organic compounds
2,5-Bis(4-methylphenyl)-4-oxopentanoic acid
aZhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China
*Correspondence e-mail: wangjun7203@126.com
The title compound, C19H20O3, was obtained from 1,4-bis(4-methylphenyl)but-3-yn-2-one in the presence of carbon monoxide by Ni(CN)2 catalysis in a basic aqueous medium. Intermolecular O—H⋯O hydrogen bonds lead to the formation of hydrogen-bonded carboxylic acid dimers [graph-set motif R22(8)]. Weak C—H⋯O hydrogen bonds between neighbouring dimers further extend the structure to give rise to a three-dimensional supramolecular network.
Related literature
For general background to transition metal-mediated carbonylation reactions, see: Collins (1999); Arzoumanian et al. (1995). For a similar structure, see: Garcia-Gutierrez et al. (2004). For bond length values, see: Allen et al. (1987). For hydrogen-bonding motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810037323/zl2309sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810037323/zl2309Isup2.hkl
A typical experiment was performed as follows: in a round-bottomed flask toluene (25 ml) and 1 M aqueous NaOH (10 ml) were degassed and saturated with CO under atmospheric pressure before Ni(CN)2.4H2O (1.0 mmol) and tetrabutylammonium bromide (0.3 mmol) were introduced, and the mixture was kept at room temperature overnight with stirring while CO was slowly (2–3 min) bubbled through the solution. To the yellow two-phase mixture was then added 10 mmol of 1,4-di(4-methylbenzyl)but-3-yn-2-one, and stirring and flow of CO at a flow rate of 3 ml min-1 were maintained for 5 h at 393 K. At the end of the reaction, ethyl ether (2 × 20 ml) was used to eliminate the impurities. The aqueous phase was acidified with diluted HCl at pH = 1. Ethyl ether (2 × 20 ml) was used to extract the product. The organic phase was dried over Na2SO4 and evaporated to obtain a yellow powder. During recrystallization, the yellow block crystals were obtained by slow evaporation of the solvent with a yield of 68%. m.p. 476–478 K; IR (KBr) cm-1: 3052, 2980, 2948, 1716, 1705, 1669, 1607, 1573, 1465, 1416, 1379, 1345, 1285, 1246, 1232, 1217, 1186, 1150, 1068, 1044, 995, 972, 850.
All H atoms attached to C and O atoms were fixed geometrically and treated as riding with C—H = 0.93 or 0.96 Å and O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C19H20O3 | F(000) = 632 |
Mr = 296.35 | Dx = 1.195 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2279 reflections |
a = 11.846 (2) Å | θ = 2.3–28.0° |
b = 13.155 (3) Å | µ = 0.08 mm−1 |
c = 11.755 (2) Å | T = 293 K |
β = 115.98 (3)° | Block, yellow |
V = 1646.7 (7) Å3 | 0.25 × 0.22 × 0.19 mm |
Z = 4 |
Bruker APEXII area-detector diffractometer | 1474 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.062 |
Graphite monochromator | θmax = 25.2°, θmin = 3.1° |
ϕ and ω scan | h = −14→14 |
12947 measured reflections | k = −15→15 |
2956 independent reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.173 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.085P)2] where P = (Fo2 + 2Fc2)/3 |
2956 reflections | (Δ/σ)max < 0.001 |
202 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C19H20O3 | V = 1646.7 (7) Å3 |
Mr = 296.35 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.846 (2) Å | µ = 0.08 mm−1 |
b = 13.155 (3) Å | T = 293 K |
c = 11.755 (2) Å | 0.25 × 0.22 × 0.19 mm |
β = 115.98 (3)° |
Bruker APEXII area-detector diffractometer | 1474 reflections with I > 2σ(I) |
12947 measured reflections | Rint = 0.062 |
2956 independent reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.173 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.24 e Å−3 |
2956 reflections | Δρmin = −0.18 e Å−3 |
202 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2848 (2) | 0.06339 (18) | 0.6978 (3) | 0.0586 (7) | |
C2 | 0.3764 (2) | 0.1318 (2) | 0.7725 (3) | 0.0695 (8) | |
H2 | 0.4156 | 0.1729 | 0.7360 | 0.083* | |
C3 | 0.4101 (3) | 0.1396 (2) | 0.9004 (3) | 0.0772 (9) | |
H3 | 0.4722 | 0.1858 | 0.9485 | 0.093* | |
C4 | 0.3548 (3) | 0.0817 (2) | 0.9587 (3) | 0.0744 (8) | |
C5 | 0.2638 (3) | 0.0149 (3) | 0.8837 (3) | 0.0859 (9) | |
H5 | 0.2239 | −0.0254 | 0.9201 | 0.103* | |
C6 | 0.2299 (3) | 0.0057 (2) | 0.7571 (3) | 0.0758 (8) | |
H6 | 0.1680 | −0.0409 | 0.7099 | 0.091* | |
C7 | 0.3949 (4) | 0.0898 (3) | 1.0989 (3) | 0.1073 (12) | |
H7A | 0.4565 | 0.1427 | 1.1337 | 0.161* | |
H7B | 0.4304 | 0.0263 | 1.1388 | 0.161* | |
H7C | 0.3232 | 0.1057 | 1.1136 | 0.161* | |
C8 | 0.2475 (2) | 0.05361 (18) | 0.5580 (2) | 0.0568 (7) | |
H8 | 0.1909 | −0.0049 | 0.5272 | 0.068* | |
C9 | 0.3590 (2) | 0.0320 (2) | 0.5332 (3) | 0.0581 (7) | |
C10 | 0.1766 (2) | 0.1458 (2) | 0.4817 (3) | 0.0654 (7) | |
H10A | 0.1111 | 0.1638 | 0.5065 | 0.078* | |
H10B | 0.2341 | 0.2028 | 0.5021 | 0.078* | |
C11 | 0.1187 (2) | 0.1287 (2) | 0.3424 (3) | 0.0617 (7) | |
C12 | 0.0992 (3) | 0.2191 (2) | 0.2583 (3) | 0.0764 (8) | |
H12A | 0.0774 | 0.2768 | 0.2961 | 0.092* | |
H12B | 0.1783 | 0.2348 | 0.2563 | 0.092* | |
C13 | 0.0008 (2) | 0.20819 (18) | 0.1251 (3) | 0.0604 (7) | |
C14 | −0.1074 (3) | 0.2653 (2) | 0.0815 (3) | 0.0827 (9) | |
H14 | −0.1173 | 0.3129 | 0.1349 | 0.099* | |
C15 | −0.2006 (3) | 0.2536 (2) | −0.0386 (4) | 0.0892 (10) | |
H15 | −0.2723 | 0.2937 | −0.0646 | 0.107* | |
C16 | −0.1916 (3) | 0.1845 (2) | −0.1219 (3) | 0.0729 (8) | |
C17 | −0.0825 (3) | 0.1291 (2) | −0.0809 (3) | 0.0678 (8) | |
H17 | −0.0718 | 0.0832 | −0.1355 | 0.081* | |
C18 | 0.0115 (2) | 0.14094 (19) | 0.0405 (3) | 0.0638 (7) | |
H18 | 0.0843 | 0.1023 | 0.0659 | 0.077* | |
C19 | −0.2969 (3) | 0.1693 (3) | −0.2526 (4) | 0.1142 (13) | |
H19A | −0.2762 | 0.1145 | −0.2939 | 0.171* | |
H19B | −0.3088 | 0.2305 | −0.3010 | 0.171* | |
H19C | −0.3729 | 0.1533 | −0.2460 | 0.171* | |
O1 | 0.0871 (2) | 0.04379 (15) | 0.3000 (2) | 0.0947 (7) | |
O2 | 0.41394 (17) | −0.05500 (14) | 0.5781 (2) | 0.0763 (6) | |
H2A | 0.4777 | −0.0597 | 0.5674 | 0.114* | |
O3 | 0.39643 (17) | 0.08983 (15) | 0.4773 (2) | 0.0817 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0534 (14) | 0.0674 (16) | 0.0574 (18) | 0.0026 (11) | 0.0266 (13) | −0.0028 (13) |
C2 | 0.0662 (17) | 0.0777 (18) | 0.065 (2) | −0.0016 (13) | 0.0293 (15) | −0.0019 (15) |
C3 | 0.0674 (17) | 0.088 (2) | 0.064 (2) | 0.0083 (14) | 0.0171 (16) | −0.0111 (16) |
C4 | 0.085 (2) | 0.085 (2) | 0.0540 (19) | 0.0263 (16) | 0.0306 (16) | 0.0051 (16) |
C5 | 0.105 (2) | 0.097 (2) | 0.073 (3) | 0.0023 (18) | 0.055 (2) | 0.0100 (18) |
C6 | 0.0804 (19) | 0.087 (2) | 0.069 (2) | −0.0133 (14) | 0.0415 (17) | −0.0067 (16) |
C7 | 0.132 (3) | 0.126 (3) | 0.060 (2) | 0.048 (2) | 0.039 (2) | 0.010 (2) |
C8 | 0.0558 (14) | 0.0617 (14) | 0.0549 (17) | −0.0005 (11) | 0.0262 (12) | −0.0015 (12) |
C9 | 0.0578 (15) | 0.0647 (15) | 0.0563 (17) | 0.0003 (12) | 0.0294 (13) | −0.0026 (13) |
C10 | 0.0601 (15) | 0.0771 (17) | 0.0588 (19) | 0.0056 (12) | 0.0258 (13) | −0.0081 (13) |
C11 | 0.0621 (15) | 0.0671 (17) | 0.0547 (18) | −0.0022 (12) | 0.0245 (13) | −0.0054 (13) |
C12 | 0.086 (2) | 0.0749 (18) | 0.064 (2) | −0.0135 (14) | 0.0293 (16) | −0.0020 (15) |
C13 | 0.0696 (16) | 0.0574 (14) | 0.0578 (18) | −0.0044 (12) | 0.0312 (14) | 0.0008 (13) |
C14 | 0.095 (2) | 0.084 (2) | 0.074 (2) | 0.0215 (16) | 0.0407 (19) | −0.0013 (16) |
C15 | 0.080 (2) | 0.103 (2) | 0.083 (3) | 0.0331 (17) | 0.0347 (19) | 0.016 (2) |
C16 | 0.0686 (17) | 0.0887 (19) | 0.060 (2) | −0.0010 (15) | 0.0266 (15) | 0.0068 (16) |
C17 | 0.0831 (19) | 0.0671 (17) | 0.058 (2) | −0.0030 (14) | 0.0355 (16) | −0.0034 (13) |
C18 | 0.0693 (16) | 0.0627 (16) | 0.064 (2) | 0.0077 (12) | 0.0336 (15) | 0.0056 (13) |
C19 | 0.083 (2) | 0.169 (4) | 0.076 (3) | −0.010 (2) | 0.021 (2) | 0.009 (2) |
O1 | 0.1269 (17) | 0.0755 (14) | 0.0615 (14) | −0.0101 (12) | 0.0226 (12) | −0.0026 (11) |
O2 | 0.0787 (13) | 0.0734 (12) | 0.0948 (17) | 0.0158 (9) | 0.0547 (12) | 0.0179 (11) |
O3 | 0.0835 (14) | 0.0767 (12) | 0.1091 (19) | 0.0139 (9) | 0.0646 (13) | 0.0223 (12) |
C1—C6 | 1.372 (4) | C10—H10B | 0.9700 |
C1—C2 | 1.387 (3) | C11—O1 | 1.214 (3) |
C1—C8 | 1.508 (4) | C11—C12 | 1.498 (4) |
C2—C3 | 1.380 (4) | C12—C13 | 1.494 (4) |
C2—H2 | 0.9300 | C12—H12A | 0.9700 |
C3—C4 | 1.368 (4) | C12—H12B | 0.9700 |
C3—H3 | 0.9300 | C13—C14 | 1.376 (4) |
C4—C5 | 1.371 (4) | C13—C18 | 1.378 (4) |
C4—C7 | 1.506 (4) | C14—C15 | 1.367 (4) |
C5—C6 | 1.366 (4) | C14—H14 | 0.9300 |
C5—H5 | 0.9300 | C15—C16 | 1.375 (4) |
C6—H6 | 0.9300 | C15—H15 | 0.9300 |
C7—H7A | 0.9600 | C16—C17 | 1.374 (4) |
C7—H7B | 0.9600 | C16—C19 | 1.509 (4) |
C7—H7C | 0.9600 | C17—C18 | 1.381 (4) |
C8—C9 | 1.499 (3) | C17—H17 | 0.9300 |
C8—C10 | 1.523 (3) | C18—H18 | 0.9300 |
C8—H8 | 0.9800 | C19—H19A | 0.9600 |
C9—O3 | 1.209 (3) | C19—H19B | 0.9600 |
C9—O2 | 1.308 (3) | C19—H19C | 0.9600 |
C10—C11 | 1.489 (4) | O2—H2A | 0.8200 |
C10—H10A | 0.9700 | ||
C6—C1—C2 | 116.8 (3) | C8—C10—H10B | 108.9 |
C6—C1—C8 | 121.9 (2) | H10A—C10—H10B | 107.7 |
C2—C1—C8 | 121.3 (3) | O1—C11—C10 | 120.1 (3) |
C3—C2—C1 | 120.7 (3) | O1—C11—C12 | 121.9 (3) |
C3—C2—H2 | 119.6 | C10—C11—C12 | 118.0 (2) |
C1—C2—H2 | 119.6 | C13—C12—C11 | 116.1 (2) |
C4—C3—C2 | 122.0 (3) | C13—C12—H12A | 108.3 |
C4—C3—H3 | 119.0 | C11—C12—H12A | 108.3 |
C2—C3—H3 | 119.0 | C13—C12—H12B | 108.3 |
C3—C4—C5 | 116.7 (3) | C11—C12—H12B | 108.3 |
C3—C4—C7 | 121.2 (3) | H12A—C12—H12B | 107.4 |
C5—C4—C7 | 122.1 (3) | C14—C13—C18 | 116.5 (3) |
C6—C5—C4 | 122.0 (3) | C14—C13—C12 | 120.6 (3) |
C6—C5—H5 | 119.0 | C18—C13—C12 | 122.8 (2) |
C4—C5—H5 | 119.0 | C15—C14—C13 | 121.5 (3) |
C5—C6—C1 | 121.7 (3) | C15—C14—H14 | 119.3 |
C5—C6—H6 | 119.1 | C13—C14—H14 | 119.3 |
C1—C6—H6 | 119.1 | C14—C15—C16 | 122.0 (3) |
C4—C7—H7A | 109.5 | C14—C15—H15 | 119.0 |
C4—C7—H7B | 109.5 | C16—C15—H15 | 119.0 |
H7A—C7—H7B | 109.5 | C17—C16—C15 | 117.1 (3) |
C4—C7—H7C | 109.5 | C17—C16—C19 | 121.2 (3) |
H7A—C7—H7C | 109.5 | C15—C16—C19 | 121.7 (3) |
H7B—C7—H7C | 109.5 | C16—C17—C18 | 120.8 (3) |
C9—C8—C1 | 111.4 (2) | C16—C17—H17 | 119.6 |
C9—C8—C10 | 110.0 (2) | C18—C17—H17 | 119.6 |
C1—C8—C10 | 113.4 (2) | C13—C18—C17 | 122.0 (2) |
C9—C8—H8 | 107.3 | C13—C18—H18 | 119.0 |
C1—C8—H8 | 107.3 | C17—C18—H18 | 119.0 |
C10—C8—H8 | 107.3 | C16—C19—H19A | 109.5 |
O3—C9—O2 | 122.2 (2) | C16—C19—H19B | 109.5 |
O3—C9—C8 | 123.4 (2) | H19A—C19—H19B | 109.5 |
O2—C9—C8 | 114.4 (2) | C16—C19—H19C | 109.5 |
C11—C10—C8 | 113.4 (2) | H19A—C19—H19C | 109.5 |
C11—C10—H10A | 108.9 | H19B—C19—H19C | 109.5 |
C8—C10—H10A | 108.9 | C9—O2—H2A | 109.5 |
C11—C10—H10B | 108.9 |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17···O1i | 0.93 | 2.50 | 3.418 (4) | 169 |
C15—H15···O2ii | 0.93 | 2.56 | 3.452 (4) | 160 |
O2—H2A···O3iii | 0.82 | 1.83 | 2.638 (2) | 169 |
Symmetry codes: (i) −x, −y, −z; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C19H20O3 |
Mr | 296.35 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.846 (2), 13.155 (3), 11.755 (2) |
β (°) | 115.98 (3) |
V (Å3) | 1646.7 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.25 × 0.22 × 0.19 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12947, 2956, 1474 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.173, 1.01 |
No. of reflections | 2956 |
No. of parameters | 202 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.18 |
Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17···O1i | 0.93 | 2.50 | 3.418 (4) | 169.2 |
C15—H15···O2ii | 0.93 | 2.56 | 3.452 (4) | 160.1 |
O2—H2A···O3iii | 0.82 | 1.83 | 2.638 (2) | 169.0 |
Symmetry codes: (i) −x, −y, −z; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, −y, −z+1. |
Acknowledgements
The work was supported by Zhongshan Polytechnic.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Arzoumanian, H., Nuel, D., Jean, M., Cabrera, A., Garcia, J. L. & Rosas, N. (1995). Organometallics, 14, 5438–5441. CrossRef CAS Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & $ Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573. Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Collins, I. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 1377–1395. Web of Science CrossRef Google Scholar
Garcia-Gutierrez, J. L., Jimenez-Cruz, F. & Rosas Espinosa, N. (2004). Tetrahedron Lett. 46, 803–805. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition-metal-mediated carbonylation reactions are of great research interest in recent years (Collins, 1999). Amongst the many metal-mediated syntheses used, catalysis by nickel cyanide in aqueous media under phase transfer conditions has attracted particular attention (Arzoumanian et al., 1995) and numerous lactones and their hydrolysis products have been synthesized using this system. Herein, we chose 1,4-di(4-methylbenzyl)but-3-yn-2-one as a carbonylation substrate to be reacted in the presence of Ni(CN)2 and carbon monoxide in a biphasic toluene/basic aqueous medium to give the title compound.
The structure of the title compound is depicted in Fig. 1. The C—C bond lengths show normal values (Allen et al., 1987), and the C—O and C═O bond lengths are comparable to those observed in simliar structures (Garcia-Gutierrez et al., 2004). The molecules form dimers with neighboring molecules through O—H···O hydrogen bonding with an R22(8) graph set motif (Bernstein et al., 1995). These dimers are further linked by C—H···O hydrogen bonds (Table 1) to form a three-dimensional supramolecular network (Fig. 2).