organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Bis(4-methyl­phen­yl)-4-oxo­penta­noic acid

aZhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China
*Correspondence e-mail: wangjun7203@126.com

(Received 15 September 2010; accepted 17 September 2010; online 25 September 2010)

The title compound, C19H20O3, was obtained from 1,4-bis­(4-methyl­phen­yl)but-3-yn-2-one in the presence of carbon monoxide by Ni(CN)2 catalysis in a basic aqueous medium. Inter­molecular O—H⋯O hydrogen bonds lead to the formation of hydrogen-bonded carb­oxy­lic acid dimers [graph-set motif R22(8)]. Weak C—H⋯O hydrogen bonds between neighbouring dimers further extend the structure to give rise to a three-dimensional supra­molecular network.

Related literature

For general background to transition metal-mediated carbonyl­ation reactions, see: Collins (1999[Collins, I. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 1377-1395.]); Arzoumanian et al. (1995[Arzoumanian, H., Nuel, D., Jean, M., Cabrera, A., Garcia, J. L. & Rosas, N. (1995). Organometallics, 14, 5438-5441.]). For a similar structure, see: Garcia-Gutierrez et al. (2004[Garcia-Gutierrez, J. L., Jimenez-Cruz, F. & Rosas Espinosa, N. (2004). Tetrahedron Lett. 46, 803-805.]). For bond length values, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & $ Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20O3

  • Mr = 296.35

  • Monoclinic, P 21 /c

  • a = 11.846 (2) Å

  • b = 13.155 (3) Å

  • c = 11.755 (2) Å

  • β = 115.98 (3)°

  • V = 1646.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • 12947 measured reflections

  • 2956 independent reflections

  • 1474 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.173

  • S = 1.01

  • 2956 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O1i 0.93 2.50 3.418 (4) 169
C15—H15⋯O2ii 0.93 2.56 3.452 (4) 160
O2—H2A⋯O3iii 0.82 1.83 2.638 (2) 169
Symmetry codes: (i) -x, -y, -z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Transition-metal-mediated carbonylation reactions are of great research interest in recent years (Collins, 1999). Amongst the many metal-mediated syntheses used, catalysis by nickel cyanide in aqueous media under phase transfer conditions has attracted particular attention (Arzoumanian et al., 1995) and numerous lactones and their hydrolysis products have been synthesized using this system. Herein, we chose 1,4-di(4-methylbenzyl)but-3-yn-2-one as a carbonylation substrate to be reacted in the presence of Ni(CN)2 and carbon monoxide in a biphasic toluene/basic aqueous medium to give the title compound.

The structure of the title compound is depicted in Fig. 1. The C—C bond lengths show normal values (Allen et al., 1987), and the C—O and CO bond lengths are comparable to those observed in simliar structures (Garcia-Gutierrez et al., 2004). The molecules form dimers with neighboring molecules through O—H···O hydrogen bonding with an R22(8) graph set motif (Bernstein et al., 1995). These dimers are further linked by C—H···O hydrogen bonds (Table 1) to form a three-dimensional supramolecular network (Fig. 2).

Related literature top

For general background on transition metal-mediated carbonylation reactions, see: Collins (1999); Arzoumanian et al. (1995). For a similar structure, see: Garcia-Gutierrez et al. (2004). For bond length values, see: Allen et al. (1987). For hydrogen-bonding motifs, see: Bernstein et al. (1995).

Experimental top

A typical experiment was performed as follows: in a round-bottomed flask toluene (25 ml) and 1 M aqueous NaOH (10 ml) were degassed and saturated with CO under atmospheric pressure before Ni(CN)2.4H2O (1.0 mmol) and tetrabutylammonium bromide (0.3 mmol) were introduced, and the mixture was kept at room temperature overnight with stirring while CO was slowly (2–3 min) bubbled through the solution. To the yellow two-phase mixture was then added 10 mmol of 1,4-di(4-methylbenzyl)but-3-yn-2-one, and stirring and flow of CO at a flow rate of 3 ml min-1 were maintained for 5 h at 393 K. At the end of the reaction, ethyl ether (2 × 20 ml) was used to eliminate the impurities. The aqueous phase was acidified with diluted HCl at pH = 1. Ethyl ether (2 × 20 ml) was used to extract the product. The organic phase was dried over Na2SO4 and evaporated to obtain a yellow powder. During recrystallization, the yellow block crystals were obtained by slow evaporation of the solvent with a yield of 68%. m.p. 476–478 K; IR (KBr) cm-1: 3052, 2980, 2948, 1716, 1705, 1669, 1607, 1573, 1465, 1416, 1379, 1345, 1285, 1246, 1232, 1217, 1186, 1150, 1068, 1044, 995, 972, 850.

Refinement top

All H atoms attached to C and O atoms were fixed geometrically and treated as riding with C—H = 0.93 or 0.96 Å and O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP represention of atom numbering diagram for the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the three-dimensional structure of the title compound. H-bonds are shown as dashed lines.
2,5-Bis(4-methylphenyl)-4-oxopentanoic acid top
Crystal data top
C19H20O3F(000) = 632
Mr = 296.35Dx = 1.195 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2279 reflections
a = 11.846 (2) Åθ = 2.3–28.0°
b = 13.155 (3) ŵ = 0.08 mm1
c = 11.755 (2) ÅT = 293 K
β = 115.98 (3)°Block, yellow
V = 1646.7 (7) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
1474 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Graphite monochromatorθmax = 25.2°, θmin = 3.1°
ϕ and ω scanh = 1414
12947 measured reflectionsk = 1515
2956 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.085P)2]
where P = (Fo2 + 2Fc2)/3
2956 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C19H20O3V = 1646.7 (7) Å3
Mr = 296.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.846 (2) ŵ = 0.08 mm1
b = 13.155 (3) ÅT = 293 K
c = 11.755 (2) Å0.25 × 0.22 × 0.19 mm
β = 115.98 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
1474 reflections with I > 2σ(I)
12947 measured reflectionsRint = 0.062
2956 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
2956 reflectionsΔρmin = 0.18 e Å3
202 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2848 (2)0.06339 (18)0.6978 (3)0.0586 (7)
C20.3764 (2)0.1318 (2)0.7725 (3)0.0695 (8)
H20.41560.17290.73600.083*
C30.4101 (3)0.1396 (2)0.9004 (3)0.0772 (9)
H30.47220.18580.94850.093*
C40.3548 (3)0.0817 (2)0.9587 (3)0.0744 (8)
C50.2638 (3)0.0149 (3)0.8837 (3)0.0859 (9)
H50.22390.02540.92010.103*
C60.2299 (3)0.0057 (2)0.7571 (3)0.0758 (8)
H60.16800.04090.70990.091*
C70.3949 (4)0.0898 (3)1.0989 (3)0.1073 (12)
H7A0.45650.14271.13370.161*
H7B0.43040.02631.13880.161*
H7C0.32320.10571.11360.161*
C80.2475 (2)0.05361 (18)0.5580 (2)0.0568 (7)
H80.19090.00490.52720.068*
C90.3590 (2)0.0320 (2)0.5332 (3)0.0581 (7)
C100.1766 (2)0.1458 (2)0.4817 (3)0.0654 (7)
H10A0.11110.16380.50650.078*
H10B0.23410.20280.50210.078*
C110.1187 (2)0.1287 (2)0.3424 (3)0.0617 (7)
C120.0992 (3)0.2191 (2)0.2583 (3)0.0764 (8)
H12A0.07740.27680.29610.092*
H12B0.17830.23480.25630.092*
C130.0008 (2)0.20819 (18)0.1251 (3)0.0604 (7)
C140.1074 (3)0.2653 (2)0.0815 (3)0.0827 (9)
H140.11730.31290.13490.099*
C150.2006 (3)0.2536 (2)0.0386 (4)0.0892 (10)
H150.27230.29370.06460.107*
C160.1916 (3)0.1845 (2)0.1219 (3)0.0729 (8)
C170.0825 (3)0.1291 (2)0.0809 (3)0.0678 (8)
H170.07180.08320.13550.081*
C180.0115 (2)0.14094 (19)0.0405 (3)0.0638 (7)
H180.08430.10230.06590.077*
C190.2969 (3)0.1693 (3)0.2526 (4)0.1142 (13)
H19A0.27620.11450.29390.171*
H19B0.30880.23050.30100.171*
H19C0.37290.15330.24600.171*
O10.0871 (2)0.04379 (15)0.3000 (2)0.0947 (7)
O20.41394 (17)0.05500 (14)0.5781 (2)0.0763 (6)
H2A0.47770.05970.56740.114*
O30.39643 (17)0.08983 (15)0.4773 (2)0.0817 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0534 (14)0.0674 (16)0.0574 (18)0.0026 (11)0.0266 (13)0.0028 (13)
C20.0662 (17)0.0777 (18)0.065 (2)0.0016 (13)0.0293 (15)0.0019 (15)
C30.0674 (17)0.088 (2)0.064 (2)0.0083 (14)0.0171 (16)0.0111 (16)
C40.085 (2)0.085 (2)0.0540 (19)0.0263 (16)0.0306 (16)0.0051 (16)
C50.105 (2)0.097 (2)0.073 (3)0.0023 (18)0.055 (2)0.0100 (18)
C60.0804 (19)0.087 (2)0.069 (2)0.0133 (14)0.0415 (17)0.0067 (16)
C70.132 (3)0.126 (3)0.060 (2)0.048 (2)0.039 (2)0.010 (2)
C80.0558 (14)0.0617 (14)0.0549 (17)0.0005 (11)0.0262 (12)0.0015 (12)
C90.0578 (15)0.0647 (15)0.0563 (17)0.0003 (12)0.0294 (13)0.0026 (13)
C100.0601 (15)0.0771 (17)0.0588 (19)0.0056 (12)0.0258 (13)0.0081 (13)
C110.0621 (15)0.0671 (17)0.0547 (18)0.0022 (12)0.0245 (13)0.0054 (13)
C120.086 (2)0.0749 (18)0.064 (2)0.0135 (14)0.0293 (16)0.0020 (15)
C130.0696 (16)0.0574 (14)0.0578 (18)0.0044 (12)0.0312 (14)0.0008 (13)
C140.095 (2)0.084 (2)0.074 (2)0.0215 (16)0.0407 (19)0.0013 (16)
C150.080 (2)0.103 (2)0.083 (3)0.0331 (17)0.0347 (19)0.016 (2)
C160.0686 (17)0.0887 (19)0.060 (2)0.0010 (15)0.0266 (15)0.0068 (16)
C170.0831 (19)0.0671 (17)0.058 (2)0.0030 (14)0.0355 (16)0.0034 (13)
C180.0693 (16)0.0627 (16)0.064 (2)0.0077 (12)0.0336 (15)0.0056 (13)
C190.083 (2)0.169 (4)0.076 (3)0.010 (2)0.021 (2)0.009 (2)
O10.1269 (17)0.0755 (14)0.0615 (14)0.0101 (12)0.0226 (12)0.0026 (11)
O20.0787 (13)0.0734 (12)0.0948 (17)0.0158 (9)0.0547 (12)0.0179 (11)
O30.0835 (14)0.0767 (12)0.1091 (19)0.0139 (9)0.0646 (13)0.0223 (12)
Geometric parameters (Å, º) top
C1—C61.372 (4)C10—H10B0.9700
C1—C21.387 (3)C11—O11.214 (3)
C1—C81.508 (4)C11—C121.498 (4)
C2—C31.380 (4)C12—C131.494 (4)
C2—H20.9300C12—H12A0.9700
C3—C41.368 (4)C12—H12B0.9700
C3—H30.9300C13—C141.376 (4)
C4—C51.371 (4)C13—C181.378 (4)
C4—C71.506 (4)C14—C151.367 (4)
C5—C61.366 (4)C14—H140.9300
C5—H50.9300C15—C161.375 (4)
C6—H60.9300C15—H150.9300
C7—H7A0.9600C16—C171.374 (4)
C7—H7B0.9600C16—C191.509 (4)
C7—H7C0.9600C17—C181.381 (4)
C8—C91.499 (3)C17—H170.9300
C8—C101.523 (3)C18—H180.9300
C8—H80.9800C19—H19A0.9600
C9—O31.209 (3)C19—H19B0.9600
C9—O21.308 (3)C19—H19C0.9600
C10—C111.489 (4)O2—H2A0.8200
C10—H10A0.9700
C6—C1—C2116.8 (3)C8—C10—H10B108.9
C6—C1—C8121.9 (2)H10A—C10—H10B107.7
C2—C1—C8121.3 (3)O1—C11—C10120.1 (3)
C3—C2—C1120.7 (3)O1—C11—C12121.9 (3)
C3—C2—H2119.6C10—C11—C12118.0 (2)
C1—C2—H2119.6C13—C12—C11116.1 (2)
C4—C3—C2122.0 (3)C13—C12—H12A108.3
C4—C3—H3119.0C11—C12—H12A108.3
C2—C3—H3119.0C13—C12—H12B108.3
C3—C4—C5116.7 (3)C11—C12—H12B108.3
C3—C4—C7121.2 (3)H12A—C12—H12B107.4
C5—C4—C7122.1 (3)C14—C13—C18116.5 (3)
C6—C5—C4122.0 (3)C14—C13—C12120.6 (3)
C6—C5—H5119.0C18—C13—C12122.8 (2)
C4—C5—H5119.0C15—C14—C13121.5 (3)
C5—C6—C1121.7 (3)C15—C14—H14119.3
C5—C6—H6119.1C13—C14—H14119.3
C1—C6—H6119.1C14—C15—C16122.0 (3)
C4—C7—H7A109.5C14—C15—H15119.0
C4—C7—H7B109.5C16—C15—H15119.0
H7A—C7—H7B109.5C17—C16—C15117.1 (3)
C4—C7—H7C109.5C17—C16—C19121.2 (3)
H7A—C7—H7C109.5C15—C16—C19121.7 (3)
H7B—C7—H7C109.5C16—C17—C18120.8 (3)
C9—C8—C1111.4 (2)C16—C17—H17119.6
C9—C8—C10110.0 (2)C18—C17—H17119.6
C1—C8—C10113.4 (2)C13—C18—C17122.0 (2)
C9—C8—H8107.3C13—C18—H18119.0
C1—C8—H8107.3C17—C18—H18119.0
C10—C8—H8107.3C16—C19—H19A109.5
O3—C9—O2122.2 (2)C16—C19—H19B109.5
O3—C9—C8123.4 (2)H19A—C19—H19B109.5
O2—C9—C8114.4 (2)C16—C19—H19C109.5
C11—C10—C8113.4 (2)H19A—C19—H19C109.5
C11—C10—H10A108.9H19B—C19—H19C109.5
C8—C10—H10A108.9C9—O2—H2A109.5
C11—C10—H10B108.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.932.503.418 (4)169
C15—H15···O2ii0.932.563.452 (4)160
O2—H2A···O3iii0.821.832.638 (2)169
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H20O3
Mr296.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.846 (2), 13.155 (3), 11.755 (2)
β (°) 115.98 (3)
V3)1646.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12947, 2956, 1474
Rint0.062
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.173, 1.01
No. of reflections2956
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.18

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.932.503.418 (4)169.2
C15—H15···O2ii0.932.563.452 (4)160.1
O2—H2A···O3iii0.821.832.638 (2)169.0
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1.
 

Acknowledgements

The work was supported by Zhongshan Polytechnic.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArzoumanian, H., Nuel, D., Jean, M., Cabrera, A., Garcia, J. L. & Rosas, N. (1995). Organometallics, 14, 5438–5441.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & $ Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCollins, I. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 1377–1395.  Web of Science CrossRef Google Scholar
First citationGarcia-Gutierrez, J. L., Jimenez-Cruz, F. & Rosas Espinosa, N. (2004). Tetrahedron Lett. 46, 803–805.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds