metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(benzyl­tri­ethyl­ammonium) hexa­chloridostannate(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 23 September 2010; accepted 24 September 2010; online 30 September 2010)

The reaction between benzyl­triethyl­ammonium chloride and dimethyl­tin dichloride yields the title salt, [(C6H5CH2)(C2H5)3N]2[SnCl6]. The SnIV atom, located on a center of inversion, exists in an octa­hedral coordination environment. The cation links with the anion via weak C—H⋯Cl hydrogen bonding.

Related literature

For bis­(tetra­methyl­ammonium) hexa­chloridostannate(IV), see: Furukawa et al. (1982[Furukawa, Y., Prabhumirashi, L. S., Ikeda, R. & Nakamura, D. (1982). Bull. Chem. Soc. Jpn, 55, 995-998.]). For bis­(tetra-n-propyl­ammonium) hexa­chloridostannate(IV), see: James et al. (1992[James, M. A., Knop, O. & Cameron, T. S. (1992). Can. J. Chem. 70, 1795-1821.]). For bis­(tetraethyl­ammonium) hexa­chloridostannate(IV), see: Sowa et al. (1981[Sowa, H., Druck, U. & Kutoglu, A. (1981). Cryst. Struct. Commun. 10, 699-702.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H22N)2[SnCl6]

  • Mr = 716.02

  • Monoclinic, P 21 /n

  • a = 11.2096 (6) Å

  • b = 11.2306 (6) Å

  • c = 12.9796 (7) Å

  • β = 90.872 (1)°

  • V = 1633.82 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.698, Tmax = 0.882

  • 15028 measured reflections

  • 3756 independent reflections

  • 3276 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.059

  • S = 1.01

  • 3756 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯Cl1i 0.96 2.74 3.685 (3) 169
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The reaction of dimethyltin dichloride with ammonium halides sometimes leads to tin-carbon cleave to result in the formation of a hexahalogenostannate. Tin-methyl cleavage was noted in the reaction of dimethyltin dichloride with and benzyltriethylammonium chloride; the resulting the title salt (Scheme I, Fig. 1) consists of ammonium cations and hexachloridostannate anions. The reported ammonium hexachloridostannates all have symmetrically substituted ammonium cations.

Related literature top

For bis(tetramethylammonium) hexachloridostannate, see: Furukawa et al. (1982). For bis(tetra-n-propylammonium) hexachloridostannate, see: James et al. (1992). For bis(tetra-ethylammonium) hexachloridostannate, see: Sowa et al. (1981).

Experimental top

Dimethyltin(IV) dichloride (0.219 g, 1 mmol) and benzyltriethylammonium chloride (0.455 g, 2 mmol) were dissolved in methanol and the solution kept at 333 K. Crystals were isolated after several days; m.p. 452–454 K.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the 2(C6H5CH2)(C2H5)3N+ SnCl62- salt at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Bis(benzyltriethylammonium) hexachloridostannate(IV) top
Crystal data top
(C13H22N)2[SnCl6]F(000) = 732
Mr = 716.02Dx = 1.455 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8245 reflections
a = 11.2096 (6) Åθ = 2.4–28.2°
b = 11.2306 (6) ŵ = 1.29 mm1
c = 12.9796 (7) ÅT = 295 K
β = 90.872 (1)°Prism, colorless
V = 1633.82 (15) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
3756 independent reflections
Radiation source: fine-focus sealed tube3276 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.698, Tmax = 0.882k = 1414
15028 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.032P)2 + 0.4848P]
where P = (Fo2 + 2Fc2)/3
3756 reflections(Δ/σ)max = 0.001
160 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
(C13H22N)2[SnCl6]V = 1633.82 (15) Å3
Mr = 716.02Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.2096 (6) ŵ = 1.29 mm1
b = 11.2306 (6) ÅT = 295 K
c = 12.9796 (7) Å0.30 × 0.20 × 0.10 mm
β = 90.872 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3756 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3276 reflections with I > 2σ(I)
Tmin = 0.698, Tmax = 0.882Rint = 0.022
15028 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.01Δρmax = 0.41 e Å3
3756 reflectionsΔρmin = 0.39 e Å3
160 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.50000.50000.50000.03041 (6)
Cl10.53546 (4)0.67877 (4)0.60050 (3)0.04330 (11)
Cl20.45054 (4)0.39111 (4)0.65796 (3)0.04483 (12)
Cl30.70731 (4)0.44472 (5)0.52383 (4)0.04963 (13)
N10.10908 (13)0.22025 (14)0.56788 (12)0.0390 (3)
C10.1030 (2)0.3475 (2)0.60638 (18)0.0534 (5)
H1A0.17620.36490.64430.064*
H1B0.09970.40020.54720.064*
C20.0015 (2)0.3758 (2)0.6748 (2)0.0659 (7)
H2A0.00270.45760.69580.099*
H2B0.00130.32540.73450.099*
H2C0.07480.36220.63730.099*
C30.00149 (17)0.1864 (2)0.50650 (16)0.0519 (5)
H3A0.06800.18160.55330.062*
H3B0.01030.10750.47790.062*
C40.0354 (2)0.2704 (3)0.41919 (19)0.0744 (8)
H4A0.10660.24210.38530.112*
H4B0.02830.27360.37070.112*
H4C0.04920.34860.44640.112*
C50.11816 (18)0.13332 (19)0.65726 (15)0.0460 (5)
H5A0.12950.05390.62960.055*
H5B0.04290.13360.69320.055*
C60.2178 (2)0.1584 (3)0.73500 (17)0.0627 (6)
H6A0.21810.09790.78730.094*
H6B0.20510.23480.76620.094*
H6C0.29300.15830.70070.094*
C70.22048 (17)0.21310 (18)0.50080 (15)0.0436 (4)
H7A0.21220.27100.44570.052*
H7B0.28910.23630.54260.052*
C80.24596 (17)0.09404 (19)0.45360 (15)0.0429 (4)
C90.3185 (3)0.0112 (2)0.5036 (2)0.0660 (7)
H90.34920.02840.56890.079*
C100.3458 (3)0.0965 (3)0.4577 (2)0.0798 (8)
H100.39330.15150.49270.096*
C110.3032 (3)0.1225 (2)0.3612 (2)0.0713 (7)
H110.32170.19490.33060.086*
C120.2334 (2)0.0415 (3)0.3098 (2)0.0632 (6)
H120.20490.05870.24380.076*
C130.2049 (2)0.0659 (2)0.35541 (16)0.0524 (5)
H130.15740.12020.31950.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02733 (9)0.03422 (10)0.02977 (9)0.00209 (6)0.00331 (6)0.00222 (6)
Cl10.0462 (3)0.0419 (2)0.0420 (2)0.0050 (2)0.00723 (19)0.00544 (19)
Cl20.0483 (3)0.0508 (3)0.0354 (2)0.0082 (2)0.00231 (18)0.00960 (19)
Cl30.0344 (2)0.0550 (3)0.0595 (3)0.0041 (2)0.0010 (2)0.0053 (2)
N10.0344 (8)0.0408 (8)0.0418 (8)0.0066 (6)0.0041 (6)0.0081 (7)
C10.0606 (14)0.0438 (11)0.0561 (12)0.0041 (10)0.0122 (10)0.0042 (9)
C20.0721 (16)0.0610 (15)0.0650 (15)0.0120 (13)0.0182 (12)0.0052 (12)
C30.0346 (10)0.0675 (15)0.0536 (12)0.0047 (9)0.0041 (9)0.0039 (10)
C40.0640 (16)0.101 (2)0.0578 (14)0.0305 (15)0.0091 (12)0.0077 (14)
C50.0429 (11)0.0497 (11)0.0454 (10)0.0070 (9)0.0037 (8)0.0154 (9)
C60.0511 (13)0.0902 (19)0.0467 (12)0.0049 (12)0.0053 (10)0.0124 (12)
C70.0375 (10)0.0483 (11)0.0453 (10)0.0073 (8)0.0074 (8)0.0075 (8)
C80.0348 (10)0.0498 (11)0.0443 (10)0.0025 (8)0.0033 (8)0.0071 (8)
C90.0628 (16)0.0793 (19)0.0554 (14)0.0197 (13)0.0120 (12)0.0016 (12)
C100.081 (2)0.0746 (19)0.084 (2)0.0352 (16)0.0011 (15)0.0087 (15)
C110.0777 (18)0.0575 (15)0.0793 (18)0.0054 (13)0.0182 (14)0.0086 (13)
C120.0640 (15)0.0723 (16)0.0535 (13)0.0050 (13)0.0044 (11)0.0103 (12)
C130.0502 (12)0.0615 (14)0.0453 (11)0.0037 (10)0.0008 (9)0.0070 (10)
Geometric parameters (Å, º) top
Sn1—Cl3i2.4207 (5)C4—H4C0.9600
Sn1—Cl32.4207 (5)C5—C61.520 (3)
Sn1—Cl12.4237 (5)C5—H5A0.9700
Sn1—Cl1i2.4237 (5)C5—H5B0.9700
Sn1—Cl2i2.4579 (4)C6—H6A0.9600
Sn1—Cl22.4579 (4)C6—H6B0.9600
N1—C31.512 (2)C6—H6C0.9600
N1—C11.515 (3)C7—C81.500 (3)
N1—C51.518 (2)C7—H7A0.9700
N1—C71.535 (2)C7—H7B0.9700
C1—C21.515 (3)C8—C131.385 (3)
C1—H1A0.9700C8—C91.390 (3)
C1—H1B0.9700C9—C101.386 (4)
C2—H2A0.9600C9—H90.9300
C2—H2B0.9600C10—C111.364 (4)
C2—H2C0.9600C10—H100.9300
C3—C41.519 (3)C11—C121.367 (4)
C3—H3A0.9700C11—H110.9300
C3—H3B0.9700C12—C131.384 (4)
C4—H4A0.9600C12—H120.9300
C4—H4B0.9600C13—H130.9300
Cl3i—Sn1—Cl3180.0H4A—C4—H4B109.5
Cl3i—Sn1—Cl190.320 (18)C3—C4—H4C109.5
Cl3—Sn1—Cl189.680 (18)H4A—C4—H4C109.5
Cl3i—Sn1—Cl1i89.680 (18)H4B—C4—H4C109.5
Cl3—Sn1—Cl1i90.320 (18)N1—C5—C6115.36 (17)
Cl1—Sn1—Cl1i180.0N1—C5—H5A108.4
Cl3i—Sn1—Cl2i89.662 (17)C6—C5—H5A108.4
Cl3—Sn1—Cl2i90.338 (17)N1—C5—H5B108.4
Cl1—Sn1—Cl2i89.974 (17)C6—C5—H5B108.4
Cl1i—Sn1—Cl2i90.026 (17)H5A—C5—H5B107.5
Cl3i—Sn1—Cl290.338 (17)C5—C6—H6A109.5
Cl3—Sn1—Cl289.662 (17)C5—C6—H6B109.5
Cl1—Sn1—Cl290.026 (17)H6A—C6—H6B109.5
Cl1i—Sn1—Cl289.974 (17)C5—C6—H6C109.5
Cl2i—Sn1—Cl2180.00 (2)H6A—C6—H6C109.5
C3—N1—C1111.75 (17)H6B—C6—H6C109.5
C3—N1—C5106.60 (15)C8—C7—N1116.09 (15)
C1—N1—C5110.92 (16)C8—C7—H7A108.3
C3—N1—C7110.82 (15)N1—C7—H7A108.3
C1—N1—C7106.10 (14)C8—C7—H7B108.3
C5—N1—C7110.73 (15)N1—C7—H7B108.3
C2—C1—N1115.49 (18)H7A—C7—H7B107.4
C2—C1—H1A108.4C13—C8—C9117.5 (2)
N1—C1—H1A108.4C13—C8—C7121.09 (19)
C2—C1—H1B108.4C9—C8—C7121.3 (2)
N1—C1—H1B108.4C10—C9—C8121.0 (2)
H1A—C1—H1B107.5C10—C9—H9119.5
C1—C2—H2A109.5C8—C9—H9119.5
C1—C2—H2B109.5C11—C10—C9120.3 (3)
H2A—C2—H2B109.5C11—C10—H10119.8
C1—C2—H2C109.5C9—C10—H10119.8
H2A—C2—H2C109.5C10—C11—C12119.7 (3)
H2B—C2—H2C109.5C10—C11—H11120.1
N1—C3—C4115.5 (2)C12—C11—H11120.1
N1—C3—H3A108.4C11—C12—C13120.4 (2)
C4—C3—H3A108.4C11—C12—H12119.8
N1—C3—H3B108.4C13—C12—H12119.8
C4—C3—H3B108.4C8—C13—C12121.1 (2)
H3A—C3—H3B107.5C8—C13—H13119.4
C3—C4—H4A109.5C12—C13—H13119.4
C3—C4—H4B109.5
C3—N1—C1—C258.9 (2)C5—N1—C7—C859.4 (2)
C5—N1—C1—C259.9 (2)N1—C7—C8—C1393.4 (2)
C7—N1—C1—C2179.8 (2)N1—C7—C8—C991.3 (3)
C1—N1—C3—C452.4 (2)C13—C8—C9—C101.7 (4)
C5—N1—C3—C4173.76 (19)C7—C8—C9—C10177.2 (3)
C7—N1—C3—C465.7 (2)C8—C9—C10—C111.1 (5)
C3—N1—C5—C6174.68 (19)C9—C10—C11—C120.0 (5)
C1—N1—C5—C652.8 (2)C10—C11—C12—C130.5 (4)
C7—N1—C5—C664.7 (2)C9—C8—C13—C121.2 (3)
C3—N1—C7—C858.7 (2)C7—C8—C13—C12176.7 (2)
C1—N1—C7—C8179.82 (17)C11—C12—C13—C80.1 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cl1ii0.962.743.685 (3)169
Symmetry code: (ii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C13H22N)2[SnCl6]
Mr716.02
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)11.2096 (6), 11.2306 (6), 12.9796 (7)
β (°) 90.872 (1)
V3)1633.82 (15)
Z2
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.698, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
15028, 3756, 3276
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.059, 1.01
No. of reflections3756
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cl1i0.962.743.685 (3)169
Symmetry code: (i) x+1/2, y1/2, z+3/2.
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFurukawa, Y., Prabhumirashi, L. S., Ikeda, R. & Nakamura, D. (1982). Bull. Chem. Soc. Jpn, 55, 995–998.  CrossRef CAS Web of Science Google Scholar
First citationJames, M. A., Knop, O. & Cameron, T. S. (1992). Can. J. Chem. 70, 1795–1821.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSowa, H., Druck, U. & Kutoglu, A. (1981). Cryst. Struct. Commun. 10, 699–702.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds