metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,6-Bis(p-tol­ylimino­meth­yl)pyridine-κ3N,N′,N′′]di­chloridocopper(II)

aDepartment of Chemistry, Shaanxi Key Laboratory for Physico-Inorganic Chemistry, Northwest University, Xi'an 710069, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 September 2010; accepted 16 September 2010; online 25 September 2010)

The title compound, [CuCl2(C21H19N3)], lies on a twofold rotation axis that passes through the Npyrid­yl—Cu bond; this symmetry element relates one half of the organic ligand to the other as well as one Cl ligand to the other. The three N atoms span the axial–equatorial–axial sites of the trigonal-bipyramidal coordination polyhedron; the geometry of the CuII atom is 31% distorted from trigonal-bipyramidal (towards square-pyramidal along the Berry pseudorotation pathway).

Related literature

For a chromium chloride adduct with a similar ligand, see: Li et al. (2010[Li, X.-P., Liu, Y.-Y. & Zhao, J.-S. (2010). Acta Cryst. E66, m1215.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C21H19N3)]

  • Mr = 447.83

  • Orthorhombic, F d d 2

  • a = 11.5220 (13) Å

  • b = 35.522 (4) Å

  • c = 9.327 (1) Å

  • V = 3817.4 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 100 K

  • 0.36 × 0.12 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.626, Tmax = 0.972

  • 8753 measured reflections

  • 2190 independent reflections

  • 2023 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.070

  • S = 1.04

  • 2190 reflections

  • 125 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 858 Friedel pairs

  • Flack parameter: 0.014 (14)

Table 1
Selected bond lengths (Å)

Cu1—N1 1.968 (3)
Cu1—N2 2.101 (2)
Cu1—Cl1 2.3187 (7)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A recent study reported the chromium(III) chloride adduct of 2,6-bis(p-bromphenylimino)pyridine; the N-heterocycle chelates to the metal atom in a terdentate manner (Li et al., 2010). The copper dichlroide adduct of 2,6-bis(p-tolylimino)pyridine adopts a similar structure. The CuCl2(C21H19N3) molecule (Scheme I, Fig. 1) lies on a twofold rotation axis that passes through the Npyridyl—Cu bond; this symmetry element relates one half of the organic ligand to the other. The three N atoms span the axial–equatorial-axial sites of the trigonal bipyramidal coordination polyhedron; the geometry of Cu is 31% distorted along the Berry pseudorotation pathway.

Related literature top

For a chromium chloride adduct with a similar ligand, see: Li et al. (2010).

Experimental top

2,6-Bis(p-tolylimino)pyridine (0.016 g, 0.05 mmol), and copper chloride dihydrate (0.01 g, 0.05 mmol) along with five drops of 1 M hydrochloric acid were dissolved in ethanol (10 ml). The mixture was heated in a Teflon-lined, stainless-steel Parr bomb at 363 K for 120 h. The bomb was cooled at 5 K per hour. Deep orange crystals were isolated.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of CuCl2(C21H19N3) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[2,6-Bis(p-tolyliminomethyl)pyridine- κ3N,N',N'']dichloridocopper(II) top
Crystal data top
[CuCl2(C21H19N3)]F(000) = 1832
Mr = 447.83Dx = 1.558 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 2394 reflections
a = 11.5220 (13) Åθ = 2.3–26.1°
b = 35.522 (4) ŵ = 1.44 mm1
c = 9.327 (1) ÅT = 100 K
V = 3817.4 (7) Å3Prism, orange
Z = 80.36 × 0.12 × 0.02 mm
Data collection top
Bruker SMART APEX
diffractometer
2190 independent reflections
Radiation source: fine-focus sealed tube2023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1314
Tmin = 0.626, Tmax = 0.972k = 4646
8753 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0349P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2190 reflectionsΔρmax = 0.29 e Å3
125 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983), 858 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.014 (14)
Crystal data top
[CuCl2(C21H19N3)]V = 3817.4 (7) Å3
Mr = 447.83Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 11.5220 (13) ŵ = 1.44 mm1
b = 35.522 (4) ÅT = 100 K
c = 9.327 (1) Å0.36 × 0.12 × 0.02 mm
Data collection top
Bruker SMART APEX
diffractometer
2190 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2023 reflections with I > 2σ(I)
Tmin = 0.626, Tmax = 0.972Rint = 0.050
8753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.070Δρmax = 0.29 e Å3
S = 1.04Δρmin = 0.30 e Å3
2190 reflectionsAbsolute structure: Flack (1983), 858 Friedel pairs
125 parametersAbsolute structure parameter: 0.014 (14)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.50000.50991 (4)0.01349 (12)
Cl10.90550 (6)0.543930 (17)0.36785 (8)0.01783 (15)
N11.00000.50000.7209 (3)0.0136 (7)
N20.8670 (2)0.46146 (6)0.5570 (2)0.0137 (5)
C11.00000.50001.0139 (7)0.0233 (8)
H11.00000.50001.11580.028*
C20.9203 (3)0.47824 (8)0.9392 (3)0.0197 (6)
H20.86480.46340.98890.024*
C30.9231 (2)0.47860 (7)0.7896 (3)0.0148 (6)
C40.8502 (3)0.45700 (8)0.6925 (3)0.0159 (6)
H40.79240.44030.72760.019*
C50.8043 (2)0.43861 (7)0.4590 (3)0.0146 (5)
C60.7745 (2)0.45364 (7)0.3259 (3)0.0162 (6)
H60.79960.47820.30030.019*
C70.7085 (2)0.43273 (7)0.2314 (3)0.0155 (6)
H70.68540.44360.14290.019*
C80.6752 (2)0.39602 (7)0.2636 (3)0.0184 (6)
C90.7099 (3)0.38078 (8)0.3943 (3)0.0220 (6)
H90.68930.35560.41710.026*
C100.7736 (2)0.40150 (8)0.4910 (3)0.0195 (6)
H100.79660.39060.57960.023*
C110.6078 (3)0.37314 (8)0.1571 (3)0.0233 (6)
H11A0.55230.35710.20790.035*
H11B0.66130.35740.10170.035*
H11C0.56590.39000.09210.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0124 (2)0.0191 (2)0.0089 (2)0.00124 (19)0.0000.000
Cl10.0175 (3)0.0185 (3)0.0175 (3)0.0010 (3)0.0038 (3)0.0027 (3)
N10.0098 (15)0.0178 (15)0.0131 (17)0.0039 (13)0.0000.000
N20.0135 (12)0.0152 (11)0.0124 (11)0.0023 (9)0.0014 (9)0.0001 (8)
C10.031 (2)0.0271 (18)0.0118 (18)0.000 (2)0.0000.000
C20.0255 (16)0.0207 (15)0.0129 (14)0.0006 (11)0.0038 (11)0.0004 (11)
C30.0139 (14)0.0179 (13)0.0124 (16)0.0031 (10)0.0043 (11)0.0007 (10)
C40.0180 (15)0.0165 (13)0.0133 (14)0.0010 (11)0.0023 (11)0.0002 (11)
C50.0134 (13)0.0177 (13)0.0126 (13)0.0007 (11)0.0018 (11)0.0017 (10)
C60.0166 (13)0.0152 (12)0.0168 (14)0.0013 (11)0.0016 (11)0.0001 (11)
C70.0158 (13)0.0211 (13)0.0095 (14)0.0048 (11)0.0007 (10)0.0007 (10)
C80.0153 (13)0.0215 (13)0.0183 (14)0.0026 (10)0.0005 (14)0.0032 (13)
C90.0271 (15)0.0187 (14)0.0201 (16)0.0057 (11)0.0014 (13)0.0012 (11)
C100.0212 (15)0.0196 (13)0.0177 (16)0.0026 (10)0.0009 (12)0.0043 (12)
C110.0252 (16)0.0243 (15)0.0203 (16)0.0069 (13)0.0020 (12)0.0011 (12)
Geometric parameters (Å, º) top
Cu1—N11.968 (3)C4—H40.9500
Cu1—N2i2.101 (2)C5—C61.394 (4)
Cu1—N22.101 (2)C5—C101.397 (4)
Cu1—Cl12.3187 (7)C6—C71.381 (4)
Cu1—Cl1i2.3187 (7)C6—H60.9500
N1—C3i1.332 (3)C7—C81.392 (4)
N1—C31.332 (3)C7—H70.9500
N2—C41.288 (3)C8—C91.392 (4)
N2—C51.421 (4)C8—C111.500 (4)
C1—C2i1.388 (5)C9—C101.377 (4)
C1—C21.388 (5)C9—H90.9500
C1—H10.9500C10—H100.9500
C2—C31.396 (3)C11—H11A0.9800
C2—H20.9500C11—H11B0.9800
C3—C41.454 (4)C11—H11C0.9800
N1—Cu1—N2i77.92 (7)N2—C4—H4121.3
N1—Cu1—N277.92 (7)C3—C4—H4121.3
N2i—Cu1—N2155.85 (13)C6—C5—C10119.3 (3)
N1—Cu1—Cl1124.85 (2)C6—C5—N2118.7 (2)
N2i—Cu1—Cl191.35 (6)C10—C5—N2122.0 (2)
N2—Cu1—Cl1102.45 (7)C7—C6—C5119.8 (2)
N1—Cu1—Cl1i124.85 (2)C7—C6—H6120.1
N2i—Cu1—Cl1i102.45 (7)C5—C6—H6120.1
N2—Cu1—Cl1i91.35 (6)C6—C7—C8121.2 (3)
Cl1—Cu1—Cl1i110.30 (4)C6—C7—H7119.4
C3i—N1—C3122.4 (3)C8—C7—H7119.4
C3i—N1—Cu1118.78 (17)C7—C8—C9118.3 (3)
C3—N1—Cu1118.78 (17)C7—C8—C11120.5 (3)
C4—N2—C5119.0 (2)C9—C8—C11121.2 (2)
C4—N2—Cu1113.3 (2)C10—C9—C8121.3 (3)
C5—N2—Cu1127.49 (18)C10—C9—H9119.4
C2i—C1—C2119.7 (5)C8—C9—H9119.4
C2i—C1—H1120.1C9—C10—C5119.9 (3)
C2—C1—H1120.1C9—C10—H10120.0
C1—C2—C3118.8 (4)C5—C10—H10120.0
C1—C2—H2120.6C8—C11—H11A109.5
C3—C2—H2120.6C8—C11—H11B109.5
N1—C3—C2120.2 (3)H11A—C11—H11B109.5
N1—C3—C4112.7 (2)C8—C11—H11C109.5
C2—C3—C4127.2 (3)H11A—C11—H11C109.5
N2—C4—C3117.3 (3)H11B—C11—H11C109.5
N2i—Cu1—N1—C3i1.14 (14)C1—C2—C3—N11.1 (4)
N2—Cu1—N1—C3i178.86 (14)C1—C2—C3—C4177.8 (2)
Cl1—Cu1—N1—C3i84.27 (13)C5—N2—C4—C3174.8 (2)
Cl1i—Cu1—N1—C3i95.73 (13)Cu1—N2—C4—C30.1 (3)
N2i—Cu1—N1—C3178.86 (14)N1—C3—C4—N21.0 (4)
N2—Cu1—N1—C31.14 (14)C2—C3—C4—N2180.0 (3)
Cl1—Cu1—N1—C395.73 (13)C4—N2—C5—C6148.0 (3)
Cl1i—Cu1—N1—C384.27 (13)Cu1—N2—C5—C638.1 (3)
N1—Cu1—N2—C40.5 (2)C4—N2—C5—C1033.1 (4)
N2i—Cu1—N2—C40.5 (2)Cu1—N2—C5—C10140.8 (2)
Cl1—Cu1—N2—C4122.9 (2)C10—C5—C6—C74.4 (4)
Cl1i—Cu1—N2—C4126.0 (2)N2—C5—C6—C7176.7 (2)
N1—Cu1—N2—C5173.7 (2)C5—C6—C7—C83.0 (4)
N2i—Cu1—N2—C5173.7 (2)C6—C7—C8—C90.2 (4)
Cl1—Cu1—N2—C562.9 (2)C6—C7—C8—C11177.4 (3)
Cl1i—Cu1—N2—C548.3 (2)C7—C8—C9—C101.3 (4)
C2i—C1—C2—C30.5 (2)C11—C8—C9—C10178.8 (3)
C3i—N1—C3—C20.6 (2)C8—C9—C10—C50.1 (4)
Cu1—N1—C3—C2179.4 (2)C6—C5—C10—C93.0 (4)
C3i—N1—C3—C4178.5 (2)N2—C5—C10—C9178.2 (3)
Cu1—N1—C3—C41.5 (2)
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[CuCl2(C21H19N3)]
Mr447.83
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)100
a, b, c (Å)11.5220 (13), 35.522 (4), 9.327 (1)
V3)3817.4 (7)
Z8
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.36 × 0.12 × 0.02
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.626, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
8753, 2190, 2023
Rint0.050
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.070, 1.04
No. of reflections2190
No. of parameters125
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.30
Absolute structureFlack (1983), 858 Friedel pairs
Absolute structure parameter0.014 (14)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—N11.968 (3)Cu1—Cl12.3187 (7)
Cu1—N22.101 (2)
 

Acknowledgements

We thank the Graduate Experimental Research Fund of Northwest University (project No. 09YSY22), the National Natural Science Foundation of China (No. 20971104) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, X.-P., Liu, Y.-Y. & Zhao, J.-S. (2010). Acta Cryst. E66, m1215.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds