metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1343-m1344

catena-Poly[cobalt(II)-bis­­(μ-2-amino­ethane­sulfonato)-κ3N,O:O′;κ3O:N,O′]

aKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry Education of China), School of Chemistry & Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, and bDepartment of Chemistry and Life Science, Hechi University, Yizhou, Guangxi 546300, People's Republic of People's Republic of China
*Correspondence e-mail: yangfenggx_2010@163.com

(Received 15 September 2010; accepted 26 September 2010; online 30 September 2010)

The hydro­thermally prepared title compound, [Co(C2H6NO3S)2]n, is isotypic with its NiII analogue. The CoII cation is in a distorted octa­hedral environment, coordinated by four sulfonate O atoms and two N atoms from the taurine ligands. In comparison with the NiII analogue, the Co—N and Co—O bonds are longer than the Ni—N and Ni—O bonds, whereas all other bond lengths and angles as well as the hydrogen-bonding motifs are very similar in the two structures. The sulfonate groups doubly bridge symmetry-related CoII atoms, forming polymeric chains along the a axis. N—H⋯O hydrogen bonding interactions consolidate the crystal packing.

Related literature

For the isotypic NiII structure, see: Yang et al. (2010[Yang, F., Wu, Z.-H. & Cai, J.-H. (2010). Acta Cryst. E66, m748.]). For general background to taurine complexes and their derivatives, see: Bottari & Festa (1998[Bottari, E. & Festa, M. R. (1998). Talanta, 46, 91-99.]); Zhang & Jiang (2002[Zhang, S. H. & Jiang, Y. M. (2002). Chin. J. Inorg. Chem. 18, 497-500.]); Zhong et al. (2003[Zhong, F., Jiang, Y. M. & Zhang, S. H. (2003). Chin. J. Inorg. Chem. 6, 559-602.]); Cai et al. (2004[Cai, J.-H., Jiang, Y.-M., Wang, X.-J. & Liu, Z.-M. (2004). Acta Cryst. E60, m1659-m1661.]); Jiang et al. (2005[Jiang, Y.-M., Cai, J.-H., Liu, Z.-M. & Liu, X.-H. (2005). Acta Cryst. E61, m878-m880.]); Cai et al. (2006[Cai, J.-H., Jiang, Y.-M. & Ng, S. W. (2006). Acta Cryst. E62, m3059-m3061.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C2H6NO3S)2]

  • Mr = 307.21

  • Monoclinic, P 21 /n

  • a = 5.139 (2) Å

  • b = 8.278 (4) Å

  • c = 11.737 (5) Å

  • β = 97.542 (6)°

  • V = 495.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.17 mm−1

  • T = 293 K

  • 0.45 × 0.25 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.527, Tmax = 0.805

  • 2173 measured reflections

  • 974 independent reflections

  • 931 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.11

  • 974 reflections

  • 77 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N1i 2.112 (2)
Co1—N1ii 2.112 (2)
Co1—O1i 2.1231 (18)
Co1—O1ii 2.1231 (18)
Co1—O2 2.1473 (18)
Co1—O2iii 2.1473 (18)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+2, -z+2; (iii) -x, -y+2, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O3iv 0.86 (3) 2.43 (3) 3.148 (3) 142 (3)
N1—H1D⋯O3v 0.86 (3) 2.35 (3) 3.135 (3) 151 (3)
Symmetry codes: (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Taurine, an amino acid containing sulfur, is indispensable to human beings because of its important physiological functions (Bottari & Festa, 1998). Some metal complexes of the deprotonated sulfonic acid-type amino-acid taurine, C2H6NO3S-, have been reported (Cai et al., 2004; Jiang et al., 2005; Cai et al., 2006). As part of our investigations into novel structures of taurine complex, we have synthesized the title compound, a new CoII complex.

The coordinated modes of the title compound are similar to our previously reported NiII structure (Yang et al., 2010). As shown in Fig. 1, the CoII atom is coordinated by four sulfonate O atoms and to two N atoms of the taurine ligands, displaying a distorted octahedral coordination geometry. Neighbouring CoII atoms are bridged by two sulfonate anions to form zigzag polymeric chains along the a axis, as shown in Fig. 2. The polymeric chain has a repeat unit formed by two taurine ligands and two CoII atoms related by an inversion centre, which coincides with the centre of the eight-membered Co2S2O4 ring. The shortest distance between two Co atoms is 5.139 (6) Å.

In the structure of the title compound there are two symmetry-independent 'active' H atoms; both of them belong to the NH2 group of the taurine ligand. They form intramolecular hydrogen bonds with sulfonate atom O3.

Related literature top

For the isotypic NiII structure, see: Yang et al. (2010). For general background to taurine complexes and their derivatives, see: Bottari & Festa (1998); Zhang & Jiang (2002); Zhong et al. (2003); Cai et al. (2004); Jiang et al. (2005); Cai et al. (2006).

Experimental top

A solution of taurine (1.0 mmol) and KOH (1.0 mmol) in anhydrous methanol (10 ml) was added slowly to a solution of Co(CH3COO)2 (1.0 mmol) in anhydrous methanol (10 ml). After stirring for 10 min, it was then dropped into a 25 ml Teflon-lined stainless steel reactor and heated at 383 K for six days. Thereafter, the reactor was slowly cooled to room temperature and pink block-shaped crystals suitable for X-ray diffraction were collected.

Refinement top

The H atoms bound to C atoms were positioned geometrically with C—H = 0.97 Å and included in the refinement in the riding-model approximation with Uiso(H) = 1.2Ueq(C). The H atoms bound to N were located in a difference Fourier map and freely refined with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A segment of the polymeric structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms)
[Figure 2] Fig. 2. The one-dimensional polymeric chain of the title complex
catena-Poly[cobalt(II)-bis(µ-2-aminoethanesulfonato)- κ3N,O:O';κ3O:N,O'] top
Crystal data top
[Co(C2H6NO3S)2]F(000) = 314
Mr = 307.21Dx = 2.061 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 717 reflections
a = 5.139 (2) Åθ = 2.5–27.6°
b = 8.278 (4) ŵ = 2.17 mm1
c = 11.737 (5) ÅT = 293 K
β = 97.542 (6)°Prism, red
V = 495.0 (4) Å30.45 × 0.25 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
974 independent reflections
Radiation source: fine-focus sealed tube931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 56
Tmin = 0.527, Tmax = 0.805k = 1010
2173 measured reflectionsl = 1411
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.269P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.004
974 reflectionsΔρmax = 0.61 e Å3
77 parametersΔρmin = 0.74 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.060 (5)
Crystal data top
[Co(C2H6NO3S)2]V = 495.0 (4) Å3
Mr = 307.21Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.139 (2) ŵ = 2.17 mm1
b = 8.278 (4) ÅT = 293 K
c = 11.737 (5) Å0.45 × 0.25 × 0.10 mm
β = 97.542 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
974 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
931 reflections with I > 2σ(I)
Tmin = 0.527, Tmax = 0.805Rint = 0.032
2173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.61 e Å3
974 reflectionsΔρmin = 0.74 e Å3
77 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00001.00001.00000.0180 (2)
S10.46596 (10)0.95782 (7)0.81328 (4)0.0169 (2)
O10.6587 (3)1.0572 (2)0.88479 (14)0.0225 (4)
O20.2126 (3)0.9583 (3)0.85700 (15)0.0258 (4)
O30.4389 (4)1.0020 (2)0.69293 (16)0.0270 (5)
C10.5838 (5)0.7567 (3)0.82176 (19)0.0235 (5)
H1A0.45060.68680.78160.028*
H1B0.73770.75020.78220.028*
C20.6547 (4)0.6942 (3)0.9429 (2)0.0239 (5)
H2A0.52600.73170.99040.029*
H2B0.65080.57710.94230.029*
N10.9179 (4)0.7500 (3)0.99249 (18)0.0209 (4)
H1C1.028 (6)0.708 (4)0.952 (3)0.025*
H1D0.958 (5)0.710 (4)1.060 (3)0.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0176 (3)0.0184 (3)0.0184 (3)0.00135 (15)0.00344 (18)0.00035 (15)
S10.0165 (3)0.0198 (3)0.0151 (3)0.0000 (2)0.0049 (2)0.0009 (2)
O10.0242 (8)0.0185 (8)0.0244 (8)0.0001 (7)0.0018 (6)0.0018 (7)
O20.0201 (9)0.0356 (10)0.0236 (9)0.0009 (7)0.0094 (7)0.0004 (7)
O30.0310 (10)0.0332 (11)0.0176 (9)0.0002 (7)0.0060 (7)0.0020 (6)
C10.0257 (12)0.0195 (11)0.0251 (12)0.0017 (9)0.0029 (9)0.0067 (9)
C20.0247 (12)0.0182 (11)0.0299 (12)0.0026 (9)0.0083 (9)0.0021 (9)
N10.0229 (10)0.0208 (10)0.0195 (9)0.0010 (9)0.0042 (7)0.0016 (8)
Geometric parameters (Å, º) top
Co1—N1i2.112 (2)O1—Co1iv2.1231 (18)
Co1—N1ii2.112 (2)C1—C21.512 (3)
Co1—O1i2.1231 (18)C1—H1A0.9700
Co1—O1ii2.1231 (18)C1—H1B0.9700
Co1—O22.1473 (18)C2—N11.475 (3)
Co1—O2iii2.1473 (18)C2—H2A0.9700
S1—O31.4481 (19)C2—H2B0.9700
S1—O21.4610 (17)N1—Co1iv2.112 (2)
S1—O11.4642 (18)N1—H1C0.86 (3)
S1—C11.769 (3)N1—H1D0.86 (3)
N1i—Co1—N1ii180.000 (1)S1—O1—Co1iv132.83 (11)
N1i—Co1—O1i92.76 (7)S1—O2—Co1147.49 (11)
N1ii—Co1—O1i87.24 (7)C2—C1—S1114.40 (16)
N1i—Co1—O1ii87.24 (7)C2—C1—H1A108.7
N1ii—Co1—O1ii92.76 (7)S1—C1—H1A108.7
O1i—Co1—O1ii180.000 (1)C2—C1—H1B108.7
N1i—Co1—O285.93 (8)S1—C1—H1B108.7
N1ii—Co1—O294.07 (8)H1A—C1—H1B107.6
O1i—Co1—O290.03 (7)N1—C2—C1111.05 (18)
O1ii—Co1—O289.97 (7)N1—C2—H2A109.4
N1i—Co1—O2iii94.07 (8)C1—C2—H2A109.4
N1ii—Co1—O2iii85.93 (8)N1—C2—H2B109.4
O1i—Co1—O2iii89.97 (7)C1—C2—H2B109.4
O1ii—Co1—O2iii90.03 (7)H2A—C2—H2B108.0
O2—Co1—O2iii180.000 (1)C2—N1—Co1iv119.40 (15)
O3—S1—O2111.46 (11)C2—N1—H1C107 (2)
O3—S1—O1112.86 (11)Co1iv—N1—H1C106 (2)
O2—S1—O1111.35 (11)C2—N1—H1D109.7 (19)
O3—S1—C1106.30 (10)Co1iv—N1—H1D109 (2)
O2—S1—C1107.27 (12)H1C—N1—H1D105 (3)
O1—S1—C1107.20 (11)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+2; (iii) x, y+2, z+2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O3v0.86 (3)2.43 (3)3.148 (3)142 (3)
N1—H1D···O3vi0.86 (3)2.35 (3)3.135 (3)151 (3)
Symmetry codes: (v) x+3/2, y1/2, z+3/2; (vi) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C2H6NO3S)2]
Mr307.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.139 (2), 8.278 (4), 11.737 (5)
β (°) 97.542 (6)
V3)495.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.17
Crystal size (mm)0.45 × 0.25 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.527, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
2173, 974, 931
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.11
No. of reflections974
No. of parameters77
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.74

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—N1i2.112 (2)Co1—O1ii2.1231 (18)
Co1—N1ii2.112 (2)Co1—O22.1473 (18)
Co1—O1i2.1231 (18)Co1—O2iii2.1473 (18)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+2; (iii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O3iv0.86 (3)2.43 (3)3.148 (3)142 (3)
N1—H1D···O3v0.86 (3)2.35 (3)3.135 (3)151 (3)
Symmetry codes: (iv) x+3/2, y1/2, z+3/2; (v) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

We are grateful to the Youth Fundation of Guangxi Province (No. 0832090) for funding this study. We also thank the Start-up Foundation for Advanced Talents of Hechi University (No. 2008QS-N019)

References

First citationBottari, E. & Festa, M. R. (1998). Talanta, 46, 91–99.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, J.-H., Jiang, Y.-M. & Ng, S. W. (2006). Acta Cryst. E62, m3059–m3061.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCai, J.-H., Jiang, Y.-M., Wang, X.-J. & Liu, Z.-M. (2004). Acta Cryst. E60, m1659–m1661.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiang, Y.-M., Cai, J.-H., Liu, Z.-M. & Liu, X.-H. (2005). Acta Cryst. E61, m878–m880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, F., Wu, Z.-H. & Cai, J.-H. (2010). Acta Cryst. E66, m748.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S. H. & Jiang, Y. M. (2002). Chin. J. Inorg. Chem. 18, 497–500.  CAS Google Scholar
First citationZhong, F., Jiang, Y. M. & Zhang, S. H. (2003). Chin. J. Inorg. Chem. 6, 559–602.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1343-m1344

***

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds