metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­{N-[(4-methyl­phen­yl)sulfon­yl]glycinato(2−)-κ2N,O}(1,10-phenan­throline)copper(II)

aDepartment of Chemistry and Life Science, Quanzhou Normal University, Fujian 362000, People's Republic of China
*Correspondence e-mail: hml301@163.com

(Received 23 August 2010; accepted 8 September 2010; online 15 September 2010)

In the title complex, [Cu(C9H9NO4S)(C12H8N2)(H2O)], the CuII ion is coordinated in a distorted square-pyramidal geometry by the two N atoms from a 1,10-phenanthroline ligand, one N atom from the deprotonated amino group of an N-tosyl­glycinate ligand, one O atom from the carboxyl­ate part of the N-tosyl­glycinate ligand and a water O atom. Inter­molecular O—H⋯O hydrogen bonds involving the water H atoms link neighboring mol­ecules into supra­molecular chains along [010]. Weak ππ stacking inter­actions [centroid–centroid distances of 3.456 (1) and 3.691 (1) Å] between the benzene rings of 1,10-phenanthroline ligands of adjacent mol­ecules extend the chains into a layer structure parallel to (001).

Related literature

For the coordination chemistry of N-sulfonyl amino acids, see: Liang et al. (2004[Liang, F.-P., Chen, M.-S., Hu, R.-X. & Chen, Z.-L. (2004). Acta Cryst. C60, m269-m271.]); Ma et al. (2008[Ma, L. F., Wang, L. Y., Huo, X. K., Wang, Y. Y., Fan, Y. T., Wang, J. G. & Chen, S. H. (2008). Cryst. Growth Des. 8, 620-628.]). For related structures, see: Battaglia et al. (1983[Battaglia, L. P., Bonamartini Corradi, A., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1983). Inorg. Chem. 22, 1902-1906.]); Antolini et al. (1985[Antolini, L., Menabue, L. & Saladini, M. (1985). Inorg. Chem. 24, 1219-1222.]); Menabue & Saladini (1991[Menabue, L. & Saladini, M. (1991). Inorg. Chem. 30, 1651-1655.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C9H9NO4S)(C12H8N2)(H2O)]

  • Mr = 488.99

  • Monoclinic, P 21 /c

  • a = 14.0788 (11) Å

  • b = 7.0588 (6) Å

  • c = 20.6993 (17) Å

  • β = 103.826 (1)°

  • V = 1997.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 296 K

  • 0.32 × 0.29 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.693, Tmax = 0.747

  • 14609 measured reflections

  • 3713 independent reflections

  • 3341 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.065

  • S = 1.06

  • 3713 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1W⋯O2i 0.85 1.87 2.717 (2) 175
O5—H2W⋯O4ii 0.85 2.00 2.847 (2) 174
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a kind of amino acid derivatives, the N-protected amino acid plays an important role in participating in the process of the life activity. The substitution of an Ar—SO2-group on the amine nitrogen of amino acids, such as glycine and B-alanine, increases the coordination donors behavior of amino acids to three types of O, N donors from carboxyl, sulfoxyl and amine respectively, which may lead to different coordination modes, thus is of great interest in studying the coordination chemistry of N-sulfonyl- amino acids for many chemical workers (Ma et al., 2008; Liang et al., 2004; Battaglia et al., 1983; Menabue et al., 1991; Antolini et al., 1985). In order to continue the research, we synthesized the title complex [Cu(C9H9NO4S)(C12H8N2)(H2O)] and characterized it by an elemental analysis and a single-crystal X-ray diffraction analysis.

The molecular structure and crystal packing diagram of the title compound are presented in Figs. 1 and 2, respectively. The asymmetric unit contains one copper cation, one Ts-gly anion, one phen molecule and one coordinated water molecule. The central copper ion adopts a distorted square-pyramidal geometry by two N(N2, N3) atoms of the 1,10-phenanthroline ligand, one N(N1) and one O(O1) atoms of the Ts-gly ion occupying basal site, while the apical position is occupied by another O atom of a water molecule. The Cu—O1 bond distance of 1.9269 (13) Å is shorter than those of other N-protected glycine complexes (1.933–1.967 Å) [Battaglia, et al., 1983; Antolini, et al., 1985; Menabue & Saladini, 1991]. Furthermore, the C—O bond distance for the coordinated O atom (1.282 (2) Å) is significantly longer than that for the uncoordinated O atom (1.233 (2) Å), which is similar to previously reported complexes (Battaglia, et al., 1983; Antolini, et al., 1985).

Intermolecular hydrogen bonds involving the water H atoms, O(5)—H(1W)···O(2)i, O(5)—H(2W)···O(4)ii (Table 1), link the neighboring molecules into one-dimensional supramolecular chains. Weak π-π stacking interactions between benzene rings of 1,10-phenanthroline ligands from adjacent molecules (centroid distances of 3.456Å and 3.691 Å) extend the one-dimensional chains into a two-dimensional layer structure.

Related literature top

For the coordination chemistry of N-sulfonyl amino acids, see: Liang et al. (2004); Ma et al. (2008). For related structures, see: Battaglia et al. (1983); Antolini et al. (1985); Menabue & Saladini (1991).

Experimental top

To a solution of Ts-gly (1 mmol) in water-DMF 1:1 (10 ml), an aqueous solution (5 ml) of CuCl2.2H2O (1 mmol) and a solution of 1,10-phenanthroline (1 mmol) in ethanol (95%, 5 ml) was added. After refluxing for 12 h at 343 K, the mixture was filtered off while hot. The green single crystals suitable for a X-ray analysis were obtained by slow evaporation of the filtrate at room temperature after 41 days. IR(KBr): 3442(vs), 1638(vs), 1586(s), 1518(s), 1493(m), 1434(s), 1382(vs), 1348(m), 1319(m), 1243(vs), 1132(vs), 1112(vs), 1078(s), 1007(s), 967(s), 940(m), 847(s), 820(m), 723(s),663(s), 589(s), 545(m) cm-1.

Refinement top

H atoms bonded to C were placed geometrically and treated as riding with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C). The water H atoms were found in difference Fourier maps and refined with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. All hydrogen atoms have been omitted for clarity reasons.
[Figure 2] Fig. 2. Projection showing the two-dimensional structure of the title compound formed by the intermolecular hydrogen bonds and the π-π stacking interactions.
Aqua{N-[(4-methylphenyl)sulfonyl]glycinato(2-)- κ2N,O}(1,10-phenanthroline)copper(II) top
Crystal data top
[Cu(C9H9NO4S)(C12H8N2)(H2O)]F(000) = 1004
Mr = 488.99Dx = 1.626 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.0788 (11) ÅCell parameters from 7260 reflections
b = 7.0588 (6) Åθ = 2.8–28.2°
c = 20.6993 (17) ŵ = 1.24 mm1
β = 103.826 (1)°T = 296 K
V = 1997.5 (3) Å3Block, green
Z = 40.32 × 0.29 × 0.25 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3713 independent reflections
Radiation source: fine-focus sealed tube3341 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1716
Tmin = 0.693, Tmax = 0.747k = 88
14609 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0287P)2 + 1.2801P]
where P = (Fo2 + 2Fc2)/3
3713 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu(C9H9NO4S)(C12H8N2)(H2O)]V = 1997.5 (3) Å3
Mr = 488.99Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.0788 (11) ŵ = 1.24 mm1
b = 7.0588 (6) ÅT = 296 K
c = 20.6993 (17) Å0.32 × 0.29 × 0.25 mm
β = 103.826 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3713 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3341 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.747Rint = 0.019
14609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
3713 reflectionsΔρmin = 0.30 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.245571 (16)0.54423 (3)0.471642 (10)0.02714 (8)
S10.24891 (3)0.25311 (7)0.34767 (2)0.02718 (12)
O10.35227 (10)0.4521 (2)0.54106 (6)0.0376 (3)
O20.49352 (10)0.2987 (2)0.55995 (7)0.0408 (4)
O30.14652 (10)0.3036 (2)0.32547 (7)0.0402 (4)
O40.26947 (12)0.0512 (2)0.34674 (7)0.0403 (4)
O50.32853 (10)0.8041 (2)0.45785 (8)0.0430 (4)
H1W0.38560.77380.45460.064*
H2W0.30650.87740.42510.064*
N10.29113 (11)0.3460 (2)0.41754 (7)0.0278 (4)
N20.17697 (11)0.6304 (2)0.54314 (7)0.0277 (3)
N30.12245 (11)0.6608 (2)0.41228 (7)0.0295 (4)
C10.41586 (13)0.3491 (3)0.52244 (9)0.0282 (4)
C20.39262 (13)0.2906 (3)0.45023 (9)0.0296 (4)
H2A0.43780.35130.42800.036*
H2B0.40000.15450.44700.036*
C30.30947 (13)0.3556 (3)0.28982 (9)0.0270 (4)
C40.32266 (16)0.2503 (3)0.23598 (10)0.0377 (5)
H40.30250.12460.23120.045*
C50.36591 (16)0.3329 (4)0.18939 (10)0.0428 (5)
H5A0.37450.26150.15340.051*
C60.39666 (15)0.5203 (3)0.19541 (10)0.0398 (5)
C70.38440 (16)0.6220 (3)0.25016 (11)0.0417 (5)
H70.40560.74710.25540.050*
C80.34130 (15)0.5416 (3)0.29733 (10)0.0354 (5)
H80.33390.61220.33370.042*
C90.4445 (2)0.6079 (5)0.14447 (13)0.0597 (7)
H9A0.40000.60370.10140.090*
H9B0.50270.53830.14330.090*
H9C0.46130.73720.15640.090*
C100.20889 (15)0.6202 (3)0.60898 (9)0.0345 (5)
H100.27270.58030.62700.041*
C110.14933 (17)0.6676 (3)0.65179 (10)0.0407 (5)
H110.17380.65950.69760.049*
C120.05523 (16)0.7258 (3)0.62636 (11)0.0376 (5)
H120.01510.75540.65470.045*
C130.01946 (14)0.7407 (3)0.55693 (10)0.0304 (4)
C140.07680 (15)0.8059 (3)0.52450 (11)0.0371 (5)
H140.12090.83610.55000.044*
C150.10434 (14)0.8240 (3)0.45780 (11)0.0373 (5)
H150.16720.86620.43810.045*
C160.03842 (14)0.7795 (3)0.41629 (10)0.0318 (4)
C170.05995 (16)0.8052 (3)0.34695 (11)0.0405 (5)
H170.12130.84840.32430.049*
C180.00994 (17)0.7661 (4)0.31331 (11)0.0449 (6)
H180.00270.78780.26770.054*
C190.10062 (16)0.6933 (3)0.34718 (10)0.0394 (5)
H190.14720.66670.32330.047*
C200.05477 (13)0.7091 (3)0.44656 (9)0.0265 (4)
C210.08421 (13)0.6912 (3)0.51756 (9)0.0255 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02506 (13)0.03777 (15)0.01906 (12)0.00538 (10)0.00617 (9)0.00056 (9)
S10.0249 (2)0.0364 (3)0.0212 (2)0.00450 (19)0.00735 (18)0.00286 (19)
O10.0349 (8)0.0548 (10)0.0217 (7)0.0140 (7)0.0039 (6)0.0026 (6)
O20.0281 (7)0.0573 (10)0.0331 (8)0.0079 (7)0.0001 (6)0.0035 (7)
O30.0231 (7)0.0672 (11)0.0296 (7)0.0047 (7)0.0052 (6)0.0070 (7)
O40.0549 (9)0.0337 (8)0.0325 (8)0.0083 (7)0.0112 (7)0.0030 (6)
O50.0338 (8)0.0421 (9)0.0539 (10)0.0004 (7)0.0121 (7)0.0114 (7)
N10.0222 (8)0.0404 (10)0.0206 (8)0.0022 (7)0.0048 (6)0.0032 (7)
N20.0301 (8)0.0303 (9)0.0240 (8)0.0005 (7)0.0087 (6)0.0003 (7)
N30.0291 (8)0.0365 (9)0.0230 (8)0.0037 (7)0.0068 (6)0.0020 (7)
C10.0259 (10)0.0330 (11)0.0259 (9)0.0018 (8)0.0065 (8)0.0036 (8)
C20.0245 (9)0.0353 (11)0.0291 (10)0.0014 (8)0.0066 (8)0.0037 (8)
C30.0229 (9)0.0372 (11)0.0210 (9)0.0001 (8)0.0056 (7)0.0006 (8)
C40.0428 (12)0.0423 (12)0.0310 (11)0.0082 (10)0.0146 (9)0.0100 (9)
C50.0451 (13)0.0600 (15)0.0283 (11)0.0037 (11)0.0185 (9)0.0091 (10)
C60.0317 (11)0.0587 (15)0.0313 (11)0.0005 (10)0.0120 (9)0.0079 (10)
C70.0460 (13)0.0399 (12)0.0413 (12)0.0065 (10)0.0145 (10)0.0042 (10)
C80.0403 (11)0.0390 (12)0.0296 (10)0.0014 (9)0.0134 (9)0.0039 (9)
C90.0604 (16)0.0773 (19)0.0500 (15)0.0056 (14)0.0299 (13)0.0149 (14)
C100.0370 (11)0.0415 (12)0.0248 (10)0.0012 (9)0.0071 (8)0.0007 (9)
C110.0521 (13)0.0482 (13)0.0248 (10)0.0024 (11)0.0150 (9)0.0014 (9)
C120.0460 (13)0.0381 (12)0.0365 (11)0.0029 (10)0.0252 (10)0.0042 (9)
C130.0338 (10)0.0249 (10)0.0369 (11)0.0049 (8)0.0172 (9)0.0036 (8)
C140.0315 (11)0.0321 (11)0.0542 (14)0.0019 (9)0.0233 (10)0.0034 (10)
C150.0228 (10)0.0334 (11)0.0560 (14)0.0005 (8)0.0098 (9)0.0008 (10)
C160.0266 (10)0.0263 (10)0.0406 (11)0.0018 (8)0.0044 (8)0.0014 (8)
C170.0322 (11)0.0408 (12)0.0415 (12)0.0042 (9)0.0051 (9)0.0015 (10)
C180.0475 (13)0.0553 (15)0.0266 (11)0.0079 (11)0.0017 (9)0.0049 (10)
C190.0413 (12)0.0509 (13)0.0262 (10)0.0083 (10)0.0087 (9)0.0037 (9)
C200.0263 (9)0.0237 (9)0.0299 (10)0.0018 (7)0.0075 (8)0.0010 (8)
C210.0272 (9)0.0225 (9)0.0287 (9)0.0029 (7)0.0101 (8)0.0017 (7)
Geometric parameters (Å, º) top
Cu1—O11.9269 (13)C6—C91.512 (3)
Cu1—N11.9916 (16)C7—C81.388 (3)
Cu1—N32.0429 (16)C7—H70.9300
Cu1—N22.0435 (15)C8—H80.9300
Cu1—O52.2296 (15)C9—H9A0.9600
S1—O31.4490 (14)C9—H9B0.9600
S1—O41.4557 (16)C9—H9C0.9600
S1—N11.5697 (15)C10—C111.398 (3)
S1—C31.7812 (19)C10—H100.9300
O1—C11.282 (2)C11—C121.367 (3)
O2—C11.233 (2)C11—H110.9300
O5—H1W0.8499C12—C131.409 (3)
O5—H2W0.8500C12—H120.9300
N1—C21.480 (2)C13—C211.404 (3)
N2—C101.331 (2)C13—C141.437 (3)
N2—C211.356 (2)C14—C151.348 (3)
N3—C191.329 (2)C14—H140.9300
N3—C201.360 (2)C15—C161.442 (3)
C1—C21.509 (3)C15—H150.9300
C2—H2A0.9700C16—C201.403 (3)
C2—H2B0.9700C16—C171.406 (3)
C3—C81.384 (3)C17—C181.363 (3)
C3—C41.389 (3)C17—H170.9300
C4—C51.386 (3)C18—C191.399 (3)
C4—H40.9300C18—H180.9300
C5—C61.388 (3)C19—H190.9300
C5—H5A0.9300C20—C211.434 (3)
C6—C71.387 (3)
O1—Cu1—N183.32 (6)C5—C6—C9120.5 (2)
O1—Cu1—N3169.34 (6)C6—C7—C8121.6 (2)
N1—Cu1—N3106.60 (6)C6—C7—H7119.2
O1—Cu1—N288.83 (6)C8—C7—H7119.2
N1—Cu1—N2152.58 (7)C3—C8—C7119.55 (19)
N3—Cu1—N280.56 (6)C3—C8—H8120.2
O1—Cu1—O591.97 (6)C7—C8—H8120.2
N1—Cu1—O5104.91 (6)C6—C9—H9A109.5
N3—Cu1—O589.24 (6)C6—C9—H9B109.5
N2—Cu1—O5101.57 (6)H9A—C9—H9B109.5
O3—S1—O4114.99 (9)C6—C9—H9C109.5
O3—S1—N1108.57 (8)H9A—C9—H9C109.5
O4—S1—N1112.86 (9)H9B—C9—H9C109.5
O3—S1—C3106.66 (9)N2—C10—C11121.93 (19)
O4—S1—C3105.09 (9)N2—C10—H10119.0
N1—S1—C3108.24 (9)C11—C10—H10119.0
C1—O1—Cu1116.31 (12)C12—C11—C10120.06 (19)
Cu1—O5—H1W109.7C12—C11—H11120.0
Cu1—O5—H2W120.0C10—C11—H11120.0
H1W—O5—H2W105.2C11—C12—C13119.51 (18)
C2—N1—S1114.99 (12)C11—C12—H12120.2
C2—N1—Cu1109.52 (11)C13—C12—H12120.2
S1—N1—Cu1135.20 (9)C21—C13—C12116.76 (18)
C10—N2—C21118.35 (16)C21—C13—C14118.63 (18)
C10—N2—Cu1128.54 (14)C12—C13—C14124.61 (18)
C21—N2—Cu1112.89 (12)C15—C14—C13121.15 (19)
C19—N3—C20117.69 (17)C15—C14—H14119.4
C19—N3—Cu1129.57 (14)C13—C14—H14119.4
C20—N3—Cu1112.74 (12)C14—C15—C16121.40 (19)
O2—C1—O1123.55 (18)C14—C15—H15119.3
O2—C1—C2119.62 (17)C16—C15—H15119.3
O1—C1—C2116.82 (16)C20—C16—C17116.87 (18)
N1—C2—C1109.72 (15)C20—C16—C15118.53 (19)
N1—C2—H2A109.7C17—C16—C15124.58 (19)
C1—C2—H2A109.7C18—C17—C16119.32 (19)
N1—C2—H2B109.7C18—C17—H17120.3
C1—C2—H2B109.7C16—C17—H17120.3
H2A—C2—H2B108.2C17—C18—C19120.1 (2)
C8—C3—C4119.75 (18)C17—C18—H18119.9
C8—C3—S1120.27 (14)C19—C18—H18119.9
C4—C3—S1119.96 (16)N3—C19—C18122.3 (2)
C5—C4—C3119.9 (2)N3—C19—H19118.9
C5—C4—H4120.1C18—C19—H19118.9
C3—C4—H4120.1N3—C20—C16123.56 (17)
C4—C5—C6121.2 (2)N3—C20—C21116.46 (16)
C4—C5—H5A119.4C16—C20—C21119.94 (17)
C6—C5—H5A119.4N2—C21—C13123.37 (17)
C7—C6—C5118.00 (19)N2—C21—C20116.33 (16)
C7—C6—C9121.4 (2)C13—C21—C20120.28 (17)
N1—Cu1—O1—C115.55 (14)S1—C3—C4—C5177.14 (16)
N3—Cu1—O1—C1174.4 (3)C3—C4—C5—C60.0 (3)
N2—Cu1—O1—C1169.23 (15)C4—C5—C6—C71.1 (3)
O5—Cu1—O1—C189.23 (15)C4—C5—C6—C9179.5 (2)
O3—S1—N1—C2173.74 (14)C5—C6—C7—C81.1 (3)
O4—S1—N1—C245.04 (16)C9—C6—C7—C8179.4 (2)
C3—S1—N1—C270.84 (16)C4—C3—C8—C71.3 (3)
O3—S1—N1—Cu113.30 (17)S1—C3—C8—C7177.10 (16)
O4—S1—N1—Cu1142.00 (13)C6—C7—C8—C30.1 (3)
C3—S1—N1—Cu1102.13 (14)C21—N2—C10—C110.9 (3)
O1—Cu1—N1—C218.70 (12)Cu1—N2—C10—C11173.35 (16)
N3—Cu1—N1—C2165.30 (12)N2—C10—C11—C120.3 (3)
N2—Cu1—N1—C293.00 (17)C10—C11—C12—C131.1 (3)
O5—Cu1—N1—C271.57 (13)C11—C12—C13—C210.8 (3)
O1—Cu1—N1—S1168.06 (15)C11—C12—C13—C14177.9 (2)
N3—Cu1—N1—S17.94 (16)C21—C13—C14—C151.6 (3)
N2—Cu1—N1—S193.76 (18)C12—C13—C14—C15177.1 (2)
O5—Cu1—N1—S1101.67 (14)C13—C14—C15—C160.2 (3)
O1—Cu1—N2—C102.40 (18)C14—C15—C16—C202.4 (3)
N1—Cu1—N2—C1075.4 (2)C14—C15—C16—C17176.2 (2)
N3—Cu1—N2—C10176.63 (19)C20—C16—C17—C181.6 (3)
O5—Cu1—N2—C1089.37 (18)C15—C16—C17—C18177.0 (2)
O1—Cu1—N2—C21172.10 (14)C16—C17—C18—C192.8 (4)
N1—Cu1—N2—C2199.09 (17)C20—N3—C19—C183.0 (3)
N3—Cu1—N2—C218.87 (13)Cu1—N3—C19—C18176.61 (17)
O5—Cu1—N2—C2196.13 (13)C17—C18—C19—N30.4 (4)
O1—Cu1—N3—C19166.8 (3)C19—N3—C20—C164.2 (3)
N1—Cu1—N3—C1935.2 (2)Cu1—N3—C20—C16175.48 (15)
N2—Cu1—N3—C19172.0 (2)C19—N3—C20—C21173.60 (18)
O5—Cu1—N3—C1970.10 (19)Cu1—N3—C20—C216.7 (2)
O1—Cu1—N3—C2013.6 (4)C17—C16—C20—N31.9 (3)
N1—Cu1—N3—C20144.41 (13)C15—C16—C20—N3179.39 (18)
N2—Cu1—N3—C208.39 (13)C17—C16—C20—C21175.84 (18)
O5—Cu1—N3—C20110.25 (13)C15—C16—C20—C212.9 (3)
Cu1—O1—C1—O2171.25 (16)C10—N2—C21—C131.2 (3)
Cu1—O1—C1—C28.1 (2)Cu1—N2—C21—C13173.90 (14)
S1—N1—C2—C1166.30 (13)C10—N2—C21—C20176.91 (17)
Cu1—N1—C2—C118.95 (19)Cu1—N2—C21—C208.0 (2)
O2—C1—C2—N1172.71 (18)C12—C13—C21—N20.4 (3)
O1—C1—C2—N17.9 (2)C14—C13—C21—N2179.15 (18)
O3—S1—C3—C885.06 (17)C12—C13—C21—C20177.67 (18)
O4—S1—C3—C8152.43 (16)C14—C13—C21—C201.1 (3)
N1—S1—C3—C831.60 (19)N3—C20—C21—N20.9 (3)
O3—S1—C3—C493.29 (18)C16—C20—C21—N2177.04 (17)
O4—S1—C3—C429.22 (19)N3—C20—C21—C13179.05 (17)
N1—S1—C3—C4150.05 (16)C16—C20—C21—C131.2 (3)
C8—C3—C4—C51.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···O2i0.851.872.717 (2)175
O5—H2W···O4ii0.852.002.847 (2)174
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C9H9NO4S)(C12H8N2)(H2O)]
Mr488.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.0788 (11), 7.0588 (6), 20.6993 (17)
β (°) 103.826 (1)
V3)1997.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.32 × 0.29 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.693, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
14609, 3713, 3341
Rint0.019
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.065, 1.06
No. of reflections3713
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.30

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···O2i0.851.872.717 (2)175.2
O5—H2W···O4ii0.852.002.847 (2)173.7
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the Education Department Foundation of Fujian Province of China (grant No. 2008 F5053) and the Master Construction Project of Quanzhou Normal University.

References

First citationAntolini, L., Menabue, L. & Saladini, M. (1985). Inorg. Chem. 24, 1219–1222.  CSD CrossRef CAS Web of Science Google Scholar
First citationBattaglia, L. P., Bonamartini Corradi, A., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1983). Inorg. Chem. 22, 1902–1906.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiang, F.-P., Chen, M.-S., Hu, R.-X. & Chen, Z.-L. (2004). Acta Cryst. C60, m269–m271.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMa, L. F., Wang, L. Y., Huo, X. K., Wang, Y. Y., Fan, Y. T., Wang, J. G. & Chen, S. H. (2008). Cryst. Growth Des. 8, 620–628.  Web of Science CSD CrossRef CAS Google Scholar
First citationMenabue, L. & Saladini, M. (1991). Inorg. Chem. 30, 1651–1655.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds