organic compounds
4-[(E)-2-(2,4,6-Trinitrophenyl)ethylidene]benzonitrile
aDepartment of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
*Correspondence e-mail: frank.blockhuys@ua.ac.be
In the crystal of the title compound, C15H8N4O6, the molecules are organized in layers due to their linkage by weak C—H⋯N hydrogen bonds. The layers are themselves interconnected by weak C—H⋯O hydrogen bonds and π–π interactions [centroid–centroid distances = 3.8690 (15) and 3.9017 (16) Å]. The dihedral angle between the rings is 31.9 (1)°.
Related literature
For related nitrostilbenes, see: Hanson et al. (2005); Oehlke et al. (2007); Gérard & Hardy (1988). The title compound was synthesized as a new ligand for iron–phosphine complexes for use in non-linear optical (NLO) applications, see: Wenseleers et al. (1998); Garcia et al. (2001); Robalo et al. (2006); Garcia et al. (2007).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810038584/zl2310sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810038584/zl2310Isup2.hkl
2,4,6-Trinitrotoluene (2.2 g, 0.0096 mol) and 4-cyanobenzaldehyde (1.3 g, 0.0096 mol) were dissolved in benzene (50 ml). Ten drops of piperidine were added, and the mixture was refluxed overnight. After cooling, the precipitate was collected by filtration. The crude product was refluxed for 4 h in p-xylene (25 ml) in the presence of a catalytic amount of iodine. After cooling, a mixture of yellow powder and orange-red crystals was collected, and both powder and crystals turned out to be the desired product. The yield was 12%. M.p. (uncorrected) 490–491 K. 1H NMR (400 MHz, CDCl3, TMS): δ 6.72 (d, 16.33 Hz, 1H, H7), 7.46 (d, 16.33 Hz, 1H, H8), 7.57 (d, 8.32 Hz, 2H, H2 and H6), 7.70 (d, 8.32 Hz, 2H, H3 and H5), 8.93 (s, 2H, H13 and H15) p.p.m. 13C NMR (100 MHz, CDCl3, TMS): δ 113.31 (C4), 118.24 (CN), 120.54 (C7), 122.42 (C2 and C6), 127.85 (C3 and C5), 132.78 (C13 and C15), 133.01 (C11), 135.83 (C8), 138.91 (C1), 150.32 (C14) p.p.m.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).C15H8N4O6 | F(000) = 696 |
Mr = 340.25 | Dx = 1.538 Mg m−3 |
Monoclinic, P21/c | Melting point: 490 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 11.183 (1) Å | Cell parameters from 25 reflections |
b = 8.520 (1) Å | θ = 5.7–20.3° |
c = 15.459 (4) Å | µ = 0.12 mm−1 |
β = 94.09 (4)° | T = 293 K |
V = 1469.2 (4) Å3 | Prism, orange |
Z = 4 | 0.4 × 0.4 × 0.3 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.026 |
Radiation source: fine-focus sealed tube | θmax = 25.3°, θmin = 1.8° |
Graphite monochromator | h = −13→13 |
non–profiled ω/2θ scans | k = 0→10 |
5370 measured reflections | l = −18→18 |
2689 independent reflections | 3 standard reflections every 60 min |
1849 reflections with I > 2σ(I) | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.123 | All H-atom parameters refined |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0596P)2 + 0.3738P] where P = (Fo2 + 2Fc2)/3 |
2689 reflections | (Δ/σ)max < 0.001 |
258 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C15H8N4O6 | V = 1469.2 (4) Å3 |
Mr = 340.25 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.183 (1) Å | µ = 0.12 mm−1 |
b = 8.520 (1) Å | T = 293 K |
c = 15.459 (4) Å | 0.4 × 0.4 × 0.3 mm |
β = 94.09 (4)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.026 |
5370 measured reflections | 3 standard reflections every 60 min |
2689 independent reflections | intensity decay: none |
1849 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.123 | All H-atom parameters refined |
S = 1.02 | Δρmax = 0.17 e Å−3 |
2689 reflections | Δρmin = −0.22 e Å−3 |
258 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
H2 | 1.241 (2) | −0.019 (3) | 0.4595 (14) | 0.054 (6)* | |
H8 | 0.935 (2) | −0.129 (3) | 0.2627 (13) | 0.053 (6)* | |
H3 | 1.0738 (19) | −0.105 (3) | 0.3753 (14) | 0.056 (6)* | |
H7 | 0.800 (2) | 0.102 (3) | 0.3391 (14) | 0.059 (6)* | |
H5A | 0.530 (2) | −0.005 (3) | 0.1028 (15) | 0.067 (7)* | |
H5 | 0.922 (2) | 0.319 (3) | 0.4044 (16) | 0.073 (7)* | |
H3A | 0.5894 (19) | −0.444 (3) | 0.1969 (14) | 0.060 (6)* | |
H6 | 1.093 (2) | 0.408 (3) | 0.4864 (16) | 0.081 (8)* | |
C3 | 1.07779 (17) | −0.0016 (2) | 0.39786 (13) | 0.0451 (5) | |
C4 | 0.98073 (17) | 0.0976 (2) | 0.37989 (12) | 0.0423 (4) | |
C1 | 1.18268 (18) | 0.1991 (2) | 0.47949 (12) | 0.0465 (5) | |
C2 | 1.17765 (18) | 0.0471 (2) | 0.44706 (13) | 0.0467 (5) | |
C6A | 0.67988 (18) | −0.0359 (2) | 0.17933 (13) | 0.0471 (5) | |
C2A | 0.71612 (18) | −0.2887 (2) | 0.23434 (12) | 0.0457 (5) | |
C8 | 0.86810 (18) | −0.0745 (2) | 0.27531 (13) | 0.0473 (5) | |
C5 | 0.9867 (2) | 0.2489 (3) | 0.41437 (14) | 0.0537 (5) | |
C3A | 0.6117 (2) | −0.3410 (3) | 0.19242 (14) | 0.0535 (5) | |
N1 | 0.7863 (2) | −0.4074 (2) | 0.28671 (11) | 0.0619 (5) | |
C1C | 1.2883 (2) | 0.2523 (3) | 0.52933 (14) | 0.0558 (5) | |
C7 | 0.87283 (18) | 0.0455 (2) | 0.32863 (13) | 0.0479 (5) | |
N3 | 0.7162 (2) | 0.1266 (2) | 0.16228 (15) | 0.0732 (6) | |
C5A | 0.57307 (19) | −0.0814 (3) | 0.13789 (14) | 0.0546 (5) | |
C1A | 0.75697 (17) | −0.1337 (2) | 0.22990 (12) | 0.0429 (5) | |
O11 | 0.88345 (18) | −0.3743 (2) | 0.31976 (14) | 0.0890 (6) | |
C6 | 1.0866 (2) | 0.2992 (3) | 0.46302 (14) | 0.0569 (6) | |
C4A | 0.54232 (17) | −0.2368 (3) | 0.14446 (14) | 0.0534 (5) | |
O12 | 0.7390 (3) | −0.5339 (2) | 0.29474 (15) | 0.1157 (9) | |
N2 | 0.43278 (19) | −0.2919 (3) | 0.09634 (17) | 0.0789 (7) | |
O32 | 0.8093 (2) | 0.1460 (2) | 0.12878 (15) | 0.1011 (7) | |
O31 | 0.6471 (2) | 0.2295 (2) | 0.18090 (18) | 0.1197 (9) | |
O22 | 0.37527 (18) | −0.2012 (3) | 0.05063 (17) | 0.1101 (8) | |
N1C | 1.37272 (19) | 0.2969 (3) | 0.56717 (15) | 0.0788 (7) | |
O21 | 0.4056 (2) | −0.4286 (3) | 0.10513 (19) | 0.1266 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C3 | 0.0469 (11) | 0.0378 (11) | 0.0491 (11) | 0.0004 (8) | −0.0065 (9) | −0.0040 (9) |
C4 | 0.0451 (10) | 0.0411 (10) | 0.0397 (9) | 0.0012 (8) | −0.0041 (8) | −0.0012 (8) |
C1 | 0.0503 (11) | 0.0514 (12) | 0.0366 (9) | −0.0088 (9) | −0.0047 (8) | −0.0014 (8) |
C2 | 0.0440 (11) | 0.0485 (11) | 0.0465 (10) | 0.0030 (9) | −0.0059 (9) | 0.0007 (9) |
C6A | 0.0514 (11) | 0.0383 (10) | 0.0498 (11) | −0.0012 (9) | −0.0104 (9) | −0.0035 (8) |
C2A | 0.0546 (12) | 0.0432 (10) | 0.0387 (9) | 0.0006 (9) | −0.0007 (9) | −0.0016 (8) |
C8 | 0.0420 (11) | 0.0511 (12) | 0.0475 (11) | 0.0035 (10) | −0.0068 (9) | −0.0040 (9) |
C5 | 0.0591 (13) | 0.0443 (11) | 0.0553 (12) | 0.0106 (10) | −0.0119 (10) | −0.0083 (9) |
C3A | 0.0590 (13) | 0.0495 (13) | 0.0526 (12) | −0.0124 (10) | 0.0072 (10) | −0.0040 (10) |
N1 | 0.0905 (15) | 0.0464 (11) | 0.0474 (10) | 0.0094 (10) | −0.0049 (10) | −0.0008 (8) |
C1C | 0.0575 (13) | 0.0616 (13) | 0.0471 (11) | −0.0099 (11) | −0.0046 (10) | −0.0048 (10) |
C7 | 0.0425 (11) | 0.0510 (12) | 0.0484 (11) | 0.0042 (9) | −0.0085 (9) | −0.0049 (9) |
N3 | 0.0892 (16) | 0.0438 (12) | 0.0799 (14) | −0.0076 (11) | −0.0406 (13) | 0.0026 (10) |
C5A | 0.0505 (12) | 0.0550 (13) | 0.0557 (12) | 0.0062 (10) | −0.0136 (10) | −0.0084 (10) |
C1A | 0.0453 (10) | 0.0443 (11) | 0.0383 (10) | −0.0002 (8) | −0.0018 (8) | −0.0035 (8) |
O11 | 0.0780 (13) | 0.0843 (13) | 0.1003 (14) | 0.0135 (10) | −0.0249 (11) | 0.0245 (11) |
C6 | 0.0695 (14) | 0.0422 (12) | 0.0568 (12) | 0.0000 (10) | −0.0104 (11) | −0.0118 (10) |
C4A | 0.0395 (10) | 0.0625 (14) | 0.0576 (12) | −0.0098 (10) | −0.0015 (9) | −0.0139 (10) |
O12 | 0.180 (2) | 0.0462 (11) | 0.1130 (17) | −0.0147 (13) | −0.0469 (16) | 0.0161 (10) |
N2 | 0.0495 (12) | 0.0910 (18) | 0.0940 (16) | −0.0141 (12) | −0.0099 (11) | −0.0279 (14) |
O32 | 0.1167 (18) | 0.0734 (13) | 0.1105 (17) | −0.0391 (12) | −0.0114 (14) | 0.0248 (11) |
O31 | 0.1395 (19) | 0.0462 (11) | 0.165 (2) | 0.0184 (12) | −0.0491 (17) | −0.0185 (12) |
O22 | 0.0677 (12) | 0.1224 (19) | 0.1324 (19) | 0.0063 (12) | −0.0469 (13) | −0.0296 (15) |
N1C | 0.0676 (13) | 0.0894 (16) | 0.0764 (14) | −0.0197 (12) | −0.0161 (11) | −0.0150 (12) |
O21 | 0.0924 (16) | 0.1044 (18) | 0.177 (3) | −0.0517 (14) | −0.0298 (15) | −0.0160 (17) |
C3—C2 | 1.370 (3) | C8—H8 | 0.91 (2) |
C3—C4 | 1.389 (3) | C5—C6 | 1.371 (3) |
C3—H3 | 0.95 (2) | C5—H5 | 0.94 (3) |
C4—C5 | 1.395 (3) | C3A—C4A | 1.363 (3) |
C4—C7 | 1.464 (3) | C3A—H3A | 0.92 (2) |
C1—C6 | 1.381 (3) | N1—O11 | 1.200 (3) |
C1—C2 | 1.388 (3) | N1—O12 | 1.211 (3) |
C1—C1C | 1.437 (3) | C1C—N1C | 1.139 (3) |
C2—H2 | 0.91 (2) | C7—H7 | 0.97 (2) |
C6A—C5A | 1.370 (3) | N3—O32 | 1.206 (3) |
C6A—C1A | 1.397 (3) | N3—O31 | 1.217 (3) |
C6A—N3 | 1.472 (3) | C5A—C4A | 1.374 (3) |
C2A—C3A | 1.369 (3) | C5A—H5A | 0.96 (2) |
C2A—C1A | 1.401 (3) | C6—H6 | 1.00 (3) |
C2A—N1 | 1.484 (3) | C4A—N2 | 1.464 (3) |
C8—C7 | 1.312 (3) | N2—O22 | 1.202 (3) |
C8—C1A | 1.472 (3) | N2—O21 | 1.213 (3) |
C2—C3—C4 | 121.39 (19) | C2A—C3A—H3A | 120.2 (14) |
C2—C3—H3 | 120.1 (13) | O11—N1—O12 | 123.6 (2) |
C4—C3—H3 | 118.5 (13) | O11—N1—C2A | 119.96 (19) |
C3—C4—C5 | 118.13 (18) | O12—N1—C2A | 116.4 (2) |
C3—C4—C7 | 121.71 (18) | N1C—C1C—C1 | 178.3 (3) |
C5—C4—C7 | 120.14 (18) | C8—C7—C4 | 124.83 (19) |
C6—C1—C2 | 119.91 (18) | C8—C7—H7 | 119.5 (13) |
C6—C1—C1C | 120.16 (19) | C4—C7—H7 | 115.5 (13) |
C2—C1—C1C | 119.92 (19) | O32—N3—O31 | 125.8 (2) |
C3—C2—C1 | 119.59 (19) | O32—N3—C6A | 117.7 (2) |
C3—C2—H2 | 121.1 (14) | O31—N3—C6A | 116.5 (3) |
C1—C2—H2 | 119.3 (13) | C6A—C5A—C4A | 116.9 (2) |
C5A—C6A—C1A | 125.10 (19) | C6A—C5A—H5A | 117.8 (14) |
C5A—C6A—N3 | 115.15 (18) | C4A—C5A—H5A | 125.1 (14) |
C1A—C6A—N3 | 119.60 (17) | C6A—C1A—C2A | 113.55 (17) |
C3A—C2A—C1A | 123.62 (19) | C6A—C1A—C8 | 121.90 (17) |
C3A—C2A—N1 | 115.90 (18) | C2A—C1A—C8 | 124.53 (18) |
C1A—C2A—N1 | 120.48 (18) | C5—C6—C1 | 120.1 (2) |
C7—C8—C1A | 124.16 (19) | C5—C6—H6 | 121.8 (15) |
C7—C8—H8 | 122.3 (13) | C1—C6—H6 | 118.1 (15) |
C1A—C8—H8 | 113.6 (13) | C3A—C4A—C5A | 122.16 (19) |
C6—C5—C4 | 120.9 (2) | C3A—C4A—N2 | 119.4 (2) |
C6—C5—H5 | 118.5 (15) | C5A—C4A—N2 | 118.4 (2) |
C4—C5—H5 | 120.7 (15) | O22—N2—O21 | 123.7 (2) |
C4A—C3A—C2A | 118.6 (2) | O22—N2—C4A | 119.0 (2) |
C4A—C3A—H3A | 121.2 (14) | O21—N2—C4A | 117.2 (3) |
C2—C3—C4—C5 | −0.8 (3) | N3—C6A—C5A—C4A | 173.1 (2) |
C2—C3—C4—C7 | −178.91 (19) | C5A—C6A—C1A—C2A | 0.9 (3) |
C4—C3—C2—C1 | −0.3 (3) | N3—C6A—C1A—C2A | −174.5 (2) |
C6—C1—C2—C3 | 0.9 (3) | C5A—C6A—C1A—C8 | −177.5 (2) |
C1C—C1—C2—C3 | −178.44 (19) | N3—C6A—C1A—C8 | 7.2 (3) |
C3—C4—C5—C6 | 1.4 (3) | C3A—C2A—C1A—C6A | 0.9 (3) |
C7—C4—C5—C6 | 179.5 (2) | N1—C2A—C1A—C6A | −178.91 (18) |
C1A—C2A—C3A—C4A | −0.9 (3) | C3A—C2A—C1A—C8 | 179.2 (2) |
N1—C2A—C3A—C4A | 178.93 (18) | N1—C2A—C1A—C8 | −0.6 (3) |
C3A—C2A—N1—O11 | 174.0 (2) | C7—C8—C1A—C6A | 53.8 (3) |
C1A—C2A—N1—O11 | −6.2 (3) | C7—C8—C1A—C2A | −124.3 (2) |
C3A—C2A—N1—O12 | −7.4 (3) | C4—C5—C6—C1 | −0.9 (3) |
C1A—C2A—N1—O12 | 172.4 (2) | C2—C1—C6—C5 | −0.3 (3) |
C6—C1—C1C—N1C | −71 (9) | C1C—C1—C6—C5 | 179.0 (2) |
C2—C1—C1C—N1C | 109 (9) | C2A—C3A—C4A—C5A | −0.9 (3) |
C1A—C8—C7—C4 | 174.55 (19) | C2A—C3A—C4A—N2 | 177.55 (19) |
C3—C4—C7—C8 | −20.7 (3) | C6A—C5A—C4A—C3A | 2.4 (3) |
C5—C4—C7—C8 | 161.3 (2) | C6A—C5A—C4A—N2 | −176.0 (2) |
C5A—C6A—N3—O32 | −119.2 (2) | C3A—C4A—N2—O22 | −176.2 (2) |
C1A—C6A—N3—O32 | 56.6 (3) | C5A—C4A—N2—O22 | 2.3 (3) |
C5A—C6A—N3—O31 | 58.5 (3) | C3A—C4A—N2—O21 | 3.6 (3) |
C1A—C6A—N3—O31 | −125.7 (2) | C5A—C4A—N2—O21 | −177.9 (2) |
C1A—C6A—C5A—C4A | −2.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O32i | 0.95 (3) | 2.50 (2) | 3.294 (3) | 142.1 (17) |
C5A—H5A···N1Cii | 0.96 (2) | 2.53 (2) | 3.427 (3) | 156.3 (19) |
C7—H7···O21iii | 0.97 (2) | 2.53 (2) | 3.354 (3) | 143.3 (19) |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x−1, −y+1/2, z−1/2; (iii) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C15H8N4O6 |
Mr | 340.25 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.183 (1), 8.520 (1), 15.459 (4) |
β (°) | 94.09 (4) |
V (Å3) | 1469.2 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.4 × 0.4 × 0.3 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5370, 2689, 1849 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.123, 1.02 |
No. of reflections | 2689 |
No. of parameters | 258 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.17, −0.22 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O32i | 0.95 (3) | 2.50 (2) | 3.294 (3) | 142.1 (17) |
C5A—H5A···N1Cii | 0.96 (2) | 2.53 (2) | 3.427 (3) | 156.3 (19) |
C7—H7···O21iii | 0.97 (2) | 2.53 (2) | 3.354 (3) | 143.3 (19) |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x−1, −y+1/2, z−1/2; (iii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
RDB and AC wish to thank the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT) for a predoctoral grant. Financial support by the University of Antwerp under grant No. GOA-2404 is gratefully acknowledged.
References
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Garcia, M. H., Mendes, P. J., Robalo, M. P., Dias, A. R., Campo, J., Wenseleers, W. & Goovaerts, E. (2007). J. Organomet. Chem. 692, 3027–3041. Web of Science CrossRef CAS Google Scholar
Garcia, M. H., Robalo, M. P., Dias, A. R., Piedade, M. F. M., Galvao, A., Wenseleers, W. & Goovaerts, E. (2001). J. Organomet. Chem. 619, 252–264. Web of Science CSD CrossRef CAS Google Scholar
Gérard, F. & Hardy, A. (1988). Acta Cryst. C44, 1283–1287. CSD CrossRef Web of Science IUCr Journals Google Scholar
Hanson, J. R., Hitchcock, P. B. & Jones, A. B. (2005). J. Chem. Res. pp. 138–140. CrossRef Google Scholar
Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Oehlke, A., Auer, A. A., Jahre, I., Walfort, B., Ruffer, T., Zoufala, P., Lang, H. & Spange, S. (2007). J. Org. Chem. 72, 4328–4339. Web of Science CSD CrossRef PubMed CAS Google Scholar
Robalo, M. P., Teixeira, A. P. S., Garcia, M. H., da Piedade, M. F. M., Duarte, M. T., Dias, A. R., Campo, J., Wenseleers, W. & Goovaerts, E. (2006). Eur. J. Inorg. Chem. pp. 2175–2185. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wenseleers, W., Gerbrandij, A. W., Goovaerts, E., Garcia, M. H., Robalo, M. P., Mendes, P. J., Rodrigues, J. C. & Dias, A. R. (1998). J. Mater. Chem. 8, 925–930. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound was synthesized as a new ligand for iron-phosphine complexes for use in non-linear optical (NLO) applications [Wenseleers et al. (1998), Garcia et al. (2001), Robalo et al. (2006), Garcia et al. (2007)]. The molecular structure of the title compound (Fig. 1) is mainly determined by steric factors involving the nitro groups, which force the nitro-substituted ring out of the plane of the CH=CH fragment by 54.0 (3)°. In addition, the nitro group in the 6-position is twisted by 56.6 (3)° out of the plane of the benzene ring, whereas the nitro groups in the 2- and 4-positions remain almost in the latter plane, with torsion angles of 6.2 (3)° and 3.6 (4)°, respectively. A similar conformation of the nitro-substituted ring can be seen in other trinitrostilbenes, such as MALZOP [Hanson et al. (2005)], PIGBAJ [Oehlke et al. (2007)] and GIMBOT [Gérard & Hardy (1988)]. In the case of the latter, the two rings are parallel to each other, but the ethenylic link is rotated by approximately 90° with respect to both rings.
The fact that the nitro group in the 6-position is twisted so much more than the other two may be linked to the weak intermolecular hydrogen bond involving O32 of the nitro group and H3 of the neighbouring molecule (Table 1). As a consequence of this twist, the second oxygen atom of this nitro group, O31, comes quite close to O12 of a neighbouring molecule within the layer depicted in Fig. 2 [O31···O12iv, 2.821 (3) Å, symm. code iv = x, 1+y, z], but this should not be seen as a stabilizing contact. In fact, these layers are rather formed by the weak hydrogen bond involving H5A and the nitrogen atom N1C of the nitrile group (Table 1). The layers display a typical herringbone structure and extend along the [-1 0 2] plane. A final weak hydrogen bond, involving H7 and an oxygen atom of the nitro group in the 4-position (O21), is responsible for the organization of the molecules in the direction perpendicular to these layers (Table 1). Finally, the crystal structure displays two π–π interactions. The first involves two nitrile-substituted rings (1) of neighbouring molecules contacting each other: Cg(1)···Cg(1)v, 3.8690 (15) Å, 25.01°, symm. code v = 2–x, –y, 1–z. The second involves a nitrile- (1) of one and a nitro-substituted ring (2) of another molecule: Cg(1)···Cg(2)vi, 3.9017 (16) Å, 26.52°, symm. code vi = 2–x, 1/2+y, 1/2–z.