organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-1-(Furan-2-ylmeth­yl)-N-nitro-5-(oxolan-2-ylmeth­yl)-1,3,5-triazinan-2-imine

aDepartment of Chemistry, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
*Correspondence e-mail: maxubo6688@yahoo.com.cn

(Received 1 September 2010; accepted 13 September 2010; online 18 September 2010)

In the title compound C13H19N5O4, which belongs to the insecticidally active neonicotinoid group of compounds, the triazane ring exhibits a half-chair conformation. The large discrepancy between the two nitro O—N—N bond angles [116.1 (2) and 123.98 (19)°] may be attributed to intra­molecular N—H⋯O hydrogen bonding involving one of the nitro O atoms as the acceptor. The delocalization of the electrons extends as far as the nitro group, forming coplanar π-electron networks. In the crystal, inversion dimers lined by pairs of N—H⋯O hydrogen bonds occur.

Related literature

For general background to neonicotinoids, see: Kagabu et al. (2005[Kagabu, S., Ito, N., Imai, R., Hieta, Y. & Nishimura, K. (2005). J. Pestic. Sci. 30, 409-413.]); Peter & Ralf (2008[Peter, J. & Ralf, N. (2008). J. Pest. Manag. Sci. A, 64, 1064-1098.]); Riley & Merz (2007[Riley, K. E. Jr & Merz, K. M. (2007). J. Phys. Chem. A, 111, 1688-1694.]); Tian et al. (2007[Tian, Z. Z., Jiang, Z. X., Li, Z., Song, G. H. & Huang, Q. C. (2007). J. Agric. Food Chem. 55, 143-147.]); Tomizawa et al. (2000[Tomizawa, M., Lee, D. L. & Casida, J. E. (2000). J. Agric. Food Chem. 48, 6016-6024.]). For the synthesis, see: Zhu et al. (2010[Zhu, J., Xue, S. J., Wang, H. F., Yang, D. R. & Jin, J. (2010). Chin. J. Struct. Chem. 29, 400-406.]).

[Scheme 1]

Experimental

Crystal data
  • C13H19N5O4

  • Mr = 309.33

  • Monoclinic, P 21 /n

  • a = 11.1898 (12) Å

  • b = 9.262 (1) Å

  • c = 14.4863 (15) Å

  • β = 99.276 (2)°

  • V = 1481.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 9196 measured reflections

  • 2902 independent reflections

  • 2615 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.164

  • S = 1.18

  • 2902 reflections

  • 202 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.82 (3) 1.97 (3) 2.563 (3) 128 (2)
N2—H2⋯O1i 0.82 (3) 2.43 (3) 3.035 (3) 132 (2)
Symmetry code: (i) -x, -y+2, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the neonicotinoids have been the fastest-growing class of insecticides used in modern crop protection (Tomizawa et al., 2000; Kagabu et al., 2005; Tian et al., 2007; Peter & Ralf, 2008). We report here crystal structure of one of these compounds, C13H19N5O4, the title compound (I). In the structure of (I) (Fig. 1), the triazine ring exhibits a half-chair conformation with a dihedral angle of 50.62° between plane A (C8, N3, C7, N2, C6) and plane B (C6, N1, C8). The bond angles C8–N1–C6, N1–C6–N2, C6–N2–C7, N2–C7–N3, C7–N3–C8 and N3–C8–N1 are 108.15 (19), 111.20 (18), 122.69 (19), 118.54 (19), 119.94 (18) and 111.98 (18)° respectively, in turn indicating asymmetry and strong tensility in the 1,3,5-hexahydrotriazine ring. The large discrepancy between the nitro O3–N5–N4 and O4–N5–N4 bond angles [116.1 (2) and 123.98 (19)° respectively] may be attributed to the intramolecular N2–H···O3 hydrogen bond (Table 1). There is also a single intermolecular N–H···O hydrogen bond associated with N2 (Fig. 2).

Interestingly, due to the transfer of the lone-pair of electrons from the hetero-N atoms to the C7N4 double bond, the C7–N2 and C7–N3 bond lengths (1.327 (3) Å and 1.338 (3) Å), are both remarkably shorter than the pure C–N single bond (1.49 Å), but close to the CC value (1.33 Å). The delocalization of the electrons extends as far as the electron-withdrawing nitro group, forming a coplanar π-electron network. A six-membered plane C (C7, N4, N5, O3, H2 and N2) is established by the intramolecular N2–H···O3 hydrogen bond. In addition, planes A and C form an enlarged plane D (comprising C6, C8, N3, C7, N2, H2, N4, O3 and O4).

Related literature top

For general background to neonicotinoids, see: Kagabu et al. (2005); Peter & Ralf (2008); Riley & Merz (2007); Tian et al. (2007); Tomizawa et al. (2000). For the synthesis, see: Zhu et al. (2010).

Experimental top

The title compound was prepared by the literature method (Zhu et al., 2010) and was recrystallized from ethanol-water (10:1), giving colorless crystals (yield 79.6%). 1HNMR(CDCl3, 400 Hz): 9.61 (1H, s, NH), 7.37–7.36 (2H, d, J = 0.8 Hz, furan—H), 6.38–6.34 (3H,m,furan—H), 4.49–4.47(6H, m, CH2—furan, triazine–H), 3.97–3.85 (2H, m, CH2—tetrahydrofuran), 3.53–3.12 (3H, m, tetrahydrofuran—H) 1.86–1.64(4H, m, tetrahydrofuran—H); IR(KBr, cm-1) 3278(N—H), 1588 (CN), 1195 (C—O—C), 1060 (C—N), Anal.: calcd. for C13H19N5O4: C 50.48, H 6.19, N 22.64%; found, C 51.03, H 6.17, N 22.75%.

Refinement top

H atoms bonded to C were positioned geometrically [C—H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.98Å (methine)] and refined in riding modes [Uiso(H) = 1.2Ueq(C). H atoms bonded to N were found in Fourier difference maps and refined with the constraints of N—H = 0.82 (3)Å and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme with non-H atoms shown as 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A perspective view of the packing of the title compound (I). Hydrogen bonds are shown as dashed lines.
rac-1-(Furan-2-ylmethyl)-N-nitro-5-(oxolan-2-ylmethyl)- 1,3,5-triazinan-2-imine top
Crystal data top
C13H19N5O4F(000) = 656
Mr = 309.33Dx = 1.387 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4051 reflections
a = 11.1898 (12) Åθ = 2.5–28.3°
b = 9.262 (1) ŵ = 0.11 mm1
c = 14.4863 (15) ÅT = 298 K
β = 99.276 (2)°Block, colorless
V = 1481.7 (3) Å30.16 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2615 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 26.0°, θmin = 2.1°
ϕ and ω scansh = 1213
9196 measured reflectionsk = 911
2902 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.7103P]
where P = (Fo2 + 2Fc2)/3
2902 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H19N5O4V = 1481.7 (3) Å3
Mr = 309.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1898 (12) ŵ = 0.11 mm1
b = 9.262 (1) ÅT = 298 K
c = 14.4863 (15) Å0.16 × 0.12 × 0.10 mm
β = 99.276 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2615 reflections with I > 2σ(I)
9196 measured reflectionsRint = 0.054
2902 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.34 e Å3
2902 reflectionsΔρmin = 0.21 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1890 (2)1.0871 (3)0.01634 (16)0.0487 (6)
H10.12621.05890.06840.058*
C20.2996 (3)1.1394 (3)0.0536 (2)0.0696 (8)
H2A0.35681.06140.05610.084*
H2B0.27771.18020.11570.084*
C30.3511 (3)1.2516 (4)0.0146 (2)0.0736 (9)
H3A0.39241.32570.01560.088*
H3B0.40781.20940.06510.088*
C40.2436 (3)1.3124 (3)0.0502 (2)0.0615 (7)
H4A0.26301.33070.11690.074*
H4B0.21911.40270.01880.074*
C50.2134 (2)0.9639 (3)0.05245 (16)0.0473 (6)
H5A0.27920.99020.10170.057*
H5B0.14200.94680.08090.057*
C60.1429 (2)0.7399 (3)0.02488 (15)0.0482 (6)
H6A0.16630.66550.06560.058*
H6B0.07910.79700.06080.058*
C70.16647 (19)0.6493 (2)0.13610 (15)0.0382 (5)
C80.3341 (2)0.7465 (3)0.06578 (16)0.0476 (6)
H8A0.40250.80740.09000.057*
H8B0.36300.67050.02900.057*
C90.3679 (2)0.6694 (3)0.23428 (16)0.0532 (6)
H9A0.32670.62170.27980.064*
H9B0.38990.76570.25740.064*
C100.4795 (2)0.5882 (3)0.22556 (16)0.0482 (6)
C110.5939 (2)0.6300 (3)0.23025 (18)0.0540 (6)
H110.62330.72340.24080.065*
C120.6623 (2)0.5070 (4)0.2163 (2)0.0693 (8)
H120.74540.50360.21610.083*
C130.5869 (3)0.3982 (4)0.2035 (3)0.0808 (10)
H130.60810.30340.19250.097*
N10.24528 (17)0.8309 (2)0.00685 (12)0.0440 (5)
N20.09726 (18)0.6721 (2)0.05406 (13)0.0434 (5)
H20.024 (2)0.659 (3)0.0503 (18)0.052*
N30.28447 (16)0.6810 (2)0.14521 (12)0.0442 (5)
N40.13154 (16)0.5958 (2)0.21520 (13)0.0463 (5)
N50.01557 (17)0.5609 (2)0.21385 (14)0.0486 (5)
O10.14841 (15)1.20885 (19)0.03162 (12)0.0540 (5)
O20.47092 (18)0.4451 (2)0.20884 (18)0.0799 (7)
O30.06477 (17)0.5800 (3)0.14598 (15)0.0902 (8)
O40.00984 (17)0.5099 (2)0.28658 (14)0.0709 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0558 (14)0.0487 (14)0.0407 (12)0.0013 (11)0.0050 (10)0.0002 (10)
C20.092 (2)0.0565 (17)0.0706 (18)0.0087 (16)0.0424 (17)0.0028 (14)
C30.0628 (17)0.078 (2)0.084 (2)0.0169 (16)0.0242 (16)0.0094 (17)
C40.0651 (17)0.0516 (16)0.0669 (17)0.0046 (13)0.0075 (13)0.0092 (13)
C50.0543 (14)0.0514 (14)0.0384 (11)0.0023 (11)0.0141 (10)0.0002 (10)
C60.0558 (14)0.0530 (14)0.0361 (11)0.0010 (11)0.0086 (10)0.0008 (10)
C70.0385 (11)0.0360 (11)0.0409 (11)0.0031 (9)0.0088 (9)0.0005 (9)
C80.0448 (12)0.0543 (14)0.0470 (12)0.0011 (11)0.0175 (10)0.0064 (11)
C90.0432 (13)0.0758 (18)0.0407 (12)0.0032 (12)0.0072 (10)0.0061 (12)
C100.0418 (12)0.0613 (16)0.0393 (11)0.0063 (11)0.0004 (9)0.0113 (11)
C110.0406 (12)0.0648 (16)0.0580 (14)0.0129 (12)0.0121 (11)0.0088 (12)
C120.0416 (14)0.093 (2)0.0730 (18)0.0042 (15)0.0090 (13)0.0168 (17)
C130.0614 (18)0.069 (2)0.108 (3)0.0143 (17)0.0027 (17)0.0073 (19)
N10.0493 (11)0.0454 (11)0.0393 (9)0.0019 (9)0.0125 (8)0.0025 (8)
N20.0386 (10)0.0493 (12)0.0416 (10)0.0025 (9)0.0046 (8)0.0033 (8)
N30.0370 (10)0.0562 (12)0.0403 (10)0.0008 (8)0.0091 (8)0.0102 (8)
N40.0369 (10)0.0568 (12)0.0465 (10)0.0022 (9)0.0099 (8)0.0112 (9)
N50.0423 (11)0.0519 (12)0.0523 (12)0.0010 (9)0.0101 (9)0.0095 (9)
O10.0495 (10)0.0493 (10)0.0636 (11)0.0033 (8)0.0104 (8)0.0040 (8)
O20.0524 (12)0.0665 (14)0.1163 (19)0.0084 (10)0.0001 (11)0.0061 (12)
O30.0461 (11)0.154 (2)0.0675 (13)0.0258 (13)0.0006 (10)0.0314 (14)
O40.0549 (11)0.0947 (16)0.0677 (12)0.0047 (10)0.0235 (9)0.0345 (11)
Geometric parameters (Å, º) top
C1—O11.436 (3)C7—N41.362 (3)
C1—C21.508 (4)C8—N11.433 (3)
C1—C51.510 (3)C8—N31.485 (3)
C1—H10.9800C8—H8A0.9700
C2—C31.485 (4)C8—H8B0.9700
C2—H2A0.9700C9—N31.469 (3)
C2—H2B0.9700C9—C101.481 (3)
C3—C41.494 (4)C9—H9A0.9700
C3—H3A0.9700C9—H9B0.9700
C3—H3B0.9700C10—C111.329 (3)
C4—O11.426 (3)C10—O21.348 (3)
C4—H4A0.9700C11—C121.405 (4)
C4—H4B0.9700C11—H110.9300
C5—N11.469 (3)C12—C131.309 (4)
C5—H5A0.9700C12—H120.9300
C5—H5B0.9700C13—O21.382 (4)
C6—N11.436 (3)C13—H130.9300
C6—N21.467 (3)N2—H20.82 (3)
C6—H6A0.9700N4—N51.335 (3)
C6—H6B0.9700N5—O41.229 (3)
C7—N21.327 (3)N5—O31.233 (3)
C7—N31.338 (3)
O1—C1—C2105.2 (2)N1—C8—N3111.98 (18)
O1—C1—C5108.15 (18)N1—C8—H8A109.2
C2—C1—C5114.1 (2)N3—C8—H8A109.2
O1—C1—H1109.7N1—C8—H8B109.2
C2—C1—H1109.7N3—C8—H8B109.2
C5—C1—H1109.7H8A—C8—H8B107.9
C3—C2—C1103.8 (2)N3—C9—C10112.8 (2)
C3—C2—H2A111.0N3—C9—H9A109.0
C1—C2—H2A111.0C10—C9—H9A109.0
C3—C2—H2B111.0N3—C9—H9B109.0
C1—C2—H2B111.0C10—C9—H9B109.0
H2A—C2—H2B109.0H9A—C9—H9B107.8
C2—C3—C4104.2 (2)C11—C10—O2109.6 (2)
C2—C3—H3A110.9C11—C10—C9131.8 (3)
C4—C3—H3A110.9O2—C10—C9118.6 (2)
C2—C3—H3B110.9C10—C11—C12107.4 (3)
C4—C3—H3B110.9C10—C11—H11126.3
H3A—C3—H3B108.9C12—C11—H11126.3
O1—C4—C3107.4 (2)C13—C12—C11106.9 (3)
O1—C4—H4A110.2C13—C12—H12126.6
C3—C4—H4A110.2C11—C12—H12126.6
O1—C4—H4B110.2C12—C13—O2109.9 (3)
C3—C4—H4B110.2C12—C13—H13125.1
H4A—C4—H4B108.5O2—C13—H13125.1
N1—C5—C1111.59 (18)C8—N1—C6108.15 (19)
N1—C5—H5A109.3C8—N1—C5112.63 (19)
C1—C5—H5A109.3C6—N1—C5113.40 (19)
N1—C5—H5B109.3C7—N2—C6122.69 (19)
C1—C5—H5B109.3C7—N2—H2117.9 (18)
H5A—C5—H5B108.0C6—N2—H2118.7 (18)
N1—C6—N2111.20 (18)C7—N3—C9123.22 (18)
N1—C6—H6A109.4C7—N3—C8119.94 (18)
N2—C6—H6A109.4C9—N3—C8116.49 (18)
N1—C6—H6B109.4N5—N4—C7119.09 (19)
N2—C6—H6B109.4O4—N5—O3119.9 (2)
H6A—C6—H6B108.0O4—N5—N4116.1 (2)
N2—C7—N3118.54 (19)O3—N5—N4123.98 (19)
N2—C7—N4127.3 (2)C4—O1—C1109.54 (19)
N3—C7—N4114.15 (19)C10—O2—C13106.2 (2)
O1—C1—C2—C329.5 (3)N1—C6—N2—C725.4 (3)
C5—C1—C2—C388.8 (3)N2—C7—N3—C9175.7 (2)
C1—C2—C3—C430.1 (3)N4—C7—N3—C94.3 (3)
C2—C3—C4—O120.2 (3)N2—C7—N3—C82.8 (3)
O1—C1—C5—N1175.01 (18)N4—C7—N3—C8177.2 (2)
C2—C1—C5—N168.3 (3)C10—C9—N3—C7130.5 (2)
N3—C9—C10—C11110.1 (3)C10—C9—N3—C856.4 (3)
N3—C9—C10—O269.1 (3)N1—C8—N3—C728.7 (3)
O2—C10—C11—C120.3 (3)N1—C8—N3—C9144.7 (2)
C9—C10—C11—C12179.6 (2)N2—C7—N4—N50.1 (4)
C10—C11—C12—C130.3 (3)N3—C7—N4—N5179.9 (2)
C11—C12—C13—O20.2 (4)C7—N4—N5—O4178.3 (2)
N3—C8—N1—C656.5 (3)C7—N4—N5—O33.5 (4)
N3—C8—N1—C569.6 (2)C3—C4—O1—C11.6 (3)
N2—C6—N1—C854.5 (2)C2—C1—O1—C417.4 (3)
N2—C6—N1—C571.2 (2)C5—C1—O1—C4104.8 (2)
C1—C5—N1—C8144.4 (2)C11—C10—O2—C130.2 (3)
C1—C5—N1—C692.4 (2)C9—C10—O2—C13179.6 (2)
N3—C7—N2—C64.4 (3)C12—C13—O2—C100.0 (4)
N4—C7—N2—C6175.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.82 (3)1.97 (3)2.563 (3)128 (2)
N2—H2···O1i0.82 (3)2.43 (3)3.035 (3)132 (2)
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC13H19N5O4
Mr309.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.1898 (12), 9.262 (1), 14.4863 (15)
β (°) 99.276 (2)
V3)1481.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9196, 2902, 2615
Rint0.054
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.164, 1.18
No. of reflections2902
No. of parameters202
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.82 (3)1.97 (3)2.563 (3)128 (2)
N2—H2···O1i0.82 (3)2.43 (3)3.035 (3)132 (2)
Symmetry code: (i) x, y+2, z.
 

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKagabu, S., Ito, N., Imai, R., Hieta, Y. & Nishimura, K. (2005). J. Pestic. Sci. 30, 409–413.  Web of Science CrossRef CAS Google Scholar
First citationPeter, J. & Ralf, N. (2008). J. Pest. Manag. Sci. A, 64, 1064–1098.  Google Scholar
First citationRiley, K. E. Jr & Merz, K. M. (2007). J. Phys. Chem. A, 111, 1688–1694.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Z. Z., Jiang, Z. X., Li, Z., Song, G. H. & Huang, Q. C. (2007). J. Agric. Food Chem. 55, 143–147.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTomizawa, M., Lee, D. L. & Casida, J. E. (2000). J. Agric. Food Chem. 48, 6016–6024.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhu, J., Xue, S. J., Wang, H. F., Yang, D. R. & Jin, J. (2010). Chin. J. Struct. Chem. 29, 400–406.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds