metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1295-m1296

(2-Amino­benzoato-κ2O,O′)(rac-5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N,N′,N′′,N′′′)nickel(II) perchlorate monohydrate

aDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou Hunan 425100, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 September 2010; accepted 16 September 2010; online 25 September 2010)

In the title salt, [Ni(C7H6NO2)(C16H36N4)]ClO4·H2O, the NiII cation is O,O′-chelated by the benzoate anion and N,N′,N′′,N′′′-chelated by the macrocycle ligand, confering a distorted octa­hedral geometry on the metal atom. The complex cations, perchlorate anions and uncoordinated water mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network. The perchlorate ion is disordered over two positions in a 0.554 (8):0.446 (8) ratio.

Related literature

For two related structures, see: Ou et al. (2008a[Ou, G.-C., Zhang, M. & Yuan, X.-Y. (2008a). Acta Cryst. E64, m1010.],b[Ou, G.-C., Zhang, M., Yuan, X.-Y. & Dai, Y.-Q. (2008b). Acta Cryst. E64, m1588.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H6NO2)(C16H36N4)]ClO4·H2O

  • Mr = 596.79

  • Monoclinic, C c

  • a = 9.6452 (5) Å

  • b = 21.5350 (11) Å

  • c = 13.5083 (7) Å

  • β = 90.784 (1)°

  • V = 2805.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 110 K

  • 0.45 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.818, Tmax = 1.000

  • 6638 measured reflections

  • 3832 independent reflections

  • 3667 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.064

  • S = 1.08

  • 3832 reflections

  • 410 parameters

  • 142 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 874 Friedel pairs

  • Flack parameter: −0.012 (9)

Table 1
Selected bond lengths (Å)

Ni1—N1 2.124 (2)
Ni1—N2 2.084 (2)
Ni1—N3 2.138 (2)
Ni1—N4 2.087 (2)
Ni1—O1 2.1659 (17)
Ni1—O2 2.1280 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1wi 0.86 (2) 2.15 (2) 2.995 (3) 166 (2)
N2—H2⋯O5′ii 0.86 (2) 2.35 (2) 3.125 (11) 150 (3)
N3—H3⋯O1 0.86 (2) 2.49 (3) 2.885 (3) 109 (2)
N4—H4⋯O6′ii 0.86 (3) 2.40 (2) 3.195 (6) 155 (3)
N5—H51⋯O2 0.85 (3) 2.13 (3) 2.751 (3) 129 (2)
N5—H52⋯O4′i 0.85 (1) 2.32 (1) 3.155 (6) 168 (3)
O1w—H11⋯O1 0.84 (2) 1.96 (2) 2.795 (2) 172 (3)
O1w—H12⋯O3 0.83 (2) 2.26 (2) 3.077 (9) 167 (3)
O1w—H12⋯O3′ 0.83 (2) 2.09 (2) 2.890 (9) 160 (3)
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Previous studies on (5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel benzoate perchlorate salts have documented a chelating mode for the carboxylate ion. The perchlorate counterion is not directly involved in coordination but forms hydrogen bonds with the amino portions of the macrocycle (Ou et al., 2008a, 2008b). The title substituted benzoate has an additional amino unit that also engages in hydrogen bonding. In the salt, [Ni(C16H36N4)(C7H6NO2)][ClO4].H2O (Scheme I, Fig. 1), the metal atom is O,O'-chelated by the carboxylate anion and N,N',N'',N'''-chelated by the macrocycle to confer an octahedral geometry to the metal center. The cation, anion and lattice water molecules are linked by N–H···O and O–H···O hydrogen bonds into a three-dimensional network.

Related literature top

For two related structures, see: Ou et al. (2008a,b).

Experimental top

Anthranilic acid (0.27 g, 2 mmol) and sodium hydroxide (0.08 g, 2 mmol) were dissolved in water (15 ml). To this solution was added (rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel diperchlorate (0.11 g, 2 mmol) dissolved in acetonitrile (10 ml). The solution was set aside for the growth of violet crystals after a few days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–1.00 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

The water and amino H atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 Å and N–H 0.86±0.01 Å. For the water molecule, the H···H distance was restrained to 1.37±0.01 Å. The temperature factors were tied to those of the parent atoms by a factor of 1.2–1.5 times.

The perchlorate is disordered over two positions in a 0.554 (8):0.446 (8) ratio. All Cl–O distances were restrained to within 0.01 Å of each other as were the O···O distances. The anisotropic temperature factors of the O atoms were restrained to be nearly isotropic.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [Ni(C16H36N4)(C7H6NO2)][ClO4].H2O at the 50% probability level; hydrogen atoms are shown as spheres of arbitrary radius. The disorder in the perchlorate is not shown.
(2-Aminobenzoato-κ2O,O')(rac- 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane- κ4N,N',N'',N''')nickel(II) perchlorate monohydrate top
Crystal data top
[Ni(C7H6NO2)(C16H36N4)]ClO4·H2OF(000) = 1272
Mr = 596.79Dx = 1.413 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5267 reflections
a = 9.6452 (5) Åθ = 2.3–27.0°
b = 21.5350 (11) ŵ = 0.84 mm1
c = 13.5083 (7) ÅT = 110 K
β = 90.784 (1)°Prism, violet
V = 2805.5 (3) Å30.45 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3832 independent reflections
Radiation source: fine-focus sealed tube3667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.818, Tmax = 1.000k = 2626
6638 measured reflectionsl = 817
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.1275P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3832 reflectionsΔρmax = 0.25 e Å3
410 parametersΔρmin = 0.21 e Å3
142 restraintsAbsolute structure: Flack (1983), 874 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (9)
Crystal data top
[Ni(C7H6NO2)(C16H36N4)]ClO4·H2OV = 2805.5 (3) Å3
Mr = 596.79Z = 4
Monoclinic, CcMo Kα radiation
a = 9.6452 (5) ŵ = 0.84 mm1
b = 21.5350 (11) ÅT = 110 K
c = 13.5083 (7) Å0.45 × 0.20 × 0.10 mm
β = 90.784 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3832 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3667 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 1.000Rint = 0.016
6638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064Δρmax = 0.25 e Å3
S = 1.08Δρmin = 0.21 e Å3
3832 reflectionsAbsolute structure: Flack (1983), 874 Friedel pairs
410 parametersAbsolute structure parameter: 0.012 (9)
142 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50011 (3)0.399116 (12)0.49992 (3)0.01859 (8)
O10.58175 (16)0.44546 (8)0.37089 (12)0.0219 (4)
O20.66792 (16)0.46225 (7)0.51979 (12)0.0201 (3)
Cl10.6956 (5)0.2675 (2)0.1539 (3)0.0295 (7)0.554 (8)
O30.5575 (5)0.2886 (4)0.1347 (6)0.0444 (19)0.554 (8)
O40.7620 (5)0.3111 (2)0.2197 (4)0.0581 (17)0.554 (8)
O50.6945 (9)0.2080 (2)0.2001 (5)0.0439 (19)0.554 (8)
O60.7708 (7)0.2650 (3)0.0641 (4)0.070 (2)0.554 (8)
Cl1'0.6956 (6)0.2641 (3)0.1262 (4)0.0311 (10)0.446 (8)
O3'0.5794 (8)0.2974 (4)0.1623 (6)0.042 (2)0.446 (8)
O4'0.8213 (6)0.2957 (3)0.1496 (6)0.060 (3)0.446 (8)
O5'0.6992 (12)0.2028 (3)0.1656 (9)0.057 (3)0.446 (8)
O6'0.6838 (8)0.2577 (3)0.0218 (4)0.058 (2)0.446 (8)
O1W0.5173 (2)0.42855 (9)0.17034 (14)0.0296 (4)
H110.545 (3)0.4343 (13)0.2291 (11)0.044*
H120.537 (4)0.3925 (8)0.153 (2)0.044*
N10.3714 (2)0.46844 (10)0.56243 (16)0.0190 (4)
H10.423 (2)0.4982 (10)0.585 (2)0.023*
N20.4909 (2)0.35763 (9)0.63905 (16)0.0211 (4)
H20.428 (2)0.3296 (10)0.636 (2)0.025*
N30.6127 (2)0.32080 (10)0.44631 (17)0.0243 (4)
H30.652 (3)0.3351 (13)0.3944 (14)0.029*
N40.3296 (2)0.36063 (10)0.42555 (16)0.0242 (4)
H40.280 (3)0.3380 (12)0.4632 (19)0.029*
N50.7978 (2)0.57537 (11)0.53966 (18)0.0289 (5)
H510.739 (3)0.5514 (12)0.567 (2)0.035*
H520.814 (3)0.6115 (8)0.563 (2)0.035*
C10.3207 (3)0.44029 (12)0.65532 (18)0.0245 (5)
H1A0.24380.41120.64020.029*
H1B0.28520.47320.69950.029*
C20.4374 (3)0.40601 (11)0.70620 (19)0.0253 (5)
H2A0.51260.43540.72410.030*
H2B0.40370.38660.76780.030*
C30.6234 (3)0.33020 (13)0.6779 (2)0.0282 (6)
H3a0.69680.36290.67510.034*
C40.6109 (3)0.30893 (15)0.7856 (2)0.0378 (7)
H4A0.58140.34400.82650.057*
H4B0.70110.29370.80960.057*
H4C0.54230.27550.78950.057*
C50.6684 (3)0.27612 (12)0.6133 (2)0.0293 (6)
H5A0.58830.24770.60590.035*
H5B0.74180.25320.64990.035*
C60.7230 (3)0.28992 (12)0.5088 (2)0.0298 (6)
C70.8464 (3)0.33447 (13)0.5146 (2)0.0353 (7)
H7A0.88320.34090.44810.053*
H7B0.91880.31670.55750.053*
H7C0.81620.37430.54180.053*
C80.7727 (3)0.22831 (14)0.4626 (3)0.0393 (7)
H8A0.79210.23480.39230.059*
H8B0.70030.19670.46920.059*
H8C0.85730.21430.49690.059*
C90.5037 (3)0.27846 (12)0.4086 (2)0.0297 (6)
H9A0.46320.25510.46430.036*
H9B0.54440.24830.36200.036*
C100.3920 (3)0.31573 (13)0.3564 (2)0.0288 (6)
H10A0.43240.33830.29980.035*
H10B0.31940.28740.33040.035*
C110.2384 (3)0.40671 (11)0.37461 (19)0.0241 (5)
H11A0.29790.43280.33100.029*
C120.1271 (3)0.37581 (15)0.3090 (2)0.0335 (6)
H12A0.17190.35170.25680.050*
H12B0.06800.40780.27880.050*
H12C0.07040.34810.34940.050*
C130.1684 (2)0.45014 (12)0.44934 (19)0.0238 (5)
H13A0.12530.42400.50070.029*
H13B0.09230.47220.41420.029*
C140.2594 (2)0.49930 (12)0.50235 (18)0.0217 (5)
C150.3297 (3)0.54169 (12)0.42814 (19)0.0237 (5)
H15A0.38190.57400.46370.036*
H15B0.25920.56110.38530.036*
H15C0.39320.51730.38760.036*
C160.1671 (3)0.54025 (13)0.5675 (2)0.0259 (6)
H16A0.22560.56780.60790.039*
H16B0.11170.51380.61090.039*
H16C0.10530.56520.52530.039*
C170.6690 (2)0.47306 (11)0.42754 (19)0.0186 (5)
C180.7701 (2)0.51743 (11)0.38477 (18)0.0198 (5)
C190.8068 (2)0.51078 (12)0.28554 (19)0.0234 (5)
H190.76780.47770.24790.028*
C200.8984 (3)0.55104 (13)0.2407 (2)0.0292 (6)
H200.92470.54500.17390.035*
C210.9514 (3)0.60087 (12)0.2959 (2)0.0301 (6)
H211.01250.62960.26570.036*
C220.9161 (3)0.60871 (12)0.3934 (2)0.0276 (6)
H220.95320.64300.42920.033*
C230.8259 (2)0.56699 (12)0.4417 (2)0.0219 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01972 (13)0.01555 (14)0.02064 (13)0.00292 (12)0.00605 (9)0.00109 (13)
O10.0225 (8)0.0217 (9)0.0217 (8)0.0068 (7)0.0050 (7)0.0017 (7)
O20.0227 (8)0.0171 (9)0.0207 (8)0.0015 (6)0.0043 (7)0.0002 (7)
Cl10.0273 (9)0.0245 (10)0.0371 (17)0.0031 (6)0.0107 (11)0.0046 (11)
O30.036 (2)0.035 (3)0.062 (4)0.005 (2)0.007 (2)0.016 (3)
O40.053 (3)0.045 (3)0.075 (4)0.004 (2)0.017 (3)0.008 (2)
O50.055 (3)0.015 (2)0.062 (4)0.000 (2)0.014 (3)0.010 (2)
O60.071 (4)0.077 (4)0.065 (4)0.031 (3)0.052 (4)0.012 (3)
Cl1'0.0308 (12)0.0213 (12)0.041 (3)0.0025 (8)0.0045 (16)0.0042 (15)
O3'0.048 (4)0.033 (4)0.047 (4)0.016 (3)0.024 (3)0.001 (3)
O4'0.055 (3)0.038 (3)0.087 (6)0.014 (3)0.021 (3)0.020 (3)
O5'0.051 (4)0.027 (4)0.094 (7)0.008 (3)0.017 (5)0.010 (4)
O6'0.055 (4)0.079 (4)0.041 (3)0.016 (3)0.009 (3)0.017 (3)
O1W0.0405 (11)0.0243 (10)0.0239 (9)0.0039 (8)0.0026 (8)0.0000 (7)
N10.0222 (10)0.0145 (10)0.0205 (10)0.0003 (8)0.0027 (8)0.0008 (8)
N20.0208 (10)0.0180 (10)0.0248 (10)0.0008 (8)0.0057 (8)0.0009 (8)
N30.0254 (10)0.0186 (11)0.0291 (11)0.0042 (8)0.0107 (9)0.0014 (9)
N40.0258 (10)0.0228 (11)0.0242 (10)0.0061 (8)0.0086 (8)0.0022 (9)
N50.0337 (12)0.0215 (11)0.0315 (12)0.0095 (9)0.0063 (9)0.0075 (9)
C10.0287 (12)0.0262 (13)0.0187 (11)0.0058 (10)0.0078 (10)0.0013 (10)
C20.0314 (13)0.0246 (13)0.0202 (11)0.0062 (10)0.0056 (10)0.0018 (10)
C30.0250 (12)0.0240 (14)0.0356 (15)0.0034 (10)0.0030 (11)0.0032 (11)
C40.0416 (16)0.0366 (16)0.0353 (15)0.0169 (13)0.0014 (13)0.0070 (13)
C50.0295 (13)0.0180 (12)0.0406 (15)0.0043 (10)0.0081 (11)0.0038 (11)
C60.0245 (13)0.0232 (14)0.0420 (16)0.0016 (10)0.0122 (11)0.0024 (12)
C70.0229 (13)0.0326 (16)0.0507 (17)0.0009 (11)0.0090 (12)0.0002 (13)
C80.0370 (16)0.0235 (15)0.058 (2)0.0074 (12)0.0127 (15)0.0063 (14)
C90.0347 (13)0.0181 (13)0.0368 (14)0.0057 (10)0.0146 (11)0.0073 (11)
C100.0315 (14)0.0250 (14)0.0301 (14)0.0081 (10)0.0079 (11)0.0125 (11)
C110.0247 (12)0.0247 (13)0.0232 (12)0.0063 (9)0.0049 (10)0.0010 (10)
C120.0295 (13)0.0429 (17)0.0282 (13)0.0081 (12)0.0010 (11)0.0065 (12)
C130.0193 (11)0.0276 (13)0.0245 (12)0.0013 (9)0.0031 (10)0.0017 (10)
C140.0229 (11)0.0224 (12)0.0200 (11)0.0015 (9)0.0040 (9)0.0031 (10)
C150.0278 (12)0.0222 (12)0.0212 (11)0.0021 (9)0.0048 (10)0.0034 (10)
C160.0263 (13)0.0259 (15)0.0256 (13)0.0059 (10)0.0062 (10)0.0040 (11)
C170.0197 (11)0.0140 (11)0.0222 (12)0.0024 (9)0.0045 (9)0.0008 (9)
C180.0190 (11)0.0170 (12)0.0236 (12)0.0000 (8)0.0017 (9)0.0014 (9)
C190.0210 (12)0.0238 (13)0.0255 (12)0.0011 (9)0.0037 (10)0.0014 (10)
C200.0253 (12)0.0355 (15)0.0269 (13)0.0006 (10)0.0083 (10)0.0080 (11)
C210.0210 (12)0.0288 (14)0.0405 (15)0.0034 (9)0.0045 (11)0.0131 (12)
C220.0249 (12)0.0199 (13)0.0378 (15)0.0048 (9)0.0005 (11)0.0034 (11)
C230.0194 (11)0.0193 (12)0.0269 (12)0.0015 (9)0.0022 (10)0.0017 (10)
Geometric parameters (Å, º) top
Ni1—N12.124 (2)C5—C61.541 (4)
Ni1—N22.084 (2)C5—H5A0.9900
Ni1—N32.138 (2)C5—H5B0.9900
Ni1—N42.087 (2)C6—C71.530 (4)
Ni1—O12.1659 (17)C6—C81.546 (4)
Ni1—O22.1280 (16)C7—H7A0.9800
O1—C171.276 (3)C7—H7B0.9800
O2—C171.268 (3)C7—H7C0.9800
Cl1—O61.423 (4)C8—H8A0.9800
Cl1—O51.425 (5)C8—H8B0.9800
Cl1—O31.427 (5)C8—H8C0.9800
Cl1—O41.437 (5)C9—C101.510 (4)
Cl1'—O6'1.421 (5)C9—H9A0.9900
Cl1'—O5'1.423 (6)C9—H9B0.9900
Cl1'—O3'1.422 (5)C10—H10A0.9900
Cl1'—O4'1.422 (6)C10—H10B0.9900
O1W—H110.843 (10)C11—C121.534 (4)
O1W—H120.833 (10)C11—C131.539 (3)
N1—C11.482 (3)C11—H11A1.0000
N1—C141.498 (3)C12—H12A0.9800
N1—H10.861 (10)C12—H12B0.9800
N2—C21.479 (3)C12—H12C0.9800
N2—C31.496 (3)C13—C141.545 (3)
N2—H20.858 (10)C13—H13A0.9900
N3—C91.477 (3)C13—H13B0.9900
N3—C61.504 (4)C14—C151.522 (3)
N3—H30.860 (10)C14—C161.538 (3)
N4—C101.478 (3)C15—H15A0.9800
N4—C111.489 (3)C15—H15B0.9800
N4—H40.86 (3)C15—H15C0.9800
N5—C231.366 (3)C16—H16A0.9800
N5—H510.86 (3)C16—H16B0.9800
N5—H520.854 (10)C16—H16C0.9800
C1—C21.504 (3)C17—C181.487 (3)
C1—H1A0.9900C18—C191.399 (3)
C1—H1B0.9900C18—C231.418 (3)
C2—H2A0.9900C19—C201.383 (3)
C2—H2B0.9900C19—H190.9500
C3—C51.522 (4)C20—C211.400 (4)
C3—C41.532 (4)C20—H200.9500
C3—H3a1.0000C21—C221.375 (4)
C4—H4A0.9800C21—H210.9500
C4—H4B0.9800C22—C231.416 (4)
C4—H4C0.9800C22—H220.9500
N2—Ni1—N4102.76 (8)N3—C6—C7107.2 (2)
N2—Ni1—N184.86 (8)N3—C6—C5110.60 (19)
N4—Ni1—N190.54 (8)C7—C6—C5110.5 (2)
N2—Ni1—O2101.64 (7)N3—C6—C8111.9 (2)
N4—Ni1—O2155.16 (8)C7—C6—C8108.2 (2)
N1—Ni1—O287.05 (7)C5—C6—C8108.4 (2)
N2—Ni1—N389.73 (8)C6—C7—H7A109.5
N4—Ni1—N385.66 (8)C6—C7—H7B109.5
N1—Ni1—N3172.56 (8)H7A—C7—H7B109.5
O2—Ni1—N399.07 (7)C6—C7—H7C109.5
N2—Ni1—O1160.67 (7)H7A—C7—H7C109.5
N4—Ni1—O195.07 (7)H7B—C7—H7C109.5
N1—Ni1—O1102.53 (7)C6—C8—H8A109.5
O2—Ni1—O161.50 (6)C6—C8—H8B109.5
N3—Ni1—O184.20 (7)H8A—C8—H8B109.5
C17—O1—Ni188.63 (14)C6—C8—H8C109.5
C17—O2—Ni190.56 (14)H8A—C8—H8C109.5
O6—Cl1—O5110.2 (4)H8B—C8—H8C109.5
O6—Cl1—O3110.1 (4)N3—C9—C10109.4 (2)
O5—Cl1—O3110.7 (4)N3—C9—H9A109.8
O6—Cl1—O4108.9 (4)C10—C9—H9A109.8
O5—Cl1—O4108.8 (4)N3—C9—H9B109.8
O3—Cl1—O4108.1 (4)C10—C9—H9B109.8
O6'—Cl1'—O5'106.4 (7)H9A—C9—H9B108.2
O6'—Cl1'—O3'109.6 (5)N4—C10—C9110.3 (2)
O5'—Cl1'—O3'110.8 (5)N4—C10—H10A109.6
O6'—Cl1'—O4'108.9 (5)C9—C10—H10A109.6
O5'—Cl1'—O4'110.2 (5)N4—C10—H10B109.6
O3'—Cl1'—O4'110.8 (5)C9—C10—H10B109.6
H11—O1W—H12109.4 (17)H10A—C10—H10B108.1
C1—N1—C14113.35 (19)N4—C11—C12112.5 (2)
C1—N1—Ni1104.50 (15)N4—C11—C13111.3 (2)
C14—N1—Ni1121.17 (16)C12—C11—C13109.5 (2)
C1—N1—H1101.7 (19)N4—C11—H11A107.8
C14—N1—H1105.3 (19)C12—C11—H11A107.8
Ni1—N1—H1109.1 (18)C13—C11—H11A107.8
C2—N2—C3111.5 (2)C11—C12—H12A109.5
C2—N2—Ni1105.70 (15)C11—C12—H12B109.5
C3—N2—Ni1116.01 (15)H12A—C12—H12B109.5
C2—N2—H2106 (2)C11—C12—H12C109.5
C3—N2—H2110 (2)H12A—C12—H12C109.5
Ni1—N2—H2107 (2)H12B—C12—H12C109.5
C9—N3—C6114.5 (2)C11—C13—C14117.97 (19)
C9—N3—Ni1103.96 (15)C11—C13—H13A107.8
C6—N3—Ni1121.14 (16)C14—C13—H13A107.8
C9—N3—H3105 (2)C11—C13—H13B107.8
C6—N3—H3107 (2)C14—C13—H13B107.8
Ni1—N3—H3103 (2)H13A—C13—H13B107.2
C10—N4—C11112.8 (2)N1—C14—C15107.37 (19)
C10—N4—Ni1103.81 (15)N1—C14—C16111.3 (2)
C11—N4—Ni1114.50 (15)C15—C14—C16107.4 (2)
C10—N4—H4104 (2)N1—C14—C13110.4 (2)
C11—N4—H4109 (2)C15—C14—C13111.2 (2)
Ni1—N4—H4113 (2)C16—C14—C13109.19 (19)
C23—N5—H51119 (2)C14—C15—H15A109.5
C23—N5—H52116 (2)C14—C15—H15B109.5
H51—N5—H52121 (3)H15A—C15—H15B109.5
N1—C1—C2109.5 (2)C14—C15—H15C109.5
N1—C1—H1A109.8H15A—C15—H15C109.5
C2—C1—H1A109.8H15B—C15—H15C109.5
N1—C1—H1B109.8C14—C16—H16A109.5
C2—C1—H1B109.8C14—C16—H16B109.5
H1A—C1—H1B108.2H16A—C16—H16B109.5
N2—C2—C1109.3 (2)C14—C16—H16C109.5
N2—C2—H2A109.8H16A—C16—H16C109.5
C1—C2—H2A109.8H16B—C16—H16C109.5
N2—C2—H2B109.8O2—C17—O1119.3 (2)
C1—C2—H2B109.8O2—C17—C18120.9 (2)
H2A—C2—H2B108.3O1—C17—C18119.8 (2)
N2—C3—C5110.5 (2)C19—C18—C23119.9 (2)
N2—C3—C4111.9 (2)C19—C18—C17118.9 (2)
C5—C3—C4110.0 (2)C23—C18—C17121.3 (2)
N2—C3—H3a108.1C20—C19—C18121.8 (2)
C5—C3—H3a108.1C20—C19—H19119.1
C4—C3—H3a108.1C18—C19—H19119.1
C3—C4—H4A109.5C19—C20—C21118.6 (2)
C3—C4—H4B109.5C19—C20—H20120.7
H4A—C4—H4B109.5C21—C20—H20120.7
C3—C4—H4C109.5C22—C21—C20120.7 (2)
H4A—C4—H4C109.5C22—C21—H21119.6
H4B—C4—H4C109.5C20—C21—H21119.6
C3—C5—C6118.7 (2)C21—C22—C23121.7 (3)
C3—C5—H5A107.6C21—C22—H22119.1
C6—C5—H5A107.6C23—C22—H22119.1
C3—C5—H5B107.6N5—C23—C18123.1 (2)
C6—C5—H5B107.6N5—C23—C22119.6 (2)
H5A—C5—H5B107.1C18—C23—C22117.3 (2)
N2—Ni1—O1—C1731.3 (3)C2—N2—C3—C451.2 (3)
N4—Ni1—O1—C17171.28 (14)Ni1—N2—C3—C4172.23 (19)
N1—Ni1—O1—C1779.59 (14)N2—C3—C5—C671.2 (3)
O2—Ni1—O1—C170.00 (13)C4—C3—C5—C6164.7 (2)
N3—Ni1—O1—C17103.62 (14)C9—N3—C6—C7163.1 (2)
N2—Ni1—O2—C17169.89 (14)Ni1—N3—C6—C771.0 (2)
N4—Ni1—O2—C1721.1 (2)C9—N3—C6—C576.4 (3)
N1—Ni1—O2—C17105.97 (14)Ni1—N3—C6—C549.4 (3)
N3—Ni1—O2—C1778.28 (15)C9—N3—C6—C844.6 (3)
O1—Ni1—O2—C170.00 (13)Ni1—N3—C6—C8170.46 (18)
N2—Ni1—N1—C114.19 (16)C3—C5—C6—N361.6 (3)
N4—Ni1—N1—C188.57 (16)C3—C5—C6—C756.8 (3)
O2—Ni1—N1—C1116.17 (16)C3—C5—C6—C8175.3 (2)
O1—Ni1—N1—C1176.11 (15)C6—N3—C9—C10174.1 (2)
N2—Ni1—N1—C14143.61 (18)Ni1—N3—C9—C1039.7 (2)
N4—Ni1—N1—C1440.84 (18)C11—N4—C10—C9169.1 (2)
O2—Ni1—N1—C14114.42 (17)Ni1—N4—C10—C944.6 (2)
O1—Ni1—N1—C1454.48 (18)N3—C9—C10—N459.9 (3)
N4—Ni1—N2—C2104.54 (16)C10—N4—C11—C1253.3 (3)
N1—Ni1—N2—C215.15 (16)Ni1—N4—C11—C12171.73 (16)
O2—Ni1—N2—C270.77 (16)C10—N4—C11—C13176.57 (19)
N3—Ni1—N2—C2169.98 (16)Ni1—N4—C11—C1365.0 (2)
O1—Ni1—N2—C298.6 (2)N4—C11—C13—C1471.8 (3)
N4—Ni1—N2—C3131.31 (17)C12—C11—C13—C14163.2 (2)
N1—Ni1—N2—C3139.30 (18)C1—N1—C14—C15163.3 (2)
O2—Ni1—N2—C353.38 (18)Ni1—N1—C14—C1571.2 (2)
N3—Ni1—N2—C345.83 (18)C1—N1—C14—C1646.1 (3)
O1—Ni1—N2—C325.6 (3)Ni1—N1—C14—C16171.49 (16)
N2—Ni1—N3—C990.51 (16)C1—N1—C14—C1375.4 (2)
N4—Ni1—N3—C912.31 (16)Ni1—N1—C14—C1350.1 (2)
O2—Ni1—N3—C9167.74 (16)C11—C13—C14—N161.3 (3)
O1—Ni1—N3—C9107.87 (16)C11—C13—C14—C1557.7 (3)
N2—Ni1—N3—C640.04 (18)C11—C13—C14—C16176.0 (2)
N4—Ni1—N3—C6142.86 (18)Ni1—O2—C17—O10.0 (2)
O2—Ni1—N3—C661.70 (18)Ni1—O2—C17—C18179.87 (19)
O1—Ni1—N3—C6121.58 (18)Ni1—O1—C17—O20.0 (2)
N2—Ni1—N4—C10105.88 (17)Ni1—O1—C17—C18179.88 (19)
N1—Ni1—N4—C10169.26 (17)O2—C17—C18—C19155.0 (2)
O2—Ni1—N4—C1085.1 (2)O1—C17—C18—C1925.2 (3)
N3—Ni1—N4—C1017.14 (17)O2—C17—C18—C2326.9 (3)
O1—Ni1—N4—C1066.63 (17)O1—C17—C18—C23152.9 (2)
N2—Ni1—N4—C11130.71 (15)C23—C18—C19—C200.8 (4)
N1—Ni1—N4—C1145.86 (16)C17—C18—C19—C20178.9 (2)
O2—Ni1—N4—C1138.3 (3)C18—C19—C20—C212.2 (4)
N3—Ni1—N4—C11140.55 (16)C19—C20—C21—C221.7 (4)
O1—Ni1—N4—C1156.77 (16)C20—C21—C22—C230.3 (4)
C14—N1—C1—C2175.3 (2)C19—C18—C23—N5178.1 (2)
Ni1—N1—C1—C241.4 (2)C17—C18—C23—N53.8 (4)
C3—N2—C2—C1169.3 (2)C19—C18—C23—C221.1 (3)
Ni1—N2—C2—C142.4 (2)C17—C18—C23—C22176.9 (2)
N1—C1—C2—N258.6 (3)C21—C22—C23—N5177.6 (2)
C2—N2—C3—C5174.1 (2)C21—C22—C23—C181.7 (4)
Ni1—N2—C3—C564.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1wi0.86 (2)2.15 (2)2.995 (3)166 (2)
N2—H2···O5ii0.86 (2)2.56 (2)3.304 (8)147 (2)
N2—H2···O5ii0.86 (2)2.35 (2)3.125 (11)150 (3)
N3—H3···O10.86 (2)2.49 (3)2.885 (3)109 (2)
N4—H4···O6ii0.86 (3)2.61 (2)3.343 (6)145 (3)
N4—H4···O6ii0.86 (3)2.40 (2)3.195 (6)155 (3)
N5—H51···O20.85 (3)2.13 (3)2.751 (3)129 (2)
N5—H52···O4i0.85 (1)2.32 (1)3.155 (6)168 (3)
O1w—H11···O10.84 (2)1.96 (2)2.795 (2)172 (3)
O1w—H12···O30.83 (2)2.26 (2)3.077 (9)167 (3)
O1w—H12···O30.83 (2)2.09 (2)2.890 (9)160 (3)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C7H6NO2)(C16H36N4)]ClO4·H2O
Mr596.79
Crystal system, space groupMonoclinic, Cc
Temperature (K)110
a, b, c (Å)9.6452 (5), 21.5350 (11), 13.5083 (7)
β (°) 90.784 (1)
V3)2805.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.45 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.818, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6638, 3832, 3667
Rint0.016
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.064, 1.08
No. of reflections3832
No. of parameters410
No. of restraints142
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.21
Absolute structureFlack (1983), 874 Friedel pairs
Absolute structure parameter0.012 (9)

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ni1—N12.124 (2)Ni1—N42.087 (2)
Ni1—N22.084 (2)Ni1—O12.1659 (17)
Ni1—N32.138 (2)Ni1—O22.1280 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1wi0.86 (2)2.15 (2)2.995 (3)166 (2)
N2—H2···O5'ii0.86 (2)2.35 (2)3.125 (11)150 (3)
N3—H3···O10.86 (2)2.49 (3)2.885 (3)109 (2)
N4—H4···O6'ii0.86 (3)2.399 (17)3.195 (6)155 (3)
N5—H51···O20.85 (3)2.13 (3)2.751 (3)129 (2)
N5—H52···O4'i0.85 (1)2.316 (14)3.155 (6)168 (3)
O1w—H11···O10.843 (17)1.958 (16)2.795 (2)172 (3)
O1w—H12···O30.83 (2)2.26 (2)3.077 (9)167 (3)
O1w—H12···O3'0.83 (2)2.094 (18)2.890 (9)160 (3)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the Key Subject Construction Project of Hunan Province (No. 2006–180), the Key Scientific Research Project of Hunan Provincial Education Department (No. 08 A023, 05 C736), the NSF of Hunan Province (09 J J3028) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOu, G.-C., Zhang, M. & Yuan, X.-Y. (2008a). Acta Cryst. E64, m1010.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOu, G.-C., Zhang, M., Yuan, X.-Y. & Dai, Y.-Q. (2008b). Acta Cryst. E64, m1588.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1295-m1296
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds