organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(Propane-2,2-di­yl)dibenzo­thia­zole

aDepartment of Chemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, USA
*Correspondence e-mail: dtyler@uoregon.edu

(Received 5 August 2010; accepted 2 September 2010; online 8 September 2010)

The two symmetry-independent mol­ecules in the asymmetric unit of the title compound, C17H14N2S2, have similar geometry; the dihedral angles between the least-squares planes of the benzothia­zole groups in the two mol­ecules are 83.93 (3) and 81.26 (3)°.

Related literature

For the synthesis of similar compounds, see: Avendaño et al. (1988[Avendaño, C., Ramos, M. T., Elguero, J., Jimeno, M. L., Bellanato, J. & Florencio, F. (1988). Can. J. Chem. 66, 1467-1473.]); Kelarev et al. (2003[Kelarev, V. I., Kobrakov, K. I. & Rybina, I. I. (2003). Chem. Heterocycl. Compd, 39, 1267-1306.]); Babudri et al. (1986[Babudri, F., Florio, S., Ingrosso, G. & Turco, A. M. (1986). Heterocycles, 24, 2215-2218.]). For literature regarding nitrile hydration, see: Ahmed et al. (2009[Ahmed, T. J., Fox, B. R., Knapp, S. M. M., Yelle, R. B., Juliette, J. J. & Tyler, D. R. (2009). Inorg. Chem. 48, 7828-7837.]). For results on nitrile hydratase, see: Nagasawa & Yamada (1989[Nagasawa, T. & Yamada, H. (1989). Trends Biotechnol. 7, 153-158.]); Kobayashi et al. (1992[Kobayashi, M., Nagasawa, T. & Yamada, H. (1992). Trends Biotechnol. 10, 402-408.]). For nitrile hydratase mimics, see: Noveron et al. (2001[Noveron, J. C., Olmstead, M. M. & Mascharak, P. K. (2001). J. Am. Chem. Soc. 123, 3247-3259.]); Tyler et al. (2003[Tyler, L. A., Noveron, J. C., Olmstead, M. M. & Mascharak, P. K. (2003). Inorg. Chem. 42, 5751-5761.]); Yano et al. (2008[Yano, T., Ozawa, T. & Masuda, H. (2008). Chem. Lett. 37, 672-677.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N2S2

  • Mr = 310.42

  • Triclinic, [P \overline 1]

  • a = 10.3791 (13) Å

  • b = 11.8832 (15) Å

  • c = 12.3391 (15) Å

  • α = 86.730 (2)°

  • β = 78.048 (2)°

  • γ = 80.779 (2)°

  • V = 1469.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 173 K

  • 0.42 × 0.24 × 0.05 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995[Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.]) Tmin = 0.865, Tmax = 0.982

  • 17048 measured reflections

  • 6379 independent reflections

  • 5007 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.119

  • S = 1.04

  • 6379 reflections

  • 491 parameters

  • All H-atom parameters refined

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Investigations in our lab are focused on the synthesis and study of nitrile hydration catalysts and their activity with respect to cyanohydrin substrates (Ahmed et al., 2009). Catalysts investigated by our group have been found to be susceptible to poisoning by cyanide produced from cyanohydrin decomposition. Nitrile hydratase enzymes are capable of hydrating cyanohydrins (Nagasawa & Yamada, 1989; Kobayashi et al., 1992). Additionally, some nitrile hydratase mimics have successfully hydrated acetonitrile in the presence of free cyanide (Tyler et al., 2003). With the goal of investigating these mimics for their activity towards cyanohydrins, attempts were made to synthesize nitrile hydratase mimics similar to those made earlier by Tyler et al. (2003), but based on dimethylmalonyl dichloride, rather than 2,6-pyridinedicarbonyl dichloride.

The present X-ray study of the product showed that deprotection of 2,2-dimethyl-N,N'-bis(2-(tritylthio)phenyl)malonamide with trifluoroacetic acid and triethylsilane resulted in a ring closing condensation which yielded 2,2-bis(benzothiazole)propane, rather than the desired N,N'-bis(2-mercaptophenyl)-2,2-dimethylmalonamide.

There are two symmetry independent, but geometrically very similar molecules in the crystal of the title compound (Fig. 1). Dihedral angles between the least squares planes of the benzothiazole groups are equal to 83.93 (3) and 81.26 (3)° in molecules N1—C17 and N1'-C17', respectively.

Related literature top

For the synthesis of similar compounds, see Avendaño et al. (1988); Kelarev et al. (2003); Babudri et al. (1986). For literature regarding nitrile hydration, see Ahmed et al. (2009). For results on nitrile hydratase, see Nagasawa & Yamada (1989); Kobayashi et al. (1992). For nitrile hydratase mimics, see Noveron et al. (2001); Tyler et al. (2003); Yano et al. (2008).

Experimental top

The title compound was synthesized in three steps. Tritylated aminothiophenol was prepared following the literature procedure (Noveron et al., 2001). Under a nitrogen atmosphere, dimethylmalonyl dichloride (0.40 ml, 2.97 mmol) was dissolved in a solution of triethylamine (0.95 g, 6.84 mmol) in 10 ml of chloroform, then added dropwise to a degassed solution of tritylated aminothiophenol (2.190 g, 5.95 mmol) and triethylamine (0.95 g, 6.84 mmol) in 10 ml of chloroform. The mixture was allowed to react for 16 h at room temperature, and then the solvent was removed under vacuum. Cold methanol was added to the tan solid, then filtered under vacuum. The precipitate was washed with cold methanol to yield a colorless solid, 2,2-dimethyl-N,N'-bis(2-(tritylthio)phenyl)malonamide (Try-DMPS). Yield: 6.02 g (71%). 1H NMR (CDCl3, 300 MHz) δ from TMS: 1.17 (s, 6H), 6.84 (t, 2H), 7.19–7.34 (m, 34H), 8.4 (d, 2H), 9.22 (s, 2H). 13C NMR (CDCl3, 75.4 MHz) δ 24.2, 51.7, 71.9, 120.3, 122.1, 123.7, 127.3, 127.9, 130.2, 131.1, 137.1, 142.5, 143.9, 170.9. Selected IR bands (KBr pellet, cm-1) 3348 (w), 3056 (w), 1688 (m), 1575 (m), 1504 (s), 1430 (m), 1297 (m), 701 (s). Try-DMPS (1.45 g, 1.75 mmol) was added to a mixture of 5 mL of trifluoroacetic acid and 3 mL of dichloromethane under stirring, and the solution instantly turned bright red. Triethylsilane (0.56 ml, 3.5 mmol) was added dropwise, with the color gradually changing from red to yellow to colorless. The solution was stirred for 15 minutes at room temperature, and then dichloromethane was removed under vacuum. The slurry was filtered to remove the triphenylmethane sideproduct, and the solvent was removed from the filtrate under vacuum to obtain a colorless solid. The solid was recrystallized twice in methanol to yield X-ray quality colorless crystals of the title compound. Yield: 1.4504 g (43%). 1H NMR (CDCl3, 300 MHz) δ from TMS: 2.18 (s, 6H), 7.36 (t, 2H), 7.41 (t, 2H), 7.85 (dd, 2H), 8.07 (d, 2H). 13C NMR (CDCl3, 75.4 MHz) δ 29.7, 47.8, 121.8, 123.5, 125.4, 126.3, 135.8, 153.1, 176.9. Selected IR bands (KBr pellet, cm-1) 3427 (w), 2986 (m), 1492 (s), 1435 (s), 1207 (s), 760 (s).

Refinement top

The H atoms were located in the difference map and included in the subsequent refinement with isotropic thermal parameters; C—H 0.88 (3)–1.04 (2) Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the structure of the title compound with displacement ellipsoids, drawn at 50% probability level.
2,2'-(Propane-2,2-diyl)dibenzothiazole top
Crystal data top
C17H14N2S2Z = 4
Mr = 310.42F(000) = 648
Triclinic, P1Dx = 1.403 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3791 (13) ÅCell parameters from 3754 reflections
b = 11.8832 (15) Åθ = 2.4–26.4°
c = 12.3391 (15) ŵ = 0.36 mm1
α = 86.730 (2)°T = 173 K
β = 78.048 (2)°Plate, colorless
γ = 80.779 (2)°0.42 × 0.24 × 0.05 mm
V = 1469.2 (3) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
6379 independent reflections
Radiation source: fine-focus sealed tube5007 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
phi and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
h = 1313
Tmin = 0.865, Tmax = 0.982k = 1515
17048 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.119All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.1616P]
where P = (Fo2 + 2Fc2)/3
6379 reflections(Δ/σ)max = 0.001
491 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H14N2S2γ = 80.779 (2)°
Mr = 310.42V = 1469.2 (3) Å3
Triclinic, P1Z = 4
a = 10.3791 (13) ÅMo Kα radiation
b = 11.8832 (15) ŵ = 0.36 mm1
c = 12.3391 (15) ÅT = 173 K
α = 86.730 (2)°0.42 × 0.24 × 0.05 mm
β = 78.048 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
6379 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
5007 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.982Rint = 0.032
17048 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.119All H-atom parameters refined
S = 1.04Δρmax = 0.43 e Å3
6379 reflectionsΔρmin = 0.21 e Å3
491 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.11702 (5)0.06830 (4)0.74433 (5)0.03295 (15)
S20.15867 (6)0.39956 (5)0.46027 (5)0.03744 (16)
N10.07371 (17)0.28776 (14)0.75471 (14)0.0285 (4)
N20.14744 (17)0.18478 (14)0.45096 (14)0.0274 (4)
C10.0143 (2)0.12842 (18)0.84422 (17)0.0275 (4)
C20.1057 (2)0.0764 (2)0.9223 (2)0.0364 (5)
C30.2036 (2)0.1445 (2)0.99230 (19)0.0379 (6)
C40.2109 (2)0.2623 (2)0.98686 (19)0.0378 (6)
C50.1214 (2)0.3150 (2)0.91101 (19)0.0367 (5)
C60.0223 (2)0.24736 (17)0.83812 (17)0.0264 (4)
C70.15016 (19)0.20478 (16)0.70011 (16)0.0236 (4)
C80.2599 (2)0.22277 (17)0.60006 (16)0.0258 (4)
C90.19052 (19)0.25650 (16)0.50325 (16)0.0248 (4)
C100.0816 (2)0.24018 (17)0.37034 (16)0.0267 (4)
C110.0191 (2)0.1870 (2)0.30272 (19)0.0359 (5)
C120.0461 (2)0.2534 (2)0.2295 (2)0.0428 (6)
C130.0488 (2)0.3704 (2)0.2221 (2)0.0445 (6)
C140.0126 (3)0.4251 (2)0.2877 (2)0.0413 (6)
C150.0782 (2)0.35846 (18)0.36298 (17)0.0305 (5)
C160.3328 (2)0.3175 (2)0.6252 (2)0.0349 (5)
C170.3583 (2)0.1129 (2)0.5719 (2)0.0339 (5)
S1'0.50721 (6)0.09629 (5)0.85604 (5)0.03416 (15)
S2'0.40874 (6)0.43208 (4)1.12466 (5)0.03095 (15)
N1'0.53067 (17)0.31085 (14)0.83732 (14)0.0276 (4)
N2'0.45605 (18)0.21160 (15)1.14371 (15)0.0313 (4)
C1'0.6330 (2)0.13756 (19)0.75345 (17)0.0324 (5)
C2'0.7266 (3)0.0710 (2)0.6744 (2)0.0429 (6)
C3'0.8170 (3)0.1245 (3)0.6013 (2)0.0497 (7)
C4'0.8160 (2)0.2417 (3)0.6045 (2)0.0467 (7)
C5'0.7239 (2)0.3082 (2)0.68130 (19)0.0389 (6)
C6'0.6309 (2)0.25492 (18)0.75653 (17)0.0288 (5)
C7'0.4600 (2)0.23898 (16)0.89364 (16)0.0245 (4)
C8'0.3426 (2)0.27369 (17)0.98818 (17)0.0268 (4)
C9'0.4025 (2)0.29371 (16)1.08699 (17)0.0256 (4)
C10'0.5093 (2)0.25520 (18)1.22437 (17)0.0292 (5)
C11'0.5780 (3)0.1898 (2)1.2976 (2)0.0395 (6)
C12'0.6284 (2)0.2443 (2)1.3717 (2)0.0426 (6)
C13'0.6111 (2)0.3625 (2)1.37387 (19)0.0390 (6)
C14'0.5442 (2)0.4291 (2)1.30219 (19)0.0361 (5)
C15'0.4932 (2)0.37455 (17)1.22706 (17)0.0278 (5)
C16'0.2577 (2)0.3819 (2)0.9530 (2)0.0331 (5)
C17'0.2573 (3)0.1780 (2)1.0184 (2)0.0368 (5)
H20.099 (2)0.002 (2)0.925 (2)0.049 (7)*
H2'0.727 (2)0.010 (2)0.6737 (18)0.036 (6)*
H30.269 (2)0.1105 (19)1.045 (2)0.042 (7)*
H3'0.882 (3)0.081 (2)0.553 (2)0.050 (7)*
H40.275 (2)0.307 (2)1.0317 (19)0.039 (7)*
H4'0.874 (3)0.278 (2)0.551 (2)0.066 (9)*
H50.127 (2)0.398 (2)0.904 (2)0.051 (7)*
H5'0.721 (2)0.3962 (19)0.6852 (18)0.038 (6)*
H110.023 (2)0.109 (2)0.307 (2)0.045 (7)*
H11'0.590 (3)0.115 (2)1.295 (2)0.058 (8)*
H120.086 (3)0.219 (2)0.181 (2)0.056 (8)*
H12'0.679 (2)0.198 (2)1.418 (2)0.045 (7)*
H130.091 (2)0.410 (2)0.163 (2)0.043 (7)*
H13'0.648 (2)0.3967 (18)1.4283 (18)0.033 (6)*
H140.009 (2)0.5014 (19)0.2881 (18)0.034 (6)*
H14'0.531 (2)0.5098 (19)1.3029 (18)0.033 (6)*
H16A0.373 (2)0.2928 (19)0.687 (2)0.041 (7)*
H16B0.398 (2)0.3325 (19)0.5604 (19)0.039 (6)*
H16C0.265 (2)0.3889 (19)0.6484 (18)0.036 (6)*
H16D0.184 (2)0.4074 (18)1.0135 (19)0.036 (6)*
H16E0.223 (2)0.3664 (18)0.8903 (19)0.033 (6)*
H16F0.309 (2)0.442 (2)0.9308 (18)0.033 (6)*
H17A0.425 (2)0.1270 (19)0.508 (2)0.042 (7)*
H17B0.397 (2)0.093 (2)0.633 (2)0.039 (7)*
H17C0.316 (2)0.052 (2)0.5537 (19)0.037 (6)*
H17D0.224 (3)0.163 (2)0.954 (2)0.060 (8)*
H17E0.187 (3)0.203 (2)1.079 (2)0.056 (8)*
H17F0.308 (2)0.110 (2)1.0472 (19)0.040 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0344 (3)0.0212 (3)0.0415 (3)0.0073 (2)0.0008 (2)0.0024 (2)
S20.0574 (4)0.0217 (3)0.0366 (3)0.0094 (3)0.0153 (3)0.0029 (2)
N10.0336 (10)0.0234 (9)0.0275 (9)0.0048 (8)0.0037 (8)0.0008 (7)
N20.0304 (9)0.0253 (9)0.0269 (9)0.0047 (7)0.0063 (8)0.0014 (7)
C10.0280 (11)0.0306 (11)0.0267 (11)0.0098 (9)0.0076 (9)0.0009 (9)
C20.0367 (13)0.0360 (13)0.0384 (13)0.0158 (11)0.0059 (10)0.0055 (10)
C30.0339 (13)0.0538 (15)0.0284 (12)0.0171 (11)0.0057 (10)0.0058 (11)
C40.0321 (12)0.0517 (15)0.0264 (12)0.0020 (11)0.0008 (10)0.0041 (11)
C50.0416 (13)0.0331 (13)0.0320 (13)0.0000 (11)0.0038 (10)0.0021 (10)
C60.0275 (10)0.0282 (11)0.0248 (11)0.0043 (9)0.0084 (9)0.0018 (8)
C70.0253 (10)0.0234 (10)0.0247 (10)0.0061 (8)0.0096 (8)0.0007 (8)
C80.0279 (10)0.0262 (10)0.0244 (10)0.0070 (8)0.0062 (8)0.0011 (8)
C90.0254 (10)0.0217 (10)0.0257 (11)0.0045 (8)0.0005 (8)0.0006 (8)
C100.0254 (10)0.0289 (11)0.0236 (11)0.0016 (9)0.0016 (8)0.0004 (8)
C110.0379 (13)0.0385 (14)0.0334 (13)0.0075 (11)0.0103 (10)0.0019 (10)
C120.0371 (13)0.0606 (17)0.0308 (13)0.0027 (12)0.0104 (11)0.0032 (12)
C130.0416 (14)0.0590 (17)0.0273 (13)0.0082 (12)0.0081 (11)0.0056 (12)
C140.0524 (15)0.0316 (13)0.0340 (13)0.0044 (12)0.0054 (11)0.0066 (10)
C150.0357 (12)0.0299 (11)0.0230 (11)0.0012 (9)0.0025 (9)0.0009 (9)
C160.0353 (13)0.0420 (14)0.0313 (13)0.0176 (11)0.0064 (11)0.0010 (11)
C170.0293 (12)0.0379 (13)0.0324 (13)0.0011 (10)0.0064 (10)0.0001 (10)
S1'0.0426 (3)0.0233 (3)0.0359 (3)0.0007 (2)0.0079 (3)0.0062 (2)
S2'0.0405 (3)0.0226 (3)0.0323 (3)0.0048 (2)0.0129 (2)0.0014 (2)
N1'0.0282 (9)0.0284 (9)0.0259 (9)0.0047 (7)0.0033 (7)0.0048 (7)
N2'0.0377 (10)0.0258 (9)0.0294 (10)0.0036 (8)0.0050 (8)0.0016 (7)
C1'0.0316 (11)0.0379 (12)0.0272 (11)0.0067 (10)0.0119 (9)0.0083 (9)
C2'0.0430 (14)0.0448 (15)0.0385 (14)0.0138 (12)0.0151 (12)0.0137 (12)
C3'0.0353 (14)0.078 (2)0.0301 (14)0.0172 (14)0.0085 (11)0.0159 (13)
C4'0.0315 (13)0.075 (2)0.0299 (14)0.0016 (13)0.0028 (11)0.0033 (13)
C5'0.0322 (12)0.0533 (16)0.0306 (12)0.0082 (11)0.0039 (10)0.0007 (11)
C6'0.0263 (11)0.0368 (12)0.0241 (11)0.0021 (9)0.0074 (9)0.0047 (9)
C7'0.0276 (10)0.0211 (10)0.0263 (11)0.0025 (8)0.0095 (8)0.0026 (8)
C8'0.0280 (11)0.0259 (11)0.0260 (11)0.0054 (9)0.0026 (9)0.0032 (8)
C9'0.0277 (10)0.0218 (10)0.0264 (11)0.0065 (8)0.0012 (8)0.0005 (8)
C10'0.0300 (11)0.0296 (11)0.0265 (11)0.0052 (9)0.0021 (9)0.0010 (9)
C11'0.0457 (14)0.0354 (14)0.0360 (13)0.0018 (11)0.0107 (11)0.0077 (11)
C12'0.0401 (14)0.0534 (16)0.0347 (13)0.0059 (12)0.0127 (11)0.0108 (12)
C13'0.0375 (13)0.0541 (16)0.0294 (13)0.0155 (12)0.0093 (10)0.0007 (11)
C14'0.0376 (13)0.0373 (13)0.0361 (13)0.0103 (11)0.0095 (10)0.0021 (10)
C15'0.0280 (11)0.0289 (11)0.0255 (11)0.0050 (9)0.0029 (9)0.0014 (9)
C16'0.0328 (12)0.0328 (12)0.0327 (13)0.0005 (10)0.0074 (10)0.0054 (10)
C17'0.0354 (13)0.0388 (14)0.0380 (14)0.0152 (11)0.0029 (11)0.0037 (11)
Geometric parameters (Å, º) top
S1—C11.726 (2)S1'—C1'1.731 (2)
S1—C71.7455 (19)S1'—C7'1.749 (2)
S2—C151.729 (2)S2'—C15'1.732 (2)
S2—C91.752 (2)S2'—C9'1.749 (2)
N1—C71.288 (2)N1'—C7'1.293 (3)
N1—C61.398 (3)N1'—C6'1.393 (3)
N2—C91.283 (2)N2'—C9'1.289 (3)
N2—C101.398 (3)N2'—C10'1.394 (3)
C1—C21.397 (3)C1'—C6'1.394 (3)
C1—C61.401 (3)C1'—C2'1.403 (3)
C2—C31.373 (3)C2'—C3'1.369 (4)
C2—H20.92 (2)C2'—H2'0.96 (2)
C3—C41.388 (3)C3'—C4'1.394 (4)
C3—H30.96 (2)C3'—H3'0.91 (3)
C4—C51.375 (3)C4'—C5'1.381 (3)
C4—H40.89 (2)C4'—H4'0.93 (3)
C5—C61.396 (3)C5'—C6'1.397 (3)
C5—H50.98 (2)C5'—H5'1.04 (2)
C7—C81.527 (3)C7'—C8'1.524 (3)
C8—C91.522 (3)C8'—C9'1.524 (3)
C8—C161.531 (3)C8'—C16'1.534 (3)
C8—C171.532 (3)C8'—C17'1.534 (3)
C10—C111.390 (3)C10'—C11'1.393 (3)
C10—C151.399 (3)C10'—C15'1.403 (3)
C11—C121.378 (3)C11'—C12'1.379 (3)
C11—H110.92 (2)C11'—H11'0.88 (3)
C12—C131.384 (4)C12'—C13'1.388 (4)
C12—H120.94 (3)C12'—H12'0.95 (2)
C13—C141.374 (4)C13'—C14'1.375 (3)
C13—H130.99 (2)C13'—H13'0.97 (2)
C14—C151.400 (3)C14'—C15'1.394 (3)
C14—H140.90 (2)C14'—H14'0.95 (2)
C16—H16A0.95 (2)C16'—H16D0.97 (2)
C16—H16B0.96 (2)C16'—H16E0.95 (2)
C16—H16C1.02 (2)C16'—H16F0.95 (2)
C17—H17A0.96 (3)C17'—H17D0.97 (3)
C17—H17B0.92 (2)C17'—H17E0.95 (3)
C17—H17C0.96 (2)C17'—H17F0.98 (2)
C1—S1—C789.31 (10)C1'—S1'—C7'88.76 (10)
C15—S2—C989.11 (10)C15'—S2'—C9'88.97 (10)
C7—N1—C6111.00 (17)C7'—N1'—C6'110.43 (17)
C9—N2—C10110.91 (17)C9'—N2'—C10'110.13 (18)
C2—C1—C6120.6 (2)C6'—C1'—C2'121.1 (2)
C2—C1—S1129.91 (18)C6'—C1'—S1'109.69 (16)
C6—C1—S1109.51 (15)C2'—C1'—S1'129.2 (2)
C3—C2—C1118.5 (2)C3'—C2'—C1'118.0 (3)
C3—C2—H2122.4 (16)C3'—C2'—H2'122.1 (14)
C1—C2—H2119.2 (16)C1'—C2'—H2'119.8 (14)
C2—C3—C4121.0 (2)C2'—C3'—C4'121.2 (2)
C2—C3—H3119.6 (14)C2'—C3'—H3'118.8 (17)
C4—C3—H3119.4 (14)C4'—C3'—H3'119.9 (17)
C5—C4—C3121.4 (2)C5'—C4'—C3'121.3 (3)
C5—C4—H4117.6 (15)C5'—C4'—H4'118.2 (18)
C3—C4—H4121.0 (15)C3'—C4'—H4'120.3 (18)
C4—C5—C6118.5 (2)C4'—C5'—C6'118.2 (2)
C4—C5—H5122.3 (15)C4'—C5'—H5'122.8 (13)
C6—C5—H5119.1 (15)C6'—C5'—H5'119.0 (13)
C5—C6—N1125.49 (19)N1'—C6'—C1'115.01 (19)
C5—C6—C1120.1 (2)N1'—C6'—C5'124.8 (2)
N1—C6—C1114.43 (18)C1'—C6'—C5'120.2 (2)
N1—C7—C8122.99 (17)N1'—C7'—C8'123.16 (18)
N1—C7—S1115.73 (15)N1'—C7'—S1'116.10 (15)
C8—C7—S1121.24 (14)C8'—C7'—S1'120.74 (14)
C9—C8—C7106.21 (15)C7'—C8'—C9'106.10 (16)
C9—C8—C16111.35 (18)C7'—C8'—C16'108.99 (17)
C7—C8—C16108.85 (17)C9'—C8'—C16'111.91 (17)
C9—C8—C17108.69 (17)C7'—C8'—C17'110.90 (18)
C7—C8—C17111.44 (17)C9'—C8'—C17'109.02 (18)
C16—C8—C17110.24 (19)C16'—C8'—C17'109.87 (19)
N2—C9—C8123.26 (18)N2'—C9'—C8'122.76 (18)
N2—C9—S2115.81 (15)N2'—C9'—S2'116.46 (16)
C8—C9—S2120.88 (14)C8'—C9'—S2'120.71 (14)
C11—C10—N2125.01 (19)C11'—C10'—N2'125.0 (2)
C11—C10—C15120.2 (2)C11'—C10'—C15'119.6 (2)
N2—C10—C15114.78 (18)N2'—C10'—C15'115.36 (18)
C12—C11—C10118.5 (2)C12'—C11'—C10'119.0 (2)
C12—C11—H11121.8 (16)C12'—C11'—H11'120.9 (18)
C10—C11—H11119.7 (16)C10'—C11'—H11'120.1 (18)
C11—C12—C13121.2 (2)C11'—C12'—C13'120.9 (2)
C11—C12—H12119.6 (17)C11'—C12'—H12'117.4 (15)
C13—C12—H12119.2 (16)C13'—C12'—H12'121.6 (15)
C14—C13—C12121.5 (2)C14'—C13'—C12'121.4 (2)
C14—C13—H13122.9 (14)C14'—C13'—H13'121.0 (13)
C12—C13—H13115.3 (14)C12'—C13'—H13'117.7 (13)
C13—C14—C15117.8 (2)C13'—C14'—C15'118.0 (2)
C13—C14—H14124.2 (14)C13'—C14'—H14'122.6 (13)
C15—C14—H14117.9 (15)C15'—C14'—H14'119.4 (13)
C10—C15—C14120.9 (2)C14'—C15'—C10'121.2 (2)
C10—C15—S2109.38 (15)C14'—C15'—S2'129.73 (17)
C14—C15—S2129.72 (19)C10'—C15'—S2'109.08 (15)
C8—C16—H16A107.9 (14)C8'—C16'—H16D110.2 (13)
C8—C16—H16B109.1 (13)C8'—C16'—H16E109.4 (13)
H16A—C16—H16B112.0 (19)H16D—C16'—H16E109.8 (18)
C8—C16—H16C109.6 (12)C8'—C16'—H16F111.6 (13)
H16A—C16—H16C106.8 (18)H16D—C16'—H16F109.2 (18)
H16B—C16—H16C111.4 (18)H16E—C16'—H16F106.7 (18)
C8—C17—H17A109.2 (14)C8'—C17'—H17D108.2 (16)
C8—C17—H17B106.9 (15)C8'—C17'—H17E107.9 (16)
H17A—C17—H17B111 (2)H17D—C17'—H17E112 (2)
C8—C17—H17C112.3 (14)C8'—C17'—H17F111.2 (13)
H17A—C17—H17C106.9 (19)H17D—C17'—H17F113 (2)
H17B—C17—H17C111 (2)H17E—C17'—H17F105 (2)
C7—S1—C1—C2178.3 (2)C7'—S1'—C1'—C6'0.84 (15)
C7—S1—C1—C60.96 (15)C7'—S1'—C1'—C2'178.3 (2)
C6—C1—C2—C30.3 (3)C6'—C1'—C2'—C3'0.9 (3)
S1—C1—C2—C3178.91 (17)S1'—C1'—C2'—C3'179.97 (18)
C1—C2—C3—C40.8 (4)C1'—C2'—C3'—C4'0.4 (4)
C2—C3—C4—C50.4 (4)C2'—C3'—C4'—C5'0.0 (4)
C3—C4—C5—C60.5 (4)C3'—C4'—C5'—C6'0.0 (4)
C4—C5—C6—N1178.3 (2)C7'—N1'—C6'—C1'0.3 (2)
C4—C5—C6—C10.9 (3)C7'—N1'—C6'—C5'179.6 (2)
C7—N1—C6—C5179.0 (2)C2'—C1'—C6'—N1'178.42 (19)
C7—N1—C6—C10.2 (2)S1'—C1'—C6'—N1'0.8 (2)
C2—C1—C6—C50.6 (3)C2'—C1'—C6'—C5'0.9 (3)
S1—C1—C6—C5179.95 (17)S1'—C1'—C6'—C5'179.83 (16)
C2—C1—C6—N1178.73 (19)C4'—C5'—C6'—N1'178.8 (2)
S1—C1—C6—N10.7 (2)C4'—C5'—C6'—C1'0.4 (3)
C6—N1—C7—C8176.71 (17)C6'—N1'—C7'—C8'179.98 (17)
C6—N1—C7—S11.0 (2)C6'—N1'—C7'—S1'0.4 (2)
C1—S1—C7—N11.18 (16)C1'—S1'—C7'—N1'0.74 (17)
C1—S1—C7—C8176.57 (16)C1'—S1'—C7'—C8'179.65 (16)
N1—C7—C8—C977.6 (2)N1'—C7'—C8'—C9'76.5 (2)
S1—C7—C8—C999.98 (17)S1'—C7'—C8'—C9'103.05 (17)
N1—C7—C8—C1642.4 (3)N1'—C7'—C8'—C16'44.1 (3)
S1—C7—C8—C16140.02 (16)S1'—C7'—C8'—C16'136.29 (16)
N1—C7—C8—C17164.18 (19)N1'—C7'—C8'—C17'165.2 (2)
S1—C7—C8—C1718.2 (2)S1'—C7'—C8'—C17'15.2 (2)
C10—N2—C9—C8176.62 (17)C10'—N2'—C9'—C8'176.41 (17)
C10—N2—C9—S20.8 (2)C10'—N2'—C9'—S2'0.5 (2)
C7—C8—C9—N277.1 (2)C7'—C8'—C9'—N2'74.6 (2)
C16—C8—C9—N2164.55 (19)C16'—C8'—C9'—N2'166.66 (19)
C17—C8—C9—N242.9 (3)C17'—C8'—C9'—N2'44.9 (3)
C7—C8—C9—S2100.20 (17)C7'—C8'—C9'—S2'102.22 (17)
C16—C8—C9—S218.2 (2)C16'—C8'—C9'—S2'16.5 (2)
C17—C8—C9—S2139.79 (16)C17'—C8'—C9'—S2'138.29 (17)
C15—S2—C9—N20.49 (17)C15'—S2'—C9'—N2'0.39 (17)
C15—S2—C9—C8176.98 (16)C15'—S2'—C9'—C8'176.60 (16)
C9—N2—C10—C11177.3 (2)C9'—N2'—C10'—C11'177.9 (2)
C9—N2—C10—C150.8 (2)C9'—N2'—C10'—C15'0.4 (3)
N2—C10—C11—C12177.7 (2)N2'—C10'—C11'—C12'178.4 (2)
C15—C10—C11—C120.3 (3)C15'—C10'—C11'—C12'0.2 (3)
C10—C11—C12—C130.6 (4)C10'—C11'—C12'—C13'0.1 (4)
C11—C12—C13—C140.4 (4)C11'—C12'—C13'—C14'0.4 (4)
C12—C13—C14—C150.1 (4)C12'—C13'—C14'—C15'0.3 (4)
C11—C10—C15—C140.2 (3)C13'—C14'—C15'—C10'0.0 (3)
N2—C10—C15—C14178.41 (19)C13'—C14'—C15'—S2'178.20 (17)
C11—C10—C15—S2177.81 (17)C11'—C10'—C15'—C14'0.3 (3)
N2—C10—C15—S20.4 (2)N2'—C10'—C15'—C14'178.64 (19)
C13—C14—C15—C100.4 (3)C11'—C10'—C15'—S2'178.25 (17)
C13—C14—C15—S2177.15 (18)N2'—C10'—C15'—S2'0.1 (2)
C9—S2—C15—C100.03 (16)C9'—S2'—C15'—C14'178.2 (2)
C9—S2—C15—C14177.8 (2)C9'—S2'—C15'—C10'0.14 (16)

Experimental details

Crystal data
Chemical formulaC17H14N2S2
Mr310.42
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.3791 (13), 11.8832 (15), 12.3391 (15)
α, β, γ (°)86.730 (2), 78.048 (2), 80.779 (2)
V3)1469.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.42 × 0.24 × 0.05
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1995)
Tmin, Tmax0.865, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
17048, 6379, 5007
Rint0.032
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.119, 1.04
No. of reflections6379
No. of parameters491
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.43, 0.21

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge the support of this work by the National Science Foundation (CHE-0719171).

References

First citationAhmed, T. J., Fox, B. R., Knapp, S. M. M., Yelle, R. B., Juliette, J. J. & Tyler, D. R. (2009). Inorg. Chem. 48, 7828–7837.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAvendaño, C., Ramos, M. T., Elguero, J., Jimeno, M. L., Bellanato, J. & Florencio, F. (1988). Can. J. Chem. 66, 1467–1473.  Google Scholar
First citationBabudri, F., Florio, S., Ingrosso, G. & Turco, A. M. (1986). Heterocycles, 24, 2215–2218.  CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKelarev, V. I., Kobrakov, K. I. & Rybina, I. I. (2003). Chem. Heterocycl. Compd, 39, 1267–1306.  CrossRef CAS Google Scholar
First citationKobayashi, M., Nagasawa, T. & Yamada, H. (1992). Trends Biotechnol. 10, 402–408.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNagasawa, T. & Yamada, H. (1989). Trends Biotechnol. 7, 153–158.  CrossRef CAS Web of Science Google Scholar
First citationNoveron, J. C., Olmstead, M. M. & Mascharak, P. K. (2001). J. Am. Chem. Soc. 123, 3247–3259.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTyler, L. A., Noveron, J. C., Olmstead, M. M. & Mascharak, P. K. (2003). Inorg. Chem. 42, 5751–5761.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYano, T., Ozawa, T. & Masuda, H. (2008). Chem. Lett. 37, 672–677.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds