1.93 mm1
c = 15.0990 (8) ÅT = 173 K
β = 106.259 (1)°Block, blue
V = 1134.85 (11) Å30.45 × 0.40 × 0.15 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
2428 independent reflections
Radiation source: fine-focus sealed tube2153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 912
Tmin = 0.477, Tmax = 0.761k = 1010
5917 measured reflectionsl = 1912
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0347P)2 + 1.1165P]
where P = (Fo2 + 2Fc2)/3
2428 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Cu2(C6H8O4)2(C3H7NO)2]V = 1134.85 (11) Å3
Mr = 561.52Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.4764 (5) ŵ = 1.93 mm1
b = 8.2618 (5) ÅT = 173 K
c = 15.0990 (8) Å0.45 × 0.40 × 0.15 mm
β = 106.259 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2428 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2153 reflections with I > 2σ(I)
Tmin = 0.477, Tmax = 0.761Rint = 0.018
5917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
2428 reflectionsΔρmin = 0.23 e Å3
147 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.43225 (2)0.00484 (2)0.564117 (15)0.01597 (9)
O10.52755 (16)0.20568 (17)0.60153 (10)0.0269 (3)
O20.64565 (17)0.21315 (17)0.49265 (10)0.0266 (3)
O30.72585 (15)0.89246 (17)0.52815 (9)0.0242 (3)
O40.60808 (16)0.88250 (19)0.63743 (10)0.0282 (3)
O50.31493 (16)0.01217 (17)0.66816 (10)0.0240 (3)
N10.12143 (18)0.0799 (2)0.71426 (11)0.0231 (3)
C10.6147 (2)0.2692 (2)0.56190 (13)0.0192 (4)
C20.6893 (2)0.4247 (2)0.60485 (14)0.0217 (4)
H2A0.75160.39980.66780.026*
H2B0.61240.50150.61100.026*
C30.7844 (2)0.5086 (2)0.55190 (14)0.0221 (4)
H3A0.72010.57150.50040.027*
H3B0.83510.42530.52490.027*
C40.8997 (2)0.6224 (2)0.61229 (14)0.0230 (4)
H4A0.97400.55660.65690.028*
H4B0.95040.68020.57260.028*
C50.8366 (2)0.7468 (2)0.66538 (13)0.0218 (4)
H5A0.79910.68960.71180.026*
H5B0.91670.81960.69900.026*
C60.7139 (2)0.8484 (2)0.60538 (12)0.0176 (4)
C70.1952 (2)0.0576 (2)0.65288 (14)0.0238 (4)
H70.15300.09840.59240.029*
C80.1795 (3)0.0257 (3)0.80898 (15)0.0324 (5)
H8A0.27520.02610.81660.049*
H8B0.11140.05230.82360.049*
H8C0.19110.11870.85060.049*
C90.0149 (2)0.1724 (3)0.69183 (16)0.0311 (5)
H9A0.04360.19980.62610.047*
H9B0.00030.27200.72850.047*
H9C0.09250.10740.70580.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01828 (14)0.01576 (14)0.01519 (13)0.00059 (8)0.00683 (10)0.00014 (8)
O10.0302 (8)0.0256 (7)0.0286 (8)0.0089 (6)0.0143 (6)0.0088 (6)
O20.0381 (8)0.0200 (7)0.0264 (7)0.0063 (6)0.0169 (6)0.0056 (6)
O30.0232 (7)0.0299 (7)0.0204 (7)0.0058 (6)0.0075 (6)0.0064 (6)
O40.0275 (8)0.0383 (8)0.0212 (7)0.0110 (6)0.0111 (6)0.0085 (6)
O50.0225 (7)0.0303 (8)0.0215 (7)0.0058 (6)0.0100 (6)0.0036 (5)
N10.0221 (8)0.0269 (9)0.0225 (8)0.0027 (7)0.0099 (7)0.0002 (7)
C10.0186 (9)0.0169 (8)0.0206 (9)0.0030 (7)0.0032 (7)0.0001 (7)
C20.0244 (10)0.0186 (9)0.0230 (9)0.0008 (8)0.0082 (8)0.0039 (7)
C30.0262 (10)0.0187 (9)0.0227 (9)0.0004 (7)0.0089 (8)0.0017 (7)
C40.0190 (9)0.0205 (9)0.0300 (10)0.0017 (7)0.0074 (8)0.0024 (8)
C50.0215 (9)0.0191 (9)0.0214 (9)0.0002 (7)0.0003 (8)0.0002 (7)
C60.0186 (9)0.0144 (8)0.0184 (9)0.0013 (7)0.0030 (7)0.0015 (7)
C70.0282 (10)0.0250 (10)0.0213 (9)0.0016 (8)0.0122 (8)0.0024 (8)
C80.0252 (11)0.0518 (14)0.0216 (10)0.0005 (10)0.0092 (9)0.0013 (9)
C90.0284 (11)0.0294 (11)0.0387 (12)0.0063 (9)0.0150 (10)0.0017 (9)
Geometric parameters (Å, º) top
Cu1—O11.9683 (14)C2—H2B0.9900
Cu1—O2i1.9716 (14)C3—C41.533 (3)
Cu1—O3ii1.9695 (13)C3—H3A0.9900
Cu1—O4iii1.9584 (14)C3—H3B0.9900
Cu1—O52.1646 (15)C4—C51.525 (3)
Cu1—Cu1i2.6069 (4)C4—H4A0.9900
O1—C11.262 (2)C4—H4B0.9900
O2—C11.251 (2)C5—C61.512 (3)
O3—C61.256 (2)C5—H5A0.9900
O4—C61.262 (2)C5—H5B0.9900
O5—C71.235 (3)C7—H70.9500
N1—C71.321 (3)C8—H8A0.9800
N1—C81.452 (3)C8—H8B0.9800
N1—C91.457 (3)C8—H8C0.9800
C1—C21.521 (3)C9—H9A0.9800
C2—C31.529 (3)C9—H9B0.9800
C2—H2A0.9900C9—H9C0.9800
O4iii—Cu1—O190.48 (7)C4—C3—H3A108.9
O4iii—Cu1—O3ii169.19 (6)C2—C3—H3B108.9
O1—Cu1—O3ii89.05 (6)C4—C3—H3B108.9
O4iii—Cu1—O2i89.23 (7)H3A—C3—H3B107.8
O1—Cu1—O2i169.11 (6)C5—C4—C3114.04 (16)
O3ii—Cu1—O2i89.19 (6)C5—C4—H4A108.7
O4iii—Cu1—O596.03 (6)C3—C4—H4A108.7
O1—Cu1—O595.97 (6)C5—C4—H4B108.7
O3ii—Cu1—O594.76 (6)C3—C4—H4B108.7
O2i—Cu1—O594.88 (6)H4A—C4—H4B107.6
O4iii—Cu1—Cu1i85.20 (4)C6—C5—C4114.07 (16)
O1—Cu1—Cu1i84.51 (4)C6—C5—H5A108.7
O3ii—Cu1—Cu1i84.00 (4)C4—C5—H5A108.7
O2i—Cu1—Cu1i84.62 (4)C6—C5—H5B108.7
O5—Cu1—Cu1i178.67 (4)C4—C5—H5B108.7
C1—O1—Cu1122.68 (12)H5A—C5—H5B107.6
C1—O2—Cu1i122.64 (13)O3—C6—O4125.38 (18)
C6—O3—Cu1ii123.01 (13)O3—C6—C5117.60 (17)
C6—O4—Cu1iv122.10 (12)O4—C6—C5117.02 (16)
C7—O5—Cu1118.87 (13)O5—C7—N1124.96 (19)
C7—N1—C8121.24 (17)O5—C7—H7117.5
C7—N1—C9121.29 (18)N1—C7—H7117.5
C8—N1—C9117.24 (17)N1—C8—H8A109.5
O2—C1—O1125.47 (18)N1—C8—H8B109.5
O2—C1—C2118.63 (17)H8A—C8—H8B109.5
O1—C1—C2115.89 (16)N1—C8—H8C109.5
C1—C2—C3115.59 (16)H8A—C8—H8C109.5
C1—C2—H2A108.4H8B—C8—H8C109.5
C3—C2—H2A108.4N1—C9—H9A109.5
C1—C2—H2B108.4N1—C9—H9B109.5
C3—C2—H2B108.4H9A—C9—H9B109.5
H2A—C2—H2B107.4N1—C9—H9C109.5
C2—C3—C4113.16 (16)H9A—C9—H9C109.5
C2—C3—H3A108.9H9B—C9—H9C109.5
O4iii—Cu1—O1—C182.83 (16)O1—C1—C2—C3175.00 (17)
O3ii—Cu1—O1—C186.36 (16)C1—C2—C3—C4158.25 (16)
O2i—Cu1—O1—C15.6 (4)C2—C3—C4—C553.1 (2)
O5—Cu1—O1—C1178.95 (15)C3—C4—C5—C654.7 (2)
Cu1i—Cu1—O1—C12.30 (15)Cu1ii—O3—C6—O47.1 (3)
O4iii—Cu1—O5—C7175.47 (15)Cu1ii—O3—C6—C5173.25 (12)
O1—Cu1—O5—C784.35 (16)Cu1iv—O4—C6—O36.2 (3)
O3ii—Cu1—O5—C75.19 (16)Cu1iv—O4—C6—C5174.09 (12)
O2i—Cu1—O5—C794.78 (16)C4—C5—C6—O338.7 (2)
Cu1i—O2—C1—O12.9 (3)C4—C5—C6—O4141.63 (18)
Cu1i—O2—C1—C2175.51 (12)Cu1—O5—C7—N1171.07 (16)
Cu1—O1—C1—O23.8 (3)C8—N1—C7—O51.7 (3)
Cu1—O1—C1—C2174.68 (12)C9—N1—C7—O5176.2 (2)
O2—C1—C2—C36.4 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2(C6H8O4)2(C3H7NO)2]
Mr561.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.4764 (5), 8.2618 (5), 15.0990 (8)
β (°) 106.259 (1)
V3)1134.85 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.93
Crystal size (mm)0.45 × 0.40 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.477, 0.761
No. of measured, independent and
observed [I > 2σ(I)] reflections
5917, 2428, 2153
Rint0.018
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.072, 1.03
No. of reflections2428
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.23

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—O11.9683 (14)Cu1—O4iii1.9584 (14)
Cu1—O2i1.9716 (14)Cu1—O52.1646 (15)
Cu1—O3ii1.9695 (13)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z.
 

Acknowledgements

We thank Hunan Medical Technical Secondary School and the University of Malaya for supporting this study.

References

First citationBakalbassis, E. G., Korabik, M., Michailides, A., Mrozinski, J., Raptopoulou, C., Skoulika, S., Terzis, A. & Tsaousis, D. (2001). J. Chem. Soc. Dalton Trans. pp. 850–857.  Web of Science CSD CrossRef Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, Y.-Q., Pan, A.-Y. & Lin, J.-L. (2001). Z. Kristallogr. New Cryst. Struct. 216, 263–264.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds