metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,7-Di­hydro-5H-1,4-diazepino[1,2,3,4-lmn][1,10]phenanthroline-4,8-diium tris­­(thio­cyanato-κN)cuprate(I)

aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 September 2010; accepted 14 September 2010; online 18 September 2010)

The title copper(I) salt, (C15H14N2)[Cu(NCS)3], exists as non-inter­acting cations and trigonal–planar anions. The cation is buckled, the r.m.s. deviation of the atoms passing through the phenanthroline portion being 0.16 Å. The CuI atom is displaced by 0.019 (2) Å out of the N3 triangle. The crystal studied was a non-merohedral twin with twin domains in an approximate ratio of 55:45.

Related literature

For a three-coordinate tris­(thio­cyanato)­cuprate(I) system, see: Song et al. (2008[Song, X.-M., Huang, X.-Q., Dou, J.-M. & Li, D.-C. (2008). Acta Cryst. E64, m489.]). For a study of the title cation, see: Liu et al. (2007[Liu, Y., Li, Q., Guo, G.-S. & Chen, K. (2007). Cryst. Growth Des. 7, 1672-1675.]).

[Scheme 1]

Experimental

Crystal data
  • (C15H14N2)[Cu(NCS)3]

  • Mr = 460.06

  • Monoclinic, P 21 /n

  • a = 17.2687 (4) Å

  • b = 6.5825 (2) Å

  • c = 17.2702 (4) Å

  • β = 107.803 (2)°

  • V = 1869.12 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 100 K

  • 0.25 × 0.02 × 0.02 mm

Data collection
  • Bruker SMART APEX CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.703, Tmax = 0.970

  • 15488 measured reflections

  • 4303 independent reflections

  • 3657 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.075

  • S = 0.99

  • 4303 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

There is no report on a free, three-coordinate tris(thiocyanato)cuprate(I or II) ion in the structural literature. The potassium–benzene-18-crown-6 salt has the copper(I) atom in a three-coordinate environment but the sulfur ends of the thiocyanate ligands are also engaged in coordination (Song et al., 2008). The title salt (Scheme I, Fig. 1) represents the first example of a three-coordinate trithiocyanatocuprate(I) system; the salt exists as discrete cations and anions. On the other hand, the cation has also been documented only once in the structural literature (Liu et al., 2007). In the present salt, the phenanthroline portion is severely buckled (r.m.s. deviation of the plane passing through the atoms comprising the phenanthroline portion being 0.16 Å), with the nitrogen atoms deviating the largest distances (0.30, 0.30 Å).

Related literature top

For a three-coordinate tris(thiocyanato)cuprate(I) system, see: Song et al. (2008). For a study of the title cation, see: Liu et al. (2007).

Experimental top

6,7-Dihydro-5H-[1,4]diazepino[1,2,3,4-lmn][1,10]phenanthroline-4,8-diium] dibromide was synthesized by reacting 1,3-dibromopropane with 1,10-phenanthroline monohydrate. A methanol solution (10 ml) of the salt (0.40 g, 1 mmol) was mixed with a water/DMF (1:4) solution (10 ml) of colorless copper(I) thiocyanate (0.12 g, 1 mmol). An excess of potassium thiocyanate (0.50 g, 5 mmol) was added. The solution was filtered and the solvent allow to evaporate slowly to furnish dark brown crystals of the cuprate salt.

Refinement top

Hydrogen atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of [C15H14N2]2+ [Cu(NCS)3]2- at the 70% probability level.
6,7-Dihydro-5H-1,4-diazepino[1,2,3,4-lmn][1,10]phenanthroline- 4,8-diium tris(thiocyanato-κN)cuprate(I) top
Crystal data top
(C15H14N2)[Cu(NCS)3]F(000) = 936
Mr = 460.06Dx = 1.635 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2549 reflections
a = 17.2687 (4) Åθ = 2.5–27.3°
b = 6.5825 (2) ŵ = 1.52 mm1
c = 17.2702 (4) ÅT = 100 K
β = 107.803 (2)°Prism, brown
V = 1869.12 (8) Å30.25 × 0.02 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
4303 independent reflections
Radiation source: fine-focus sealed tube3657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 27.5°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2221
Tmin = 0.703, Tmax = 0.970k = 88
15488 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0347P)2]
where P = (Fo2 + 2Fc2)/3
4303 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
(C15H14N2)[Cu(NCS)3]V = 1869.12 (8) Å3
Mr = 460.06Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.2687 (4) ŵ = 1.52 mm1
b = 6.5825 (2) ÅT = 100 K
c = 17.2702 (4) Å0.25 × 0.02 × 0.02 mm
β = 107.803 (2)°
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
4303 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3657 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.970Rint = 0.048
15488 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 0.99Δρmax = 0.38 e Å3
4303 reflectionsΔρmin = 0.37 e Å3
245 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.58165 (3)0.28784 (6)0.33388 (3)0.01689 (10)
S10.30831 (6)0.32947 (13)0.33202 (7)0.0244 (2)
S20.81220 (7)0.20364 (14)0.55830 (7)0.0380 (2)
S30.57925 (7)0.23791 (13)0.06016 (7)0.0262 (2)
N10.06515 (15)0.3406 (4)0.21244 (15)0.0115 (5)
N20.03925 (18)0.2372 (4)0.31533 (17)0.0138 (6)
N30.47097 (19)0.3174 (4)0.33561 (18)0.0180 (6)
N40.67485 (17)0.2767 (4)0.42593 (16)0.0194 (5)
N50.58441 (19)0.2614 (4)0.2234 (2)0.0184 (7)
C10.1136 (2)0.3304 (4)0.1650 (2)0.0181 (7)
H10.17020.35540.18790.022*
C20.0825 (3)0.2840 (5)0.0826 (2)0.0215 (9)
H20.11810.26580.05080.026*
C30.0010 (3)0.2649 (5)0.0479 (2)0.0222 (9)
H30.02080.24560.00910.027*
C40.0516 (2)0.2736 (4)0.0965 (2)0.0158 (8)
C50.1377 (3)0.2680 (4)0.0618 (3)0.0219 (8)
H50.16110.25090.00480.026*
C60.1863 (3)0.2870 (5)0.1097 (3)0.0224 (8)
H60.24340.29950.08560.027*
C70.1528 (2)0.2885 (4)0.1957 (2)0.0181 (8)
C80.2032 (2)0.2962 (5)0.2473 (2)0.0216 (9)
H80.26040.30890.22400.026*
C90.1704 (2)0.2855 (5)0.3296 (3)0.0223 (9)
H90.20350.30440.36400.027*
C100.0880 (2)0.2466 (4)0.3622 (2)0.0176 (8)
H100.06560.22610.41920.021*
C110.0685 (2)0.2773 (4)0.2317 (2)0.0122 (7)
C120.0164 (2)0.2952 (4)0.1818 (2)0.0136 (7)
C130.09703 (17)0.4419 (4)0.29339 (17)0.0145 (6)
H13A0.05760.54640.29840.017*
H13B0.14870.51160.29650.017*
C140.11182 (19)0.2948 (5)0.3639 (2)0.0163 (6)
H14A0.11650.37120.41450.020*
H14B0.16370.22210.37110.020*
C150.04293 (18)0.1418 (5)0.34912 (18)0.0143 (7)
H15A0.04990.03690.31070.017*
H15B0.04600.07350.40110.017*
C160.4032 (2)0.3236 (4)0.3330 (2)0.0137 (7)
C170.7321 (2)0.2479 (5)0.4813 (2)0.0168 (6)
C180.5820 (2)0.2508 (4)0.1556 (2)0.0164 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0175 (3)0.01500 (17)0.0177 (3)0.00063 (19)0.00476 (13)0.00035 (18)
S10.0145 (5)0.0330 (5)0.0246 (5)0.0017 (4)0.0041 (4)0.0004 (4)
S20.0355 (7)0.0243 (5)0.0366 (7)0.0063 (4)0.0149 (4)0.0040 (4)
S30.0273 (6)0.0356 (5)0.0150 (5)0.0062 (4)0.0055 (4)0.0010 (4)
N10.0122 (14)0.0123 (12)0.0096 (14)0.0015 (10)0.0027 (11)0.0013 (10)
N20.0158 (15)0.0101 (12)0.0168 (15)0.0002 (10)0.0068 (12)0.0003 (10)
N30.0205 (18)0.0194 (15)0.0140 (16)0.0013 (12)0.0049 (13)0.0032 (11)
N40.024 (2)0.0187 (14)0.017 (2)0.0009 (11)0.0080 (9)0.0017 (11)
N50.0189 (17)0.0179 (14)0.0194 (18)0.0047 (11)0.0074 (14)0.0004 (11)
C10.0185 (19)0.0161 (17)0.023 (2)0.0050 (13)0.0118 (15)0.0040 (13)
C20.032 (2)0.0166 (18)0.021 (2)0.0041 (15)0.0149 (18)0.0035 (13)
C30.040 (3)0.0152 (15)0.012 (2)0.0002 (14)0.0082 (18)0.0010 (12)
C40.021 (2)0.0113 (14)0.0119 (19)0.0009 (12)0.0012 (15)0.0008 (11)
C50.028 (3)0.0134 (14)0.014 (2)0.0009 (13)0.0087 (16)0.0001 (13)
C60.018 (2)0.0174 (14)0.023 (3)0.0020 (14)0.0053 (16)0.0002 (14)
C70.015 (2)0.0088 (13)0.029 (2)0.0001 (12)0.0046 (16)0.0001 (13)
C80.013 (2)0.0176 (15)0.034 (2)0.0019 (13)0.0062 (17)0.0001 (14)
C90.021 (2)0.0186 (18)0.034 (3)0.0001 (14)0.0197 (19)0.0021 (15)
C100.023 (2)0.0155 (16)0.0165 (19)0.0054 (13)0.0086 (16)0.0009 (12)
C110.0148 (19)0.0092 (15)0.0106 (18)0.0025 (12)0.0009 (14)0.0002 (12)
C120.0182 (19)0.0094 (15)0.0121 (18)0.0014 (12)0.0030 (14)0.0031 (11)
C130.0133 (16)0.0156 (15)0.0133 (16)0.0012 (11)0.0022 (12)0.0015 (11)
C140.0136 (19)0.0207 (16)0.0139 (19)0.0030 (12)0.0032 (10)0.0031 (12)
C150.0132 (15)0.0165 (15)0.0130 (16)0.0020 (12)0.0038 (13)0.0043 (12)
C160.017 (2)0.0129 (16)0.0096 (17)0.0021 (12)0.0022 (13)0.0002 (11)
C170.019 (2)0.0116 (17)0.022 (2)0.0000 (12)0.0097 (11)0.0038 (13)
C180.0095 (18)0.0114 (15)0.027 (2)0.0013 (11)0.0027 (15)0.0000 (12)
Geometric parameters (Å, º) top
Cu1—N41.886 (2)C4—C51.423 (5)
Cu1—N31.930 (3)C5—C61.353 (4)
Cu1—N51.930 (3)C5—H50.9500
S1—C161.634 (4)C6—C71.419 (6)
S2—C171.626 (3)C6—H60.9500
S3—C181.637 (4)C7—C111.400 (5)
N1—C11.340 (4)C7—C81.424 (5)
N1—C121.378 (4)C8—C91.361 (6)
N1—C131.494 (4)C8—H80.9500
N2—C101.336 (4)C9—C101.385 (6)
N2—C111.401 (4)C9—H90.9500
N2—C151.497 (4)C10—H100.9500
N3—C161.158 (4)C11—C121.429 (4)
N4—C171.161 (3)C13—C141.515 (4)
N5—C181.161 (5)C13—H13A0.9900
C1—C21.393 (5)C13—H13B0.9900
C1—H10.9500C14—C151.519 (4)
C2—C31.356 (6)C14—H14A0.9900
C2—H20.9500C14—H14B0.9900
C3—C41.413 (5)C15—H15A0.9900
C3—H30.9500C15—H15B0.9900
C4—C121.418 (5)
N4—Cu1—N3125.77 (14)C7—C8—H8119.6
N4—Cu1—N5123.83 (15)C8—C9—C10118.9 (3)
N3—Cu1—N5110.37 (9)C8—C9—H9120.6
C1—N1—C12120.7 (3)C10—C9—H9120.6
C1—N1—C13118.3 (3)N2—C10—C9121.4 (4)
C12—N1—C13119.9 (2)N2—C10—H10119.3
C10—N2—C11121.4 (3)C9—C10—H10119.3
C10—N2—C15118.7 (3)C7—C11—N2117.8 (3)
C11—N2—C15118.7 (3)C7—C11—C12119.2 (4)
C16—N3—Cu1175.2 (3)N2—C11—C12122.9 (4)
C17—N4—Cu1172.8 (2)N1—C12—C4119.0 (3)
C18—N5—Cu1176.2 (3)N1—C12—C11122.9 (3)
N1—C1—C2121.2 (3)C4—C12—C11118.0 (4)
N1—C1—H1119.4N1—C13—C14113.0 (2)
C2—C1—H1119.4N1—C13—H13A109.0
C3—C2—C1119.7 (3)C14—C13—H13A109.0
C3—C2—H2120.1N1—C13—H13B109.0
C1—C2—H2120.1C14—C13—H13B109.0
C2—C3—C4120.2 (3)H13A—C13—H13B107.8
C2—C3—H3119.9C13—C14—C15110.9 (2)
C4—C3—H3119.9C13—C14—H14A109.4
C3—C4—C12118.1 (3)C15—C14—H14A109.4
C3—C4—C5121.8 (3)C13—C14—H14B109.4
C12—C4—C5120.1 (3)C15—C14—H14B109.4
C6—C5—C4120.2 (5)H14A—C14—H14B108.0
C6—C5—H5119.9N2—C15—C14112.8 (2)
C4—C5—H5119.9N2—C15—H15A109.0
C5—C6—C7120.7 (5)C14—C15—H15A109.0
C5—C6—H6119.7N2—C15—H15B109.0
C7—C6—H6119.7C14—C15—H15B109.0
C11—C7—C6120.0 (3)H15A—C15—H15B107.8
C11—C7—C8118.4 (3)N3—C16—S1178.3 (3)
C6—C7—C8121.6 (3)N4—C17—S2179.0 (3)
C9—C8—C7120.8 (3)N5—C18—S3179.4 (3)
C9—C8—H8119.6
C12—N1—C1—C23.3 (5)C15—N2—C11—C7155.2 (3)
C13—N1—C1—C2164.4 (3)C10—N2—C11—C12171.5 (3)
N1—C1—C2—C35.5 (5)C15—N2—C11—C1221.0 (4)
C1—C2—C3—C45.8 (5)C1—N1—C12—C411.3 (4)
C2—C3—C4—C122.2 (4)C13—N1—C12—C4156.1 (3)
C2—C3—C4—C5175.7 (3)C1—N1—C12—C11171.5 (3)
C3—C4—C5—C6176.6 (3)C13—N1—C12—C1121.1 (4)
C12—C4—C5—C61.2 (4)C3—C4—C12—N110.7 (4)
C4—C5—C6—C77.5 (4)C5—C4—C12—N1167.2 (3)
C5—C6—C7—C112.2 (4)C3—C4—C12—C11172.0 (3)
C5—C6—C7—C8176.2 (3)C5—C4—C12—C1110.1 (4)
C11—C7—C8—C92.4 (5)C7—C11—C12—N1162.0 (3)
C6—C7—C8—C9176.1 (3)N2—C11—C12—N121.8 (4)
C7—C8—C9—C106.4 (5)C7—C11—C12—C415.2 (4)
C11—N2—C10—C93.6 (4)N2—C11—C12—C4161.0 (3)
C15—N2—C10—C9163.9 (3)C1—N1—C13—C14111.1 (3)
C8—C9—C10—N25.9 (5)C12—N1—C13—C1481.2 (3)
C6—C7—C11—N2167.1 (3)N1—C13—C14—C1542.1 (4)
C8—C7—C11—N211.4 (4)C10—N2—C15—C14110.8 (3)
C6—C7—C11—C129.3 (4)C11—N2—C15—C1481.4 (3)
C8—C7—C11—C12172.2 (3)C13—C14—C15—N243.3 (4)
C10—N2—C11—C712.3 (4)

Experimental details

Crystal data
Chemical formula(C15H14N2)[Cu(NCS)3]
Mr460.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)17.2687 (4), 6.5825 (2), 17.2702 (4)
β (°) 107.803 (2)
V3)1869.12 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.25 × 0.02 × 0.02
Data collection
DiffractometerBruker SMART APEX CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.703, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
15488, 4303, 3657
Rint0.048
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.075, 0.99
No. of reflections4303
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the National Natural Science Foundation of China (No. 20671083) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, Y., Li, Q., Guo, G.-S. & Chen, K. (2007). Cryst. Growth Des. 7, 1672–1675.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X.-M., Huang, X.-Q., Dou, J.-M. & Li, D.-C. (2008). Acta Cryst. E64, m489.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds