organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Formyl­phen­­oxy)propanoic acid

aDepartment of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
*Correspondence e-mail: frank.blockhuys@ua.ac.be

(Received 13 September 2010; accepted 23 September 2010; online 30 September 2010)

In the structure of the title compound, C10H10O4, the carboxyl group forms a catemer motif in the [100] direction instead of the expected dimeric structures. The carboxylic acid group is found in the syn conformation and the three-dimensional organization in the crystal is based on C—H⋯O and O—H⋯O interactions.

Related literature

For the synthesis, see: Zawadowska (1963[Zawadowska, I. (1963). Acta Pol. Pharm. 20, 25-30.]); Jarvest et al. (2005[Jarvest, R. L., Erskine, S. G., Forrest, A. K., Fosberry, A. P., Hibbs, M. J., Jones, J. J., O'Hanlon, P. J., Sheppard, R. J. & Worby, A. (2005). Bioorg. Med. Chem. Lett. 15, 2305-2309.]). For related structures, see: Gresham et al. (1949[Gresham, T. L., Jansen, J. E., Shaver, F. W., Bankert, R. A., Beears, W. L. & Pendergast, M. G. (1949). J. Am. Chem. Soc. 71, 661-663.]); Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]); Borthwick (1980[Borthwick, P. W. (1980). Acta Cryst. B36, 628-632.]); Kennard et al. (1982[Kennard, C. H. L., Smith, G. & White, A. H. (1982). Acta Cryst. B38, 868-875.]); Shockravi et al. (2004[Shockravi, A., Alizadeh, R., Aghabozorg, H., Mohebbi, L., Moradi, K. S. & Moghimi, A. (2004). Iran. J. Chem. Chem. Eng. 23, 37-44.]); Gao & Ng (2006[Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, o3420-o3421.]). For applications of poly(p-phenyl­ene vinyl­ene) oligomers (PPVs), see: Chemla (1987[Chemla, D. S. (1987). Nonlinear Optical Properties of Organic Molecules and Crystals. Boston: Academic Press.]); Bandyopadhyay & Pal (2003[Bandyopadhyay, A. & Pal, A. J. (2003). Appl. Phys. Lett. 82, 1215-1217.]). For hydrogen bonding and crystal engineering, see: Desiraju (1997[Desiraju, G. R. (1997). Chem. Commun. 16, 1475-1482.]); Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10O4

  • Mr = 194.18

  • Orthorhombic, P b c a

  • a = 15.269 (4) Å

  • b = 7.167 (2) Å

  • c = 17.136 (5) Å

  • V = 1875.2 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.42 × 0.21 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 1718 measured reflections

  • 1718 independent reflections

  • 964 reflections with I > 2σ(I)

  • 3 standard reflections every 60 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.119

  • S = 1.02

  • 1718 reflections

  • 167 parameters

  • All H-atom parameters refined

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H41⋯O4i 0.94 (4) 1.72 (4) 2.618 (3) 158 (3)
C21—H21a⋯O1ii 1.00 (3) 2.64 (3) 3.409 (4) 134.5 (2)
C22—H22b⋯O1iii 0.96 (3) 2.46 (3) 3.187 (4) 132 (2)
C21—H21a⋯O3iv 1.00 (3) 2.60 (2) 3.456 (3) 144 (2)
C3—H3⋯O4v 0.96 (2) 2.71 (2) 3.536 (4) 144.9 (2)
Symmetry codes: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) -x, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound was synthesized as a precursor for asymmetric PPV-type [poly(p-phenylene vinylene)] oligomers. These compounds are promising candidates as the active materials in organic memories (Bandyopadhyay & Pal, 2003) and as non-linear optical (NLO) materials with a high first-order hyperpolarizability (Chemla, 1987). Besides the condition that these oligomers should bear donor and acceptor substituents connected by a π-system, it is of critical importance for their usefulness as an NLO material and as a bistable organic memory material that the crystal packing is non-centrosymmetric. In particular, the compound should crystallize in a polar space group. To influence the crystal packing by means of the crystal engineering methodology in order to meet this criterion, it is necessary to introduce certain statistically well chosen synthons (Desiraju, 1997). Therefore, we opted for carboxylic acid functional groups (powerful hydrogen bond donors) in the basic structure of the organic semiconductor. To combine the electronic (A-π-D) and the structural (non-centrosymmetric space group) requirements, we used the Williamson ether synthesis to prepare the title compound as a building block for a PPV-based semiconductor bearing a carboxylic acid moiety.

The geometry of the aldehyde contains no surprises. The methylene fragments are in synclinal conformation and the torsion angle is 65.9 (3)°. As a result and due to the repulsion between the lone pairs of oxygen atoms O2 and O3, the carboxylic acid group, found in the syn conformation, is twisted out of the plane of the phenyl ring. The O2···O3 distance is 3.034 (3) Å and this is the only contact of the ether oxygen atom. The distances in the carboxylic acid moiety are in accordance with the expected values for non-disordered carboxylic acids (Leiserowitz, 1976): the carbonyl (C=O) bond length C23—O4 is 1.209 (3) Å and the C—O single bond length C23—O3 is 1.306 (3) Å. The angles of the carboxyl moiety contain no surprises (Borthwick, 1980): C23—O3—H31 is 110 (2)° and O4—C23—O3 is 121.9 (2)°.

Two intramolecular CH···O hydrogen bonds involving the aldehyde group can be identified: the relevant parameters of C6—H6···O1 and C11—H1···O2 are given in Table 1, entries 1 and 2. The incorporation of a carboxylic acid group was expected to yield the corresponding dimer synthon, but the crystal structure of the title compound reveals a catemer motif in the [1 0 0] direction (Fig. 2), consisting of an infinite chain of hydrogen bonds. The O3···O4 distance is 2.618 (3) Å (Table 1, entry 3) which is not surprising for a hydrogen bond of moderate strength (Steiner, 2002). The chains are intertwined through O1···Cg contacts in which the aldehyde oxygen atom contacts the center of the aromatic ring [O1···Cgi 3.508 (3) Å, C11—O1···Cgi 78.47 (17)°, symm. code i = 1-x, -y, -z]. O1 is also involved in weak CH···O hydrogen bonds with H21a (Table 1, entry 4) and H22b (Table 1, entry 5); the latter links the infinite hydrogen bonded chains in the [0 0 1] direction (Fig. 3). Two additional hydrogen bonds can be observed: H21a contacts O3 and H3 contacts O4 (Table 1, entries 6 and 7, respectively).

Related literature top

For the synthesis, see: Zawadowska (1963); Jarvest et al. (2005). For related structures, see: Gresham et al. (1949); Leiserowitz (1976); Borthwick (1980); Kennard et al. (1982); Shockravi et al. (2004); Gao & Ng (2006). For applications of poly(p-phenylene vinylene) oligomers (PPVs), see: Chemla (1987); Bandyopadhyay & Pal (2003). For hydrogen bonding and crystal engineering, see: Desiraju (1997); Steiner (2002).

Experimental top

Salicylic aldehyde and 3-chloropropanoic acid were obtained from ACROS and used as received. The general procedure of Gresham was followed (Gresham et al., 1949). 8 g of NaOH in 20 ml of distilled water were added to a stirred solution of 12.2 g (0.1 mol) of salicylic aldehyde and 10.9 g (0.1 mol) of 3-chloropropanoic acid in 80 ml of distilled water. After heating under reflux for 4 h, the mixture was acidified with 19.5 ml of conc. HCl. Unreacted salicylic aldehyde was removed by steam distillation and the resulting mixture was placed in the refrigerator. The resulting tan-coloured needles were collected by filtration in a 20% yield. M.p. 381 K (uncorrected). Crystals suitable for the diffraction experiment were grown by slow evaporation of a 50:50 chloroform:toluene solvent mixture, analogous with the experiments of Kennard (Kennard et al., 1981). 1H NMR (CD3OD, 400 MHz, TMS): δ 2.84 (t, 2H, 6.00 Hz, H22), 4.39 (t, 2H, 6.00 Hz, H21), 7.05 (td, 1H, 7.44 and 0.88 Hz, H5), 7.18 (d, 1H, 8.10 Hz, H3), 7.61 (td, 1H, 7.32 and 1.88 Hz, H4), 7.75 (dd, 1H, 7.72 and 1.80 Hz, H6), 10.39 (d, 1H, 0.80 Hz, H21b); the proton of the carboxylic acid can not be seen. 13C NMR (CDCl3, 100 MHz, TMS): δ 34.17 (C22), 63.83 (C21), 112.66 (C3), 121.33 (C5), 125.08 (C1), 128.61 (C6), 135.99 (C4), 160.75 (C2), 175.97 (C11), 189.79 (C23).

Refinement top

The positions of the hydrogen atoms were derived from the electron density difference map and X—H bonding distances are situated between 0.89 (3) Å and 1.03 (3) Å.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are represented as spheres with an arbitrary radius.
[Figure 2] Fig. 2. Representation of the infinite chain of hydrogen bonds involving the carboxyl moiety through the crystal structure of the title compound. See Table 1 for details.
[Figure 3] Fig. 3. Additional short contacts in the crystal structure of the title compound. See Table 1 for details.
3-(2-formylphenoxy)propanoic acid top
Crystal data top
C10H10O4Dx = 1.376 Mg m3
Mr = 194.18Melting point: 381 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 15.269 (4) Åθ = 6.2–19.0°
b = 7.167 (2) ŵ = 0.11 mm1
c = 17.136 (5) ÅT = 293 K
V = 1875.2 (9) Å3Block, colourless
Z = 80.42 × 0.21 × 0.15 mm
F(000) = 816
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 25.3°, θmin = 2.4°
Graphite monochromatorh = 180
ω/2θ scansk = 80
1718 measured reflectionsl = 020
1718 independent reflections3 standard reflections every 60 min
964 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0516P)2]
where P = (Fo2 + 2Fc2)/3
1718 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H10O4V = 1875.2 (9) Å3
Mr = 194.18Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.269 (4) ŵ = 0.11 mm1
b = 7.167 (2) ÅT = 293 K
c = 17.136 (5) Å0.42 × 0.21 × 0.15 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.000
1718 measured reflections3 standard reflections every 60 min
1718 independent reflections intensity decay: 1%
964 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.119All H-atom parameters refined
S = 1.02Δρmax = 0.17 e Å3
1718 reflectionsΔρmin = 0.21 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H21a0.0220 (14)0.495 (4)0.3039 (14)0.049 (7)*
H22b0.1019 (16)0.478 (4)0.2296 (16)0.063 (9)*
H22a0.1276 (16)0.540 (4)0.3140 (14)0.058 (9)*
H21b0.0046 (17)0.281 (4)0.2824 (15)0.058 (8)*
H50.2323 (19)0.109 (4)0.5447 (16)0.073 (10)*
H30.1355 (15)0.315 (4)0.3435 (14)0.049 (8)*
H410.1930 (19)0.040 (6)0.2804 (19)0.104 (13)*
H40.2503 (19)0.196 (4)0.4169 (15)0.058 (9)*
H60.092 (2)0.133 (4)0.6011 (18)0.081 (11)*
H10.100 (2)0.276 (4)0.5065 (19)0.099 (12)*
O30.14623 (11)0.1255 (3)0.28392 (12)0.0509 (6)
O20.02664 (10)0.3422 (3)0.39246 (10)0.0464 (5)
O40.25446 (11)0.3279 (2)0.28021 (11)0.0562 (6)
C230.17679 (16)0.2958 (3)0.28326 (14)0.0384 (6)
C20.04663 (17)0.2827 (3)0.43064 (16)0.0414 (7)
C10.03508 (17)0.2307 (4)0.50805 (16)0.0443 (7)
C210.01910 (17)0.3884 (4)0.31172 (16)0.0426 (7)
O10.06445 (15)0.2082 (3)0.61361 (12)0.0779 (7)
C220.10849 (17)0.4449 (4)0.28378 (19)0.0421 (7)
C30.12868 (17)0.2735 (4)0.39650 (18)0.0511 (8)
C60.1071 (2)0.1672 (5)0.5502 (2)0.0625 (9)
C110.0514 (2)0.2416 (4)0.54553 (18)0.0565 (8)
C40.1983 (2)0.2109 (5)0.4398 (2)0.0690 (10)
C50.1876 (2)0.1563 (6)0.5161 (2)0.0761 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0400 (10)0.0306 (11)0.0823 (15)0.0022 (8)0.0009 (11)0.0024 (10)
O20.0428 (10)0.0563 (12)0.0401 (11)0.0032 (9)0.0023 (9)0.0062 (10)
O40.0409 (10)0.0359 (10)0.0919 (15)0.0035 (9)0.0046 (11)0.0016 (11)
C230.0428 (15)0.0324 (14)0.0401 (15)0.0047 (12)0.0018 (13)0.0013 (12)
C20.0481 (16)0.0314 (14)0.0449 (17)0.0040 (12)0.0047 (13)0.0030 (12)
C10.0533 (18)0.0353 (15)0.0442 (17)0.0071 (13)0.0018 (13)0.0035 (13)
C210.0438 (16)0.0416 (17)0.0424 (16)0.0065 (14)0.0018 (13)0.0020 (14)
O10.1120 (18)0.0752 (16)0.0466 (14)0.0116 (14)0.0176 (12)0.0007 (12)
C220.0500 (16)0.0312 (16)0.0451 (18)0.0034 (12)0.0004 (15)0.0009 (14)
C30.0437 (16)0.0558 (18)0.0537 (19)0.0044 (14)0.0007 (16)0.0009 (16)
C60.075 (2)0.059 (2)0.054 (2)0.0036 (18)0.011 (2)0.0018 (17)
C110.077 (2)0.0448 (19)0.047 (2)0.0066 (17)0.0067 (18)0.0035 (15)
C40.0453 (19)0.084 (3)0.077 (3)0.0022 (18)0.0088 (19)0.009 (2)
C50.072 (3)0.080 (3)0.077 (3)0.009 (2)0.031 (2)0.000 (2)
Geometric parameters (Å, º) top
O3—C231.306 (3)C21—H21b0.99 (3)
O3—H410.95 (4)O1—C111.208 (3)
O2—C21.364 (3)C22—H22b0.96 (3)
O2—C211.427 (3)C22—H22a0.90 (3)
O4—C231.209 (3)C3—C41.371 (4)
C23—C221.493 (3)C3—H30.96 (2)
C2—C31.384 (4)C6—C51.363 (5)
C2—C11.389 (4)C6—H60.93 (3)
C1—C61.392 (4)C11—H11.03 (3)
C1—C111.471 (4)C4—C51.375 (5)
C21—C221.502 (4)C4—H40.89 (3)
C21—H21a1.00 (3)C5—H50.91 (3)
C23—O3—H41110 (2)C21—C22—H22b106.2 (15)
C2—O2—C21118.1 (2)C23—C22—H22a108.5 (17)
O4—C23—O3121.9 (2)C21—C22—H22a108.3 (17)
O4—C23—C22123.3 (2)H22b—C22—H22a113 (2)
O3—C23—C22114.8 (2)C4—C3—C2119.2 (3)
O2—C2—C3123.7 (3)C4—C3—H3121.8 (14)
O2—C2—C1116.0 (2)C2—C3—H3118.9 (15)
C3—C2—C1120.4 (3)C5—C6—C1120.6 (4)
C6—C1—C2118.9 (3)C5—C6—H6127 (2)
C6—C1—C11120.0 (3)C1—C6—H6112.3 (19)
C2—C1—C11121.1 (3)O1—C11—C1124.0 (3)
O2—C21—C22107.3 (2)O1—C11—H1123.9 (19)
O2—C21—H21a111.0 (14)C1—C11—H1112.0 (19)
C22—C21—H21a108.9 (14)C3—C4—C5121.0 (3)
O2—C21—H21b110.0 (16)C3—C4—H4119.5 (18)
C22—C21—H21b112.4 (15)C5—C4—H4119.2 (18)
H21a—C21—H21b107 (2)C6—C5—C4119.9 (4)
C23—C22—C21116.3 (2)C6—C5—H5118.0 (19)
C23—C22—H22b104.2 (16)C4—C5—H5122.1 (19)
C21—O2—C2—C33.4 (4)O2—C2—C3—C4179.7 (3)
C21—O2—C2—C1176.9 (2)C1—C2—C3—C40.6 (4)
O2—C2—C1—C6179.5 (2)C2—C1—C6—C50.0 (4)
C3—C2—C1—C60.8 (4)C11—C1—C6—C5179.9 (3)
O2—C2—C1—C110.4 (4)C6—C1—C11—O14.3 (4)
C3—C2—C1—C11179.3 (3)C2—C1—C11—O1175.8 (3)
C2—O2—C21—C22178.8 (2)C2—C3—C4—C50.4 (5)
O4—C23—C22—C21162.1 (3)C1—C6—C5—C41.0 (5)
O3—C23—C22—C2120.0 (4)C3—C4—C5—C61.2 (6)
O2—C21—C22—C2365.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.94 (3)2.46 (3)2.851 (4)105 (2)
C11—H1···O21.03 (3)2.30 (3)2.746 (4)105 (2)
O3—H41···O4i0.94 (4)1.72 (4)2.618 (3)158 (3)
C21—H21a···O1ii1.00 (3)2.64 (3)3.409 (4)134.5 (2)
C22—H22b···O1iii0.96 (3)2.46 (3)3.187 (4)132 (2)
C21—H21a···O3iv1.00 (3)2.60 (2)3.456 (3)144 (2)
C3—H3···O4v0.96 (2)2.71 (2)3.536 (4)144.9 (2)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y+1, z+1; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H10O4
Mr194.18
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)15.269 (4), 7.167 (2), 17.136 (5)
V3)1875.2 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.42 × 0.21 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1718, 1718, 964
Rint0.000
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.119, 1.02
No. of reflections1718
No. of parameters167
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.17, 0.21

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H41···O4i0.94 (4)1.72 (4)2.618 (3)158 (3)
C21—H21a···O1ii1.00 (3)2.64 (3)3.409 (4)134.5 (2)
C22—H22b···O1iii0.96 (3)2.46 (3)3.187 (4)132 (2)
C21—H21a···O3iv1.00 (3)2.60 (2)3.456 (3)144 (2)
C3—H3···O4v0.96 (2)2.71 (2)3.536 (4)144.9 (2)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y+1, z+1; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x+1/2, y, z+1/2.
 

Footnotes

Current address: Karel de Grote University College, Department of Applied Engineering, Salesianenlaan 30, B-2660 Antwerp, Belgium.

Acknowledgements

CVV thanks the Fund for Scientific Research (FWO Vlaanderen) for a grant as a research assistant. AC wishes to thank the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT) for a predoctoral grant.

References

First citationBandyopadhyay, A. & Pal, A. J. (2003). Appl. Phys. Lett. 82, 1215–1217.  Web of Science CrossRef CAS Google Scholar
First citationBorthwick, P. W. (1980). Acta Cryst. B36, 628–632.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationChemla, D. S. (1987). Nonlinear Optical Properties of Organic Molecules and Crystals. Boston: Academic Press.  Google Scholar
First citationDesiraju, G. R. (1997). Chem. Commun. 16, 1475–1482.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGao, S. & Ng, S. W. (2006). Acta Cryst. E62, o3420–o3421.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGresham, T. L., Jansen, J. E., Shaver, F. W., Bankert, R. A., Beears, W. L. & Pendergast, M. G. (1949). J. Am. Chem. Soc. 71, 661–663.  CrossRef CAS Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJarvest, R. L., Erskine, S. G., Forrest, A. K., Fosberry, A. P., Hibbs, M. J., Jones, J. J., O'Hanlon, P. J., Sheppard, R. J. & Worby, A. (2005). Bioorg. Med. Chem. Lett. 15, 2305–2309.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKennard, C. H. L., Smith, G. & White, A. H. (1982). Acta Cryst. B38, 868–875.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShockravi, A., Alizadeh, R., Aghabozorg, H., Mohebbi, L., Moradi, K. S. & Moghimi, A. (2004). Iran. J. Chem. Chem. Eng. 23, 37–44.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationZawadowska, I. (1963). Acta Pol. Pharm. 20, 25–30.  PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds