organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(E)-2-(2,4,6-Tri­nitro­phenyl)ethyl­­idene]benzo­nitrile

aDepartment of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
*Correspondence e-mail: frank.blockhuys@ua.ac.be

(Received 24 September 2010; accepted 27 September 2010; online 30 September 2010)

In the crystal of the title compound, C15H8N4O6, the mol­ecules are organized in layers due to their linkage by weak C—H⋯N hydrogen bonds. The layers are themselves inter­connected by weak C—H⋯O hydrogen bonds and ππ inter­actions [centroid–centroid distances = 3.8690 (15) and 3.9017 (16) Å]. The dihedral angle between the rings is 31.9 (1)°.

Related literature

For related nitro­stilbenes, see: Hanson et al. (2005[Hanson, J. R., Hitchcock, P. B. & Jones, A. B. (2005). J. Chem. Res. pp. 138-140.]); Oehlke et al. (2007[Oehlke, A., Auer, A. A., Jahre, I., Walfort, B., Ruffer, T., Zoufala, P., Lang, H. & Spange, S. (2007). J. Org. Chem. 72, 4328-4339.]); Gérard & Hardy (1988[Gérard, F. & Hardy, A. (1988). Acta Cryst. C44, 1283-1287.]). The title compound was synthesized as a new ligand for iron–phosphine complexes for use in non-linear optical (NLO) applications, see: Wenseleers et al. (1998[Wenseleers, W., Gerbrandij, A. W., Goovaerts, E., Garcia, M. H., Robalo, M. P., Mendes, P. J., Rodrigues, J. C. & Dias, A. R. (1998). J. Mater. Chem. 8, 925-930.]); Garcia et al. (2001[Garcia, M. H., Robalo, M. P., Dias, A. R., Piedade, M. F. M., Galvao, A., Wenseleers, W. & Goovaerts, E. (2001). J. Organomet. Chem. 619, 252-264.]); Robalo et al. (2006[Robalo, M. P., Teixeira, A. P. S., Garcia, M. H., da Piedade, M. F. M., Duarte, M. T., Dias, A. R., Campo, J., Wenseleers, W. & Goovaerts, E. (2006). Eur. J. Inorg. Chem. pp. 2175-2185.]); Garcia et al. (2007[Garcia, M. H., Mendes, P. J., Robalo, M. P., Dias, A. R., Campo, J., Wenseleers, W. & Goovaerts, E. (2007). J. Organomet. Chem. 692, 3027-3041.]).

[Scheme 1]

Experimental

Crystal data
  • C15H8N4O6

  • Mr = 340.25

  • Monoclinic, P 21 /c

  • a = 11.183 (1) Å

  • b = 8.520 (1) Å

  • c = 15.459 (4) Å

  • β = 94.09 (4)°

  • V = 1469.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.4 × 0.4 × 0.3 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 5370 measured reflections

  • 2689 independent reflections

  • 1849 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.02

  • 2689 reflections

  • 258 parameters

  • All H-atom parameters refined

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O32i 0.95 (3) 2.50 (2) 3.294 (3) 142.1 (17)
C5A—H5A⋯N1Cii 0.96 (2) 2.53 (2) 3.427 (3) 156.3 (19)
C7—H7⋯O21iii 0.97 (2) 2.53 (2) 3.354 (3) 143.3 (19)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound was synthesized as a new ligand for iron-phosphine complexes for use in non-linear optical (NLO) applications [Wenseleers et al. (1998), Garcia et al. (2001), Robalo et al. (2006), Garcia et al. (2007)]. The molecular structure of the title compound (Fig. 1) is mainly determined by steric factors involving the nitro groups, which force the nitro-substituted ring out of the plane of the CH=CH fragment by 54.0 (3)°. In addition, the nitro group in the 6-position is twisted by 56.6 (3)° out of the plane of the benzene ring, whereas the nitro groups in the 2- and 4-positions remain almost in the latter plane, with torsion angles of 6.2 (3)° and 3.6 (4)°, respectively. A similar conformation of the nitro-substituted ring can be seen in other trinitrostilbenes, such as MALZOP [Hanson et al. (2005)], PIGBAJ [Oehlke et al. (2007)] and GIMBOT [Gérard & Hardy (1988)]. In the case of the latter, the two rings are parallel to each other, but the ethenylic link is rotated by approximately 90° with respect to both rings.

The fact that the nitro group in the 6-position is twisted so much more than the other two may be linked to the weak intermolecular hydrogen bond involving O32 of the nitro group and H3 of the neighbouring molecule (Table 1). As a consequence of this twist, the second oxygen atom of this nitro group, O31, comes quite close to O12 of a neighbouring molecule within the layer depicted in Fig. 2 [O31···O12iv, 2.821 (3) Å, symm. code iv = x, 1+y, z], but this should not be seen as a stabilizing contact. In fact, these layers are rather formed by the weak hydrogen bond involving H5A and the nitrogen atom N1C of the nitrile group (Table 1). The layers display a typical herringbone structure and extend along the [-1 0 2] plane. A final weak hydrogen bond, involving H7 and an oxygen atom of the nitro group in the 4-position (O21), is responsible for the organization of the molecules in the direction perpendicular to these layers (Table 1). Finally, the crystal structure displays two ππ interactions. The first involves two nitrile-substituted rings (1) of neighbouring molecules contacting each other: Cg(1)···Cg(1)v, 3.8690 (15) Å, 25.01°, symm. code v = 2–x, –y, 1–z. The second involves a nitrile- (1) of one and a nitro-substituted ring (2) of another molecule: Cg(1)···Cg(2)vi, 3.9017 (16) Å, 26.52°, symm. code vi = 2–x, 1/2+y, 1/2–z.

Related literature top

For related nitrostilbenes, see: Hanson et al. (2005); Oehlke et al. (2007); Gérard & Hardy (1988). The title compound was synthesized as a new ligand for iron–phosphine complexes for use in non-linear optical (NLO) applications, see: Wenseleers et al. (1998); Garcia et al. (2001); Robalo et al. (2006); Garcia et al. (2007).

Experimental top

2,4,6-Trinitrotoluene (2.2 g, 0.0096 mol) and 4-cyanobenzaldehyde (1.3 g, 0.0096 mol) were dissolved in benzene (50 ml). Ten drops of piperidine were added, and the mixture was refluxed overnight. After cooling, the precipitate was collected by filtration. The crude product was refluxed for 4 h in p-xylene (25 ml) in the presence of a catalytic amount of iodine. After cooling, a mixture of yellow powder and orange-red crystals was collected, and both powder and crystals turned out to be the desired product. The yield was 12%. M.p. (uncorrected) 490–491 K. 1H NMR (400 MHz, CDCl3, TMS): δ 6.72 (d, 16.33 Hz, 1H, H7), 7.46 (d, 16.33 Hz, 1H, H8), 7.57 (d, 8.32 Hz, 2H, H2 and H6), 7.70 (d, 8.32 Hz, 2H, H3 and H5), 8.93 (s, 2H, H13 and H15) p.p.m. 13C NMR (100 MHz, CDCl3, TMS): δ 113.31 (C4), 118.24 (CN), 120.54 (C7), 122.42 (C2 and C6), 127.85 (C3 and C5), 132.78 (C13 and C15), 133.01 (C11), 135.83 (C8), 138.91 (C1), 150.32 (C14) p.p.m.

Refinement top

All the H atoms have been observed in the difference electron density map and were left to refine freely.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level; hydrogen atoms are represented by spheres with an arbitrary radius.
[Figure 2] Fig. 2. Representation of one layer of the title compound, showing the herringbone arrangement of the molecules and the associated weak hydrogen bond.
4-[(E)-2-(2,4,6-Trinitrophenyl)ethylidene]benzonitrile top
Crystal data top
C15H8N4O6F(000) = 696
Mr = 340.25Dx = 1.538 Mg m3
Monoclinic, P21/cMelting point: 490 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.183 (1) ÅCell parameters from 25 reflections
b = 8.520 (1) Åθ = 5.7–20.3°
c = 15.459 (4) ŵ = 0.12 mm1
β = 94.09 (4)°T = 293 K
V = 1469.2 (4) Å3Prism, orange
Z = 40.4 × 0.4 × 0.3 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.026
Radiation source: fine-focus sealed tubeθmax = 25.3°, θmin = 1.8°
Graphite monochromatorh = 1313
non–profiled ω/2θ scansk = 010
5370 measured reflectionsl = 1818
2689 independent reflections3 standard reflections every 60 min
1849 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.3738P]
where P = (Fo2 + 2Fc2)/3
2689 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H8N4O6V = 1469.2 (4) Å3
Mr = 340.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.183 (1) ŵ = 0.12 mm1
b = 8.520 (1) ÅT = 293 K
c = 15.459 (4) Å0.4 × 0.4 × 0.3 mm
β = 94.09 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.026
5370 measured reflections3 standard reflections every 60 min
2689 independent reflections intensity decay: none
1849 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.123All H-atom parameters refined
S = 1.02Δρmax = 0.17 e Å3
2689 reflectionsΔρmin = 0.22 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H21.241 (2)0.019 (3)0.4595 (14)0.054 (6)*
H80.935 (2)0.129 (3)0.2627 (13)0.053 (6)*
H31.0738 (19)0.105 (3)0.3753 (14)0.056 (6)*
H70.800 (2)0.102 (3)0.3391 (14)0.059 (6)*
H5A0.530 (2)0.005 (3)0.1028 (15)0.067 (7)*
H50.922 (2)0.319 (3)0.4044 (16)0.073 (7)*
H3A0.5894 (19)0.444 (3)0.1969 (14)0.060 (6)*
H61.093 (2)0.408 (3)0.4864 (16)0.081 (8)*
C31.07779 (17)0.0016 (2)0.39786 (13)0.0451 (5)
C40.98073 (17)0.0976 (2)0.37989 (12)0.0423 (4)
C11.18268 (18)0.1991 (2)0.47949 (12)0.0465 (5)
C21.17765 (18)0.0471 (2)0.44706 (13)0.0467 (5)
C6A0.67988 (18)0.0359 (2)0.17933 (13)0.0471 (5)
C2A0.71612 (18)0.2887 (2)0.23434 (12)0.0457 (5)
C80.86810 (18)0.0745 (2)0.27531 (13)0.0473 (5)
C50.9867 (2)0.2489 (3)0.41437 (14)0.0537 (5)
C3A0.6117 (2)0.3410 (3)0.19242 (14)0.0535 (5)
N10.7863 (2)0.4074 (2)0.28671 (11)0.0619 (5)
C1C1.2883 (2)0.2523 (3)0.52933 (14)0.0558 (5)
C70.87283 (18)0.0455 (2)0.32863 (13)0.0479 (5)
N30.7162 (2)0.1266 (2)0.16228 (15)0.0732 (6)
C5A0.57307 (19)0.0814 (3)0.13789 (14)0.0546 (5)
C1A0.75697 (17)0.1337 (2)0.22990 (12)0.0429 (5)
O110.88345 (18)0.3743 (2)0.31976 (14)0.0890 (6)
C61.0866 (2)0.2992 (3)0.46302 (14)0.0569 (6)
C4A0.54232 (17)0.2368 (3)0.14446 (14)0.0534 (5)
O120.7390 (3)0.5339 (2)0.29474 (15)0.1157 (9)
N20.43278 (19)0.2919 (3)0.09634 (17)0.0789 (7)
O320.8093 (2)0.1460 (2)0.12878 (15)0.1011 (7)
O310.6471 (2)0.2295 (2)0.18090 (18)0.1197 (9)
O220.37527 (18)0.2012 (3)0.05063 (17)0.1101 (8)
N1C1.37272 (19)0.2969 (3)0.56717 (15)0.0788 (7)
O210.4056 (2)0.4286 (3)0.10513 (19)0.1266 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0469 (11)0.0378 (11)0.0491 (11)0.0004 (8)0.0065 (9)0.0040 (9)
C40.0451 (10)0.0411 (10)0.0397 (9)0.0012 (8)0.0041 (8)0.0012 (8)
C10.0503 (11)0.0514 (12)0.0366 (9)0.0088 (9)0.0047 (8)0.0014 (8)
C20.0440 (11)0.0485 (11)0.0465 (10)0.0030 (9)0.0059 (9)0.0007 (9)
C6A0.0514 (11)0.0383 (10)0.0498 (11)0.0012 (9)0.0104 (9)0.0035 (8)
C2A0.0546 (12)0.0432 (10)0.0387 (9)0.0006 (9)0.0007 (9)0.0016 (8)
C80.0420 (11)0.0511 (12)0.0475 (11)0.0035 (10)0.0068 (9)0.0040 (9)
C50.0591 (13)0.0443 (11)0.0553 (12)0.0106 (10)0.0119 (10)0.0083 (9)
C3A0.0590 (13)0.0495 (13)0.0526 (12)0.0124 (10)0.0072 (10)0.0040 (10)
N10.0905 (15)0.0464 (11)0.0474 (10)0.0094 (10)0.0049 (10)0.0008 (8)
C1C0.0575 (13)0.0616 (13)0.0471 (11)0.0099 (11)0.0046 (10)0.0048 (10)
C70.0425 (11)0.0510 (12)0.0484 (11)0.0042 (9)0.0085 (9)0.0049 (9)
N30.0892 (16)0.0438 (12)0.0799 (14)0.0076 (11)0.0406 (13)0.0026 (10)
C5A0.0505 (12)0.0550 (13)0.0557 (12)0.0062 (10)0.0136 (10)0.0084 (10)
C1A0.0453 (10)0.0443 (11)0.0383 (10)0.0002 (8)0.0018 (8)0.0035 (8)
O110.0780 (13)0.0843 (13)0.1003 (14)0.0135 (10)0.0249 (11)0.0245 (11)
C60.0695 (14)0.0422 (12)0.0568 (12)0.0000 (10)0.0104 (11)0.0118 (10)
C4A0.0395 (10)0.0625 (14)0.0576 (12)0.0098 (10)0.0015 (9)0.0139 (10)
O120.180 (2)0.0462 (11)0.1130 (17)0.0147 (13)0.0469 (16)0.0161 (10)
N20.0495 (12)0.0910 (18)0.0940 (16)0.0141 (12)0.0099 (11)0.0279 (14)
O320.1167 (18)0.0734 (13)0.1105 (17)0.0391 (12)0.0114 (14)0.0248 (11)
O310.1395 (19)0.0462 (11)0.165 (2)0.0184 (12)0.0491 (17)0.0185 (12)
O220.0677 (12)0.1224 (19)0.1324 (19)0.0063 (12)0.0469 (13)0.0296 (15)
N1C0.0676 (13)0.0894 (16)0.0764 (14)0.0197 (12)0.0161 (11)0.0150 (12)
O210.0924 (16)0.1044 (18)0.177 (3)0.0517 (14)0.0298 (15)0.0160 (17)
Geometric parameters (Å, º) top
C3—C21.370 (3)C8—H80.91 (2)
C3—C41.389 (3)C5—C61.371 (3)
C3—H30.95 (2)C5—H50.94 (3)
C4—C51.395 (3)C3A—C4A1.363 (3)
C4—C71.464 (3)C3A—H3A0.92 (2)
C1—C61.381 (3)N1—O111.200 (3)
C1—C21.388 (3)N1—O121.211 (3)
C1—C1C1.437 (3)C1C—N1C1.139 (3)
C2—H20.91 (2)C7—H70.97 (2)
C6A—C5A1.370 (3)N3—O321.206 (3)
C6A—C1A1.397 (3)N3—O311.217 (3)
C6A—N31.472 (3)C5A—C4A1.374 (3)
C2A—C3A1.369 (3)C5A—H5A0.96 (2)
C2A—C1A1.401 (3)C6—H61.00 (3)
C2A—N11.484 (3)C4A—N21.464 (3)
C8—C71.312 (3)N2—O221.202 (3)
C8—C1A1.472 (3)N2—O211.213 (3)
C2—C3—C4121.39 (19)C2A—C3A—H3A120.2 (14)
C2—C3—H3120.1 (13)O11—N1—O12123.6 (2)
C4—C3—H3118.5 (13)O11—N1—C2A119.96 (19)
C3—C4—C5118.13 (18)O12—N1—C2A116.4 (2)
C3—C4—C7121.71 (18)N1C—C1C—C1178.3 (3)
C5—C4—C7120.14 (18)C8—C7—C4124.83 (19)
C6—C1—C2119.91 (18)C8—C7—H7119.5 (13)
C6—C1—C1C120.16 (19)C4—C7—H7115.5 (13)
C2—C1—C1C119.92 (19)O32—N3—O31125.8 (2)
C3—C2—C1119.59 (19)O32—N3—C6A117.7 (2)
C3—C2—H2121.1 (14)O31—N3—C6A116.5 (3)
C1—C2—H2119.3 (13)C6A—C5A—C4A116.9 (2)
C5A—C6A—C1A125.10 (19)C6A—C5A—H5A117.8 (14)
C5A—C6A—N3115.15 (18)C4A—C5A—H5A125.1 (14)
C1A—C6A—N3119.60 (17)C6A—C1A—C2A113.55 (17)
C3A—C2A—C1A123.62 (19)C6A—C1A—C8121.90 (17)
C3A—C2A—N1115.90 (18)C2A—C1A—C8124.53 (18)
C1A—C2A—N1120.48 (18)C5—C6—C1120.1 (2)
C7—C8—C1A124.16 (19)C5—C6—H6121.8 (15)
C7—C8—H8122.3 (13)C1—C6—H6118.1 (15)
C1A—C8—H8113.6 (13)C3A—C4A—C5A122.16 (19)
C6—C5—C4120.9 (2)C3A—C4A—N2119.4 (2)
C6—C5—H5118.5 (15)C5A—C4A—N2118.4 (2)
C4—C5—H5120.7 (15)O22—N2—O21123.7 (2)
C4A—C3A—C2A118.6 (2)O22—N2—C4A119.0 (2)
C4A—C3A—H3A121.2 (14)O21—N2—C4A117.2 (3)
C2—C3—C4—C50.8 (3)N3—C6A—C5A—C4A173.1 (2)
C2—C3—C4—C7178.91 (19)C5A—C6A—C1A—C2A0.9 (3)
C4—C3—C2—C10.3 (3)N3—C6A—C1A—C2A174.5 (2)
C6—C1—C2—C30.9 (3)C5A—C6A—C1A—C8177.5 (2)
C1C—C1—C2—C3178.44 (19)N3—C6A—C1A—C87.2 (3)
C3—C4—C5—C61.4 (3)C3A—C2A—C1A—C6A0.9 (3)
C7—C4—C5—C6179.5 (2)N1—C2A—C1A—C6A178.91 (18)
C1A—C2A—C3A—C4A0.9 (3)C3A—C2A—C1A—C8179.2 (2)
N1—C2A—C3A—C4A178.93 (18)N1—C2A—C1A—C80.6 (3)
C3A—C2A—N1—O11174.0 (2)C7—C8—C1A—C6A53.8 (3)
C1A—C2A—N1—O116.2 (3)C7—C8—C1A—C2A124.3 (2)
C3A—C2A—N1—O127.4 (3)C4—C5—C6—C10.9 (3)
C1A—C2A—N1—O12172.4 (2)C2—C1—C6—C50.3 (3)
C6—C1—C1C—N1C71 (9)C1C—C1—C6—C5179.0 (2)
C2—C1—C1C—N1C109 (9)C2A—C3A—C4A—C5A0.9 (3)
C1A—C8—C7—C4174.55 (19)C2A—C3A—C4A—N2177.55 (19)
C3—C4—C7—C820.7 (3)C6A—C5A—C4A—C3A2.4 (3)
C5—C4—C7—C8161.3 (2)C6A—C5A—C4A—N2176.0 (2)
C5A—C6A—N3—O32119.2 (2)C3A—C4A—N2—O22176.2 (2)
C1A—C6A—N3—O3256.6 (3)C5A—C4A—N2—O222.3 (3)
C5A—C6A—N3—O3158.5 (3)C3A—C4A—N2—O213.6 (3)
C1A—C6A—N3—O31125.7 (2)C5A—C4A—N2—O21177.9 (2)
C1A—C6A—C5A—C4A2.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O32i0.95 (3)2.50 (2)3.294 (3)142.1 (17)
C5A—H5A···N1Cii0.96 (2)2.53 (2)3.427 (3)156.3 (19)
C7—H7···O21iii0.97 (2)2.53 (2)3.354 (3)143.3 (19)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x1, y+1/2, z1/2; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H8N4O6
Mr340.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.183 (1), 8.520 (1), 15.459 (4)
β (°) 94.09 (4)
V3)1469.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.4 × 0.4 × 0.3
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5370, 2689, 1849
Rint0.026
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.02
No. of reflections2689
No. of parameters258
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.17, 0.22

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O32i0.95 (3)2.50 (2)3.294 (3)142.1 (17)
C5A—H5A···N1Cii0.96 (2)2.53 (2)3.427 (3)156.3 (19)
C7—H7···O21iii0.97 (2)2.53 (2)3.354 (3)143.3 (19)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x1, y+1/2, z1/2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

RDB and AC wish to thank the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT) for a predoctoral grant. Financial support by the University of Antwerp under grant No. GOA-2404 is gratefully acknowledged.

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGarcia, M. H., Mendes, P. J., Robalo, M. P., Dias, A. R., Campo, J., Wenseleers, W. & Goovaerts, E. (2007). J. Organomet. Chem. 692, 3027–3041.  Web of Science CrossRef CAS Google Scholar
First citationGarcia, M. H., Robalo, M. P., Dias, A. R., Piedade, M. F. M., Galvao, A., Wenseleers, W. & Goovaerts, E. (2001). J. Organomet. Chem. 619, 252–264.  Web of Science CSD CrossRef CAS Google Scholar
First citationGérard, F. & Hardy, A. (1988). Acta Cryst. C44, 1283–1287.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHanson, J. R., Hitchcock, P. B. & Jones, A. B. (2005). J. Chem. Res. pp. 138–140.  CrossRef Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOehlke, A., Auer, A. A., Jahre, I., Walfort, B., Ruffer, T., Zoufala, P., Lang, H. & Spange, S. (2007). J. Org. Chem. 72, 4328–4339.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRobalo, M. P., Teixeira, A. P. S., Garcia, M. H., da Piedade, M. F. M., Duarte, M. T., Dias, A. R., Campo, J., Wenseleers, W. & Goovaerts, E. (2006). Eur. J. Inorg. Chem. pp. 2175–2185.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWenseleers, W., Gerbrandij, A. W., Goovaerts, E., Garcia, M. H., Robalo, M. P., Mendes, P. J., Rodrigues, J. C. & Dias, A. R. (1998). J. Mater. Chem. 8, 925–930.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds