metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,6-Bis(6-methyl­quinolin-2-yl)pyridine-κ3N,N′,N′′]di­chloridomanganese(II)

aDepartment of Chemistry, Shaanxi Key Laboratory for Physico-Inorganic Chemistry, Northwest University, Xi'an 710069, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 September 2010; accepted 16 September 2010; online 25 September 2010)

In the mol­ecule of the title compound, [MnCl2(C25H19N3)], the three N atoms span the axial–equatorial–axial sites of the trigonal-bipyramidal coordination polyhedron; the geometry of the MnII atom is 34% distorted from trigonal-bipyramidal (towards square-pyramidal along the Berry pseudorotation pathway). One of the Cl atoms is disordered over two positions in a 0.82 (3):0.18 (3) ratio. Weak inter­molecular C—H⋯Cl hydrogen bonding occurs in the crystal structure.

Related literature

For the synthesis of the N-heterocyclic ligand, see: Buu-Hoi et al. (1965[Buu-Hoi, N. P., Perin, F. & Jacquignon, P. (1965). J. Heterocycl. Chem. 2, 7-10.]). For a related structure, see: Li et al. (2010[Li, X.-P., Liu, Y.-Y. & Zhao, J.-S. (2010). Acta Cryst. E66, m1215.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C25H19N3)]

  • Mr = 487.27

  • Triclinic, [P \overline 1]

  • a = 9.6763 (8) Å

  • b = 10.3721 (9) Å

  • c = 10.5757 (9) Å

  • α = 95.099 (1)°

  • β = 97.499 (1)°

  • γ = 95.411 (1)°

  • V = 1042.13 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.772, Tmax = 0.956

  • 10000 measured reflections

  • 4760 independent reflections

  • 3704 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.151

  • S = 1.03

  • 4760 reflections

  • 292 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—N1 2.305 (3)
Mn1—N2 2.186 (3)
Mn1—N3 2.332 (3)
Mn1—Cl1 2.3802 (17)
Mn1—Cl2 2.3375 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cl2i 0.95 2.64 3.486 (5) 149
C17—H17⋯Cl1ii 0.95 2.72 3.500 (9) 140
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A recent study reported the chromium(III) chloride adduct of 2,6-bis(p-bromphenylimino)pyridine; the N-heterocycle chelates to the metal atom in a terdentate manner (Li et al., 2010). Bis[2'-(6-methylquinolinyl)]pyridine has a similar set of donor sites capable of binding in this manner, as demonstrated in the present manganese dichloride adduct (Scheme I, Fig. 1). In the molecule of MnCl2(C25H19N3), the three N atoms span the axial–equatorial-axial sites of the trigonal bipyramidal coordination polyhedron; the geometry of Fe is 34% distorted from the trigonal bipyramid along the Berry pseudorotation pathway. Intermolecular weak C—H···Cl hydrogen bonding occurs in the crystal structure (Table 2).

Related literature top

For the synthesis of the N-heterocyclic ligand, see: Buu-Hoi et al. (1965). For a related structure, see: Li et al. (2010).

Experimental top

The ligand was synthesized by using a literature procedure (Buu-Hoi et al., 1965).

Bis[2'-(6-methylquinolinyl)]pyridine (0.018 g, 0.05 mmol), and manganese chloride tetrahydrate (0.01 g, 0.05 mmol) along with five drops of 1 M hydrochloric acid were dissolved in ethanol (10 ml). The mixture was heated in a Teflon-lined, stainless-steel Parr bomb at 363 K for 120 h. The bomb was cooled at 5 K per hour. Deep orange crystals were isolated.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

One of the chlorine atoms is disordered over two positions in a 82 (1):18 (1) ratio. The Mn–Cl pair of distances were restrained to within 0.01 Å of each other; the anisotropic temperature factors of the minor component were restrained to be nearly isotropic.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of MnCl2(C25H19N3) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.
[2,6-Bis(6-methylquinolin-2-yl)pyridine- κ3N,N',N'']dichloridomanganese(II) top
Crystal data top
[MnCl2(C25H19N3)]Z = 2
Mr = 487.27F(000) = 498
Triclinic, P1Dx = 1.553 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6763 (8) ÅCell parameters from 2981 reflections
b = 10.3721 (9) Åθ = 2.7–28.1°
c = 10.5757 (9) ŵ = 0.91 mm1
α = 95.099 (1)°T = 100 K
β = 97.499 (1)°Prism, orange
γ = 95.411 (1)°0.30 × 0.10 × 0.05 mm
V = 1042.13 (15) Å3
Data collection top
Bruker SMART APEX
diffractometer
4760 independent reflections
Radiation source: fine-focus sealed tube3704 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.772, Tmax = 0.956k = 1313
10000 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0695P)2 + 1.8956P]
where P = (Fo2 + 2Fc2)/3
4760 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 0.61 e Å3
7 restraintsΔρmin = 0.62 e Å3
Crystal data top
[MnCl2(C25H19N3)]γ = 95.411 (1)°
Mr = 487.27V = 1042.13 (15) Å3
Triclinic, P1Z = 2
a = 9.6763 (8) ÅMo Kα radiation
b = 10.3721 (9) ŵ = 0.91 mm1
c = 10.5757 (9) ÅT = 100 K
α = 95.099 (1)°0.30 × 0.10 × 0.05 mm
β = 97.499 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4760 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3704 reflections with I > 2σ(I)
Tmin = 0.772, Tmax = 0.956Rint = 0.031
10000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0507 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.03Δρmax = 0.61 e Å3
4760 reflectionsΔρmin = 0.62 e Å3
292 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.34023 (5)0.80899 (5)0.22288 (5)0.02281 (16)
Cl10.1607 (7)0.7350 (2)0.3414 (7)0.0280 (8)0.82 (3)
Cl1'0.202 (4)0.7316 (11)0.378 (3)0.033 (4)0.18 (3)
Cl20.26785 (12)0.84219 (10)0.00968 (9)0.0408 (3)
N10.4349 (3)0.6152 (3)0.1893 (3)0.0246 (6)
N20.5637 (3)0.8443 (3)0.2966 (3)0.0218 (6)
N30.3883 (3)1.0248 (3)0.3127 (3)0.0233 (6)
C10.3623 (4)0.5007 (3)0.1294 (3)0.0238 (7)
C20.2180 (4)0.4980 (4)0.0882 (4)0.0315 (8)
H20.17240.57440.10120.038*
C30.1431 (4)0.3852 (3)0.0292 (4)0.0307 (8)
H30.04550.38480.00200.037*
C40.2061 (4)0.2698 (3)0.0075 (3)0.0258 (7)
C50.3468 (4)0.2715 (3)0.0468 (3)0.0268 (7)
H50.39100.19450.03260.032*
C60.4273 (4)0.3862 (3)0.1081 (3)0.0268 (7)
C70.1162 (4)0.1491 (3)0.0556 (4)0.0300 (8)
H7A0.17530.07880.06920.045*
H7B0.06760.16710.13840.045*
H7C0.04700.12260.00040.045*
C80.5703 (5)0.3949 (4)0.1535 (4)0.0449 (10)
H80.61960.32050.14310.054*
C90.6412 (5)0.5111 (5)0.2137 (4)0.0452 (10)
H90.73820.51560.24540.054*
C100.5714 (3)0.6197 (3)0.2276 (3)0.0218 (7)
C110.6441 (3)0.7459 (3)0.2886 (3)0.0234 (7)
C120.7870 (3)0.7643 (4)0.3346 (3)0.0250 (7)
H120.84300.69410.32870.030*
C130.8453 (4)0.8864 (4)0.3890 (3)0.0294 (8)
H130.94260.90130.42010.035*
C140.7620 (4)0.9875 (3)0.3982 (3)0.0268 (7)
H140.80071.07190.43580.032*
C150.6196 (3)0.9620 (3)0.3508 (3)0.0224 (7)
C160.5199 (4)1.0619 (3)0.3558 (3)0.0257 (7)
C170.5635 (5)1.1919 (5)0.4056 (5)0.0507 (11)
H170.65971.21820.43560.061*
C180.4660 (5)1.2819 (5)0.4109 (5)0.0514 (12)
H180.49631.36960.44420.062*
C190.3264 (4)1.2453 (3)0.3686 (3)0.0262 (7)
C200.2218 (4)1.3312 (3)0.3691 (3)0.0281 (8)
H200.24701.41960.40250.034*
C210.0836 (4)1.2892 (3)0.3220 (3)0.0288 (8)
C220.0497 (4)1.1579 (3)0.2710 (3)0.0273 (7)
H220.04481.12800.23700.033*
C230.1494 (4)1.0724 (3)0.2691 (3)0.0266 (7)
H230.12300.98440.23490.032*
C240.2906 (4)1.1140 (3)0.3175 (3)0.0252 (7)
C250.0286 (4)1.3793 (4)0.3212 (4)0.0363 (9)
H25A0.01441.46970.33040.055*
H25B0.08161.36540.39260.055*
H25C0.09201.36180.24000.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0177 (3)0.0206 (3)0.0285 (3)0.00071 (19)0.0000 (2)0.00009 (19)
Cl10.0207 (13)0.0246 (6)0.0377 (16)0.0016 (7)0.0049 (13)0.0008 (7)
Cl1'0.026 (7)0.031 (3)0.040 (6)0.003 (3)0.008 (6)0.003 (3)
Cl20.0500 (6)0.0386 (5)0.0323 (5)0.0163 (4)0.0063 (4)0.0018 (4)
N10.0245 (15)0.0239 (14)0.0248 (14)0.0002 (11)0.0016 (12)0.0044 (11)
N20.0199 (14)0.0219 (14)0.0222 (13)0.0013 (11)0.0007 (11)0.0013 (10)
N30.0243 (15)0.0230 (14)0.0230 (14)0.0021 (11)0.0056 (11)0.0013 (11)
C10.0210 (17)0.0246 (16)0.0240 (16)0.0048 (13)0.0002 (13)0.0051 (13)
C20.0276 (19)0.0251 (18)0.040 (2)0.0040 (14)0.0006 (16)0.0013 (15)
C30.0240 (18)0.0284 (18)0.036 (2)0.0020 (14)0.0037 (15)0.0017 (15)
C40.0324 (19)0.0213 (16)0.0234 (16)0.0006 (14)0.0044 (14)0.0035 (13)
C50.0303 (19)0.0253 (17)0.0259 (17)0.0047 (14)0.0050 (14)0.0062 (13)
C60.0251 (18)0.0309 (18)0.0246 (17)0.0016 (14)0.0022 (14)0.0077 (14)
C70.033 (2)0.0240 (17)0.0318 (19)0.0015 (15)0.0034 (15)0.0036 (14)
C80.045 (3)0.039 (2)0.052 (3)0.0141 (19)0.009 (2)0.0015 (19)
C90.032 (2)0.054 (3)0.048 (2)0.0101 (19)0.0015 (19)0.000 (2)
C100.0163 (15)0.0232 (16)0.0257 (16)0.0003 (12)0.0036 (13)0.0032 (13)
C110.0203 (16)0.0299 (18)0.0200 (15)0.0047 (13)0.0012 (13)0.0035 (13)
C120.0174 (16)0.0330 (18)0.0236 (16)0.0010 (13)0.0008 (13)0.0017 (14)
C130.0174 (17)0.045 (2)0.0247 (17)0.0012 (15)0.0012 (13)0.0034 (15)
C140.0236 (18)0.0297 (18)0.0241 (16)0.0066 (14)0.0020 (13)0.0022 (14)
C150.0206 (16)0.0256 (17)0.0198 (15)0.0034 (13)0.0030 (12)0.0019 (12)
C160.0261 (18)0.0268 (17)0.0225 (16)0.0050 (14)0.0030 (13)0.0017 (13)
C170.047 (3)0.055 (3)0.047 (3)0.000 (2)0.002 (2)0.003 (2)
C180.060 (3)0.041 (2)0.051 (3)0.001 (2)0.007 (2)0.002 (2)
C190.0278 (18)0.0258 (17)0.0253 (17)0.0009 (14)0.0050 (14)0.0042 (13)
C200.034 (2)0.0226 (17)0.0284 (18)0.0020 (14)0.0062 (15)0.0050 (13)
C210.033 (2)0.0279 (18)0.0280 (17)0.0068 (15)0.0084 (15)0.0079 (14)
C220.0265 (18)0.0276 (18)0.0280 (17)0.0024 (14)0.0039 (14)0.0045 (14)
C230.0272 (18)0.0220 (16)0.0294 (17)0.0005 (14)0.0030 (14)0.0002 (13)
C240.0285 (18)0.0251 (17)0.0231 (16)0.0018 (14)0.0064 (14)0.0053 (13)
C250.034 (2)0.0282 (19)0.048 (2)0.0066 (16)0.0070 (18)0.0060 (17)
Geometric parameters (Å, º) top
Mn1—N12.305 (3)C9—H90.9500
Mn1—N22.186 (3)C10—C111.477 (5)
Mn1—N32.332 (3)C11—C121.393 (5)
Mn1—Cl12.3802 (17)C12—C131.381 (5)
Mn1—Cl1'2.388 (7)C12—H120.9500
Mn1—Cl22.3375 (11)C13—C141.385 (5)
N1—C101.325 (4)C13—H130.9500
N1—C11.378 (4)C14—C151.395 (5)
N2—C151.335 (4)C14—H140.9500
N2—C111.344 (4)C15—C161.483 (5)
N3—C161.305 (4)C16—C171.408 (6)
N3—C241.387 (5)C17—C181.391 (7)
C1—C21.405 (5)C17—H170.9500
C1—C61.410 (5)C18—C191.373 (6)
C2—C31.370 (5)C18—H180.9500
C2—H20.9500C19—C201.410 (5)
C3—C41.408 (5)C19—C241.413 (5)
C3—H30.9500C20—C211.380 (5)
C4—C51.369 (5)C20—H200.9500
C4—C71.505 (5)C21—C221.411 (5)
C5—C61.414 (5)C21—C251.498 (5)
C5—H50.9500C22—C231.372 (5)
C6—C81.396 (6)C22—H220.9500
C7—H7A0.9800C23—C241.407 (5)
C7—H7B0.9800C23—H230.9500
C7—H7C0.9800C25—H25A0.9800
C8—C91.386 (6)C25—H25B0.9800
C8—H80.9500C25—H25C0.9800
C9—C101.373 (6)
N2—Mn1—N172.62 (10)C8—C9—H9119.9
N2—Mn1—N371.80 (10)N1—C10—C9121.3 (3)
N1—Mn1—N3144.34 (10)N1—C10—C11117.0 (3)
N2—Mn1—Cl2118.47 (8)C9—C10—C11121.6 (3)
N1—Mn1—Cl299.09 (8)N2—C11—C12121.2 (3)
N3—Mn1—Cl299.72 (8)N2—C11—C10115.7 (3)
N2—Mn1—Cl1125.3 (2)C12—C11—C10123.1 (3)
N1—Mn1—Cl198.25 (11)C13—C12—C11118.6 (3)
N3—Mn1—Cl1100.18 (10)C13—C12—H12120.7
Cl2—Mn1—Cl1116.2 (2)C11—C12—H12120.7
N2—Mn1—Cl1'112.7 (11)C12—C13—C14120.1 (3)
N1—Mn1—Cl1'93.8 (5)C12—C13—H13120.0
N3—Mn1—Cl1'97.6 (3)C14—C13—H13120.0
Cl2—Mn1—Cl1'128.8 (11)C13—C14—C15118.2 (3)
Cl1—Mn1—Cl1'12.6 (9)C13—C14—H14120.9
C10—N1—C1119.5 (3)C15—C14—H14120.9
C10—N1—Mn1115.3 (2)N2—C15—C14121.6 (3)
C1—N1—Mn1125.2 (2)N2—C15—C16115.2 (3)
C15—N2—C11120.2 (3)C14—C15—C16123.2 (3)
C15—N2—Mn1120.4 (2)N3—C16—C17120.5 (4)
C11—N2—Mn1119.4 (2)N3—C16—C15117.4 (3)
C16—N3—C24119.6 (3)C17—C16—C15122.1 (3)
C16—N3—Mn1115.1 (2)C18—C17—C16120.2 (4)
C24—N3—Mn1125.2 (2)C18—C17—H17119.9
N1—C1—C2118.7 (3)C16—C17—H17119.9
N1—C1—C6122.5 (3)C19—C18—C17120.6 (4)
C2—C1—C6118.8 (3)C19—C18—H18119.7
C3—C2—C1119.9 (3)C17—C18—H18119.7
C3—C2—H2120.1C18—C19—C20123.9 (4)
C1—C2—H2120.1C18—C19—C24116.1 (4)
C2—C3—C4122.1 (3)C20—C19—C24120.0 (3)
C2—C3—H3118.9C21—C20—C19121.2 (3)
C4—C3—H3118.9C21—C20—H20119.4
C5—C4—C3118.5 (3)C19—C20—H20119.4
C5—C4—C7122.5 (3)C20—C21—C22118.1 (3)
C3—C4—C7118.9 (3)C20—C21—C25121.9 (3)
C4—C5—C6120.9 (3)C22—C21—C25120.0 (3)
C4—C5—H5119.6C23—C22—C21121.8 (3)
C6—C5—H5119.6C23—C22—H22119.1
C8—C6—C1115.9 (3)C21—C22—H22119.1
C8—C6—C5124.3 (4)C22—C23—C24120.5 (3)
C1—C6—C5119.8 (3)C22—C23—H23119.8
C4—C7—H7A109.5C24—C23—H23119.8
C4—C7—H7B109.5N3—C24—C23118.7 (3)
H7A—C7—H7B109.5N3—C24—C19122.9 (3)
C4—C7—H7C109.5C23—C24—C19118.4 (3)
H7A—C7—H7C109.5C21—C25—H25A109.5
H7B—C7—H7C109.5C21—C25—H25B109.5
C9—C8—C6120.6 (4)H25A—C25—H25B109.5
C9—C8—H8119.7C21—C25—H25C109.5
C6—C8—H8119.7H25A—C25—H25C109.5
C10—C9—C8120.1 (4)H25B—C25—H25C109.5
C10—C9—H9119.9
N2—Mn1—N1—C100.7 (2)C1—N1—C10—C11178.6 (3)
N3—Mn1—N1—C104.7 (3)Mn1—N1—C10—C111.2 (4)
Cl2—Mn1—N1—C10116.4 (2)C8—C9—C10—N12.9 (6)
Cl1—Mn1—N1—C10125.2 (3)C8—C9—C10—C11178.6 (4)
Cl1'—Mn1—N1—C10113.3 (10)C15—N2—C11—C120.8 (5)
N2—Mn1—N1—C1177.9 (3)Mn1—N2—C11—C12179.9 (2)
N3—Mn1—N1—C1178.1 (2)C15—N2—C11—C10179.6 (3)
Cl2—Mn1—N1—C160.8 (3)Mn1—N2—C11—C100.5 (4)
Cl1—Mn1—N1—C157.5 (3)N1—C10—C11—N21.2 (4)
Cl1'—Mn1—N1—C169.4 (10)C9—C10—C11—N2179.8 (3)
N1—Mn1—N2—C15179.0 (3)N1—C10—C11—C12179.2 (3)
N3—Mn1—N2—C151.5 (2)C9—C10—C11—C120.6 (5)
Cl2—Mn1—N2—C1589.9 (2)N2—C11—C12—C130.1 (5)
Cl1—Mn1—N2—C1591.2 (3)C10—C11—C12—C13179.4 (3)
Cl1'—Mn1—N2—C1592.3 (4)C11—C12—C13—C140.7 (5)
N1—Mn1—N2—C110.1 (2)C12—C13—C14—C150.3 (5)
N3—Mn1—N2—C11177.6 (3)C11—N2—C15—C141.1 (5)
Cl2—Mn1—N2—C1191.0 (2)Mn1—N2—C15—C14179.7 (2)
Cl1—Mn1—N2—C1187.9 (3)C11—N2—C15—C16179.1 (3)
Cl1'—Mn1—N2—C1186.8 (4)Mn1—N2—C15—C160.0 (4)
N2—Mn1—N3—C163.0 (2)C13—C14—C15—N20.6 (5)
N1—Mn1—N3—C166.9 (3)C13—C14—C15—C16179.7 (3)
Cl2—Mn1—N3—C16114.0 (2)C24—N3—C16—C170.8 (5)
Cl1—Mn1—N3—C16127.0 (3)Mn1—N3—C16—C17176.4 (3)
Cl1'—Mn1—N3—C16114.4 (11)C24—N3—C16—C15178.8 (3)
N2—Mn1—N3—C24180.0 (3)Mn1—N3—C16—C154.0 (4)
N1—Mn1—N3—C24176.0 (2)N2—C15—C16—N32.8 (4)
Cl2—Mn1—N3—C2463.1 (3)C14—C15—C16—N3177.4 (3)
Cl1—Mn1—N3—C2456.0 (3)N2—C15—C16—C17177.6 (3)
Cl1'—Mn1—N3—C2468.5 (11)C14—C15—C16—C172.2 (5)
C10—N1—C1—C2179.3 (3)N3—C16—C17—C180.9 (6)
Mn1—N1—C1—C22.2 (4)C15—C16—C17—C18178.7 (4)
C10—N1—C1—C60.8 (5)C16—C17—C18—C190.4 (7)
Mn1—N1—C1—C6177.9 (2)C17—C18—C19—C20179.0 (4)
N1—C1—C2—C3179.5 (3)C17—C18—C19—C241.6 (6)
C6—C1—C2—C30.3 (5)C18—C19—C20—C21178.2 (4)
C1—C2—C3—C40.1 (6)C24—C19—C20—C210.9 (5)
C2—C3—C4—C50.2 (6)C19—C20—C21—C221.1 (5)
C2—C3—C4—C7178.8 (3)C19—C20—C21—C25179.6 (3)
C3—C4—C5—C60.2 (5)C20—C21—C22—C231.0 (5)
C7—C4—C5—C6178.7 (3)C25—C21—C22—C23179.6 (3)
N1—C1—C6—C81.0 (5)C21—C22—C23—C240.7 (5)
C2—C1—C6—C8178.8 (4)C16—N3—C24—C23179.3 (3)
N1—C1—C6—C5179.6 (3)Mn1—N3—C24—C232.4 (4)
C2—C1—C6—C50.3 (5)C16—N3—C24—C190.5 (5)
C4—C5—C6—C8178.4 (4)Mn1—N3—C24—C19177.4 (2)
C4—C5—C6—C10.0 (5)C22—C23—C24—N3179.3 (3)
C1—C6—C8—C90.9 (6)C22—C23—C24—C190.4 (5)
C5—C6—C8—C9179.4 (4)C18—C19—C24—N31.7 (5)
C6—C8—C9—C100.9 (7)C20—C19—C24—N3179.2 (3)
C1—N1—C10—C92.8 (5)C18—C19—C24—C23178.1 (4)
Mn1—N1—C10—C9179.8 (3)C20—C19—C24—C230.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cl2i0.952.643.486 (5)149
C17—H17···Cl1ii0.952.723.500 (9)140
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[MnCl2(C25H19N3)]
Mr487.27
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.6763 (8), 10.3721 (9), 10.5757 (9)
α, β, γ (°)95.099 (1), 97.499 (1), 95.411 (1)
V3)1042.13 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.30 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.772, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
10000, 4760, 3704
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.151, 1.03
No. of reflections4760
No. of parameters292
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.62

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Mn1—N12.305 (3)Mn1—Cl12.3802 (17)
Mn1—N22.186 (3)Mn1—Cl22.3375 (11)
Mn1—N32.332 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cl2i0.952.643.486 (5)149
C17—H17···Cl1ii0.952.723.500 (9)140
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z+1.
 

Acknowledgements

We thank the Graduate Experimental Research Fund of Northwest University (project No. 09YSY22), the National Natural Science Foundation of China (No. 20971104) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuu-Hoi, N. P., Perin, F. & Jacquignon, P. (1965). J. Heterocycl. Chem. 2, 7–10.  CrossRef CAS Google Scholar
First citationLi, X.-P., Liu, Y.-Y. & Zhao, J.-S. (2010). Acta Cryst. E66, m1215.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds