organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­fluoro­phenyl (3R,4R,5S)-5-{[(3R,4R,5S)-5-azido­methyl-3,4-dimeth­­oxy-2,3,4,5-tetra­hydro­furan-3-carboxamido]­meth­yl}-3,4-dimeth­­oxy-2,3,4,5-tetra­hydro­furan-3-carboxyl­ate

aChemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, bMedway School of Pharmacy, Universities of Kent and Greenwich at Medway, Central Avenue, Chatham Maritime, Kent ME4 4TB, England, and cChiralabs Limited, Begbroke Centre for Innovation and Enterprise, Oxford University Begbroke Science Park, Oxfordshire, England
*Correspondence e-mail: michela.simone@chem.ox.ac.uk

(Received 13 August 2010; accepted 27 September 2010; online 2 October 2010)

The title compound, C22H25F5N4O9, is a stable penta­fluoro­phenyl ester inter­mediate in the synthesis of novel homo-oligomeric structures containing branched carbon chains. The structure is epimeric to the previously characterized dimeric penta­fluoro­phenyl ester with stereochemistry (3R,4R,5R), which was synthesized using D-ribose as starting material. The crystal structure of the title mol­ecule removes any ambiguities arising from the relative stereochemistries of the six chiral centres. Two hydrogen bonds, bifurcating from the NH group, stabilize the crystal: one intra­molecular and one inter­molecular, both involving O atoms of the meth­oxy groups. The asymmetric unit contains two independent mol­ecules not related by any pseudo-symmetry operators. The major conformational differences are localized, leading to one mol­ecule being extended compared to the other. The collected crystal was twinned (twin ratio is 0.939:0.061), and the azide group is positionally disordered over two positions in one mol­ecule [occupancy ratio 0.511 (18):0.489 (18)].

Related literature

For the synthesis and use of sugar amino acids, see: Smith & Fleet (1999[Smith, M. D. & Fleet, G. W. J. (1999). J. Pept. Sci. 5, 425-441.]); Gibson et al. (2009[Gibson, D., Homans, S. W. & Field, R. A. (2009). Tetrahedron Asymmetry, 20, 730-732.]); Mayes, Stetz et al. (2004[Mayes, B. A., Stetz, R. J. E., Ansell, C. W. G. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 153-156.]); Hungerford et al. (2000[Hungerford, N. L., Claridge, T. D. W., Watterson, M. P., Aplin, R. T., Moreno, A. & Fleet, G. W. J. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 3666-3679.]); Jagadeesh et al. (2009[Jagadeesh, B., Kiran, M. U., Sudhakar, A. & Chandrasekhar, S. (2009). Chem. Eur. J. 15, 12592-12595.]); Risseeuw et al. (2007[Risseeuw, M. D. P., Overhand, M., Fleet, G. W. J. & Simone, M. I. (2007). Tetrahedron Asymmetry, 18, 2001-2010.]); Edwards et al. (2008[Edwards, A. A., Alexander, B. D., Fleet, G. W. J. & Tranter, G. E. (2008). Chirality, 20, 969-972.]). For the synthesis of penta­fluoro­phenyl esters in this series of compounds, see: Mayes, Cowley et al. (2004[Mayes, B. A., Cowley, A. R., Ansell, C. W. G. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 163-166.]); Mayes, Simon et al. (2004[Mayes, B. A., Simon, L., Watkin, D. J., Ansell, C. W. G. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 157-162.]). For other procedures for the synthesis of branched sugars, see: Ho & Wong (1985[Ho, P. T. & Wong, S. (1985). Can. J. Chem. 63, 2221-2224.]); Simone et al. (2005[Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761-5765.]). For the synthesis of the title compound, see: Simone et al. (2008[Simone, M. I., Edwards, A. A., Tranter, G. E. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 2887-2894.], 2010[Simone, M., Edwards, A. A., Tranter, G. E. & Fleet, G. W. J. (2010). In preparation. ]). For structures related to the title mol­ecule, and their characteristic features, see: Punzo et al. (2006[Punzo, F., Cowley, A. R., Watkin, D. J., Iezzi Simone, M., Edwards, A. A., Tranter, G. E. & Fleet, G. W. J. (2006). Acta Cryst. E62, o473-o475.]); Humphreys et al. (2005[Humphreys, S., Watkin, D. J., Sanjayan, G. J., Tranter, G. E., Edwards, A. A. & Fleet, G. W. J. (2005). Acta Cryst. E61, o918-o919.]).

[Scheme 1]

Experimental

Crystal data
  • C22H25F5N4O9

  • Mr = 584.45

  • Monoclinic, C 2

  • a = 26.8973 (4) Å

  • b = 7.9070 (1) Å

  • c = 24.7763 (5) Å

  • β = 102.4436 (6)°

  • V = 5145.56 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 150 K

  • 0.80 × 0.08 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.76, Tmax = 0.99

  • 17175 measured reflections

  • 4754 independent reflections

  • 4160 reflections with I > 2.0σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.159

  • S = 0.99

  • 4754 reflections

  • 759 parameters

  • 83 restraints

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H52⋯O27i 0.97 2.23 3.131 (10) 153
C20—H202⋯N222ii 0.97 2.32 3.269 (10) 167
C26—H263⋯N222ii 0.97 2.51 3.214 (10) 129
C29—H293⋯O27i 0.97 2.49 3.278 (10) 139
N12—H121⋯O128iii 0.87 2.36 3.200 (10) 164
C129—H1292⋯O127i 0.96 2.46 3.370 (10) 158
C126—H1261⋯O27 0.96 2.47 3.202 (10) 133
N112—H1121⋯O28 0.86 2.33 3.147 (10) 159
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z]; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Table 2
Selected torsion angles (°) leading to extended and contracted geometries.

Atoms mol­ecule A mol­ecule B
O6—C7—C11—N12 71.6 104.2
C7—C11—N12—C13 78.1 −176.8
C11—N12—C13—C14 −165.8 −174.1
N12—C13—C14—O25 −18.6 −155.9

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]; Cooper et al., 2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Sugar amino acids (SAAs) have been extensively used in the design of peptidomimetics (Smith & Fleet, 1999; Gibson et al., 2009), cyclodextrin mimics (Mayes, Stetz et al., 2004), and foldamers (Hungerford et al., 2000; Jagadeesh et al., 2009). Foldamers provide increased understanding of the factors which induce secondary structures in proteins (Edwards et al., 2008). Pentafluorophenyl esters have been shown to be particularly useful in the synthesis of homo-oligomers of SAAs (Mayes, Cowley et al., 2004; Mayes, Simon et al., 2004). Hitherto, all SAAs (Risseeuw et al., 2007) used as peptidomimetics contain linear carbon chains. Efficient syntheses of branched sugars by the Ho-crossed aldol condensation (Ho & Wong, 1985; Simone et al., 2005) allows access to carbon-branched SAA scaffolds, such as (1), which may provide monomers for new classes of foldamers.

The key step in the synthesis of the branched SAA precursor (1) is the reaction of formaldehyde with a suitably protected lactol derived from 2,3-O-isopropylidene-L-lyxono-1,4-lactone (Simone et al., 2008). The SAA precursor (1) was converted by standard peptide procedures into the branched dimeric pentafluorophenyl ester (2)- a key intermediate in the synthesis of longer homo-oligomeric carbopeptoids (Simone et al., 2010). The absolute configuration of the dimeric branched pentafluorophenyl ester (2) was determined by the use of 2,3-O-isopropylidene-L-lyxono-1,4-lactone as the starting material (Fig. 1). This structure is epimeric to the dimeric pentafluorophenyl ester with stereochemistry (3R,4R,5R) (Punzo et al., 2006) which was synthesized using D-ribose as starting material.

The title material (2) crystallizes with two molecules in the asymmetric unit (Z'= 2, Fig. 2 and 3), and is twinned (twin law 1,0,0/0,-1,0/-0.397,0,-1; twin ratio 0.939:0.061). The two molecules have substantially different conformations (r.m.s. positional deviations after best-matching = 1.07 Å, r.m.s. torsion angle deviation = 22.3°). However, the local geometries in both are quite normal (r.m.s. bond length deviation = 0.02 Å). The principal differences are in the region O6—C7—C11—N12—C13—C14—O25 (in molecule A, Fig. 2) and the corresponding region O106—C107—C111—N112—C113—C114—O125 (in molecule B, Fig. 3; see Table 2). The especially large deviations for C7—C11—N12—C13 and N12—C13—C14—O25 leads to molecule A being partially folded back on itself so that it is less extended than molecule B (Fig. 4). Molecule B has disorder in the azide that can be modelled as two distinct sites. In both A and B, some of the atoms in the 5-membered rings and adjacent methyl groups show large adp's. This is consistent with the ring fluxion commonly seen in this class of compounds, and cannot really be modelled as split atoms. The non-linearity of the azide group [N22—N23—N24: 170.6 (8)°] and slight alternation in the N adp's are common in this class of structures (Humphreys et al., 2005).

The crystal structure consists of infinite chains with an equivalent hydrogen bond linking molecule A to B as that linking B to the next A (Fig. 5). These chains are stacked side-by-side to form layers (Fig. 6). One face of this layer consists of pentafluorophenyl groups, the other face contains the terminal azide groups. The aromatic face is essentially flat, and opposes the aromatic face of the adjacent layer. The azide face is pleated (as a result of the differing over-all length of the molecules), with the ridges in one layer fitting into the hollows of the next.

Related literature top

For the synthesis and use of sugar amino acids, see: Smith & Fleet (1999); Gibson et al. (2009); Mayes, Stetz et al. (2004); Hungerford et al. (2000); Jagadeesh et al. (2009); Risseeuw et al. (2007); Edwards et al. (2008). For the synthesis of pentafluorophenyl esters in this series of compounds, see: Mayes, Cowley et al. (2004); Mayes, Simon et al. (2004). For other procedures for the synthesis of branched sugars, see: Ho & Wong (1985); Simone et al. (2005). For the synthesis of the title compound, see: Simone et al. (2008, 2010). For structures related to the title molecule, and their characteristic features, see: Punzo et al. (2006); Humphreys et al. (2005).

Experimental top

The title compound (2) was obtained (Simone et al., 2010) as a colourless oil which crystallized on standing and was recrystallized from ethyl acetate/petroleum ether 60–80°C. M.p. 364.2–365.2 K; m/z (ES+): 585.2 ([M+H]+, 60%), 607.2 ([M+H]+, 37%), 1191.1 ([2M+Na]+, 100%); HRMS (ES+): found 585.1612 [M+H]+ C22H26N4O9F5 requires 585.1620; νmax (thin film): 3426 (br s, NH), 2947, 2839 (C—H), 2103 (s, N3), 1784 (m, C=OOPfp), 1657 (s, C=ONH, I), 1524 (s, C=ONH, II) cm-1; [α]D24 -32.5 (c, 0.17 in dichloromethane); δH (C6D6, 500 MHz): 3.00 (3H, s, C3OCH3, A), 3.18 (3H, s, C3OCH3, B), 3.26 (3H, s, C4OCH3, B), 3.30 (1H, dd, JH-6,H-6' 12.6 Hz, JH-6,H-5 6.3 Hz, H-6, A), 3.33 (3H, s, C4OCH3, A), 3.42 (1H, ddd, JH-6,H-6' 13.1 Hz, JH-6,H-5 8.5 Hz, JH-6,NH 4.0 Hz, H-6, B), 3.53 (1H, dd, JH-6',H-6 12.7 Hz, JH-6',H-5 7.2 Hz, H-6', A), 3.58 (1H, d, JH-4,H-5 4.8 Hz, H-4, A), 3.85 (1H, d, JH-4,H-5 4.3 Hz, H-4, B), 4.02–4.05 (1H, m, H-6', B), 4.06 (1H, d, JH-2,H-2' 10.5 Hz, H-2, B), 4.09 (1H, d, JH-2,H-2' 10.7 Hz, H-2, A), 4.32–4.38 (1H, m, H-5, A), 4.34–4.40 (1H, m, H-5, B), 4.53 (1H, d, JH-2',H-2 10.4 Hz, H-2', B), 4.77 (1H, d, JH-2',H-2 10.7 Hz, H-2', A), 6.85–6.90 (1H, m, JNH,H-6 4.0 Hz, NH); δC (C6D6, 125 MHz): 38.8 (C-6, B), 49.9 (C-6, A), 52.0 (C3OCH3, A), 53.1 (C3OCH3, B), 59.9 (C4OCH3, A), 60.5 (C4OCH3, B), 67.4 (C-2, A), 68.6 (C-2, B), 79.9 (C-5, B), 80.3 (C-5, A), 88.1 (C-4, B), 88.3 (C-4, A), 90.5 (C-3, B), 91.7 (C-3, A), 124.8 (m, ArCq), 137.1, 139.1 (2 C, m, 2 x meta Ar—CH), 138.7, 140.7 (1 C, m, para Ar—CH), 140.2, 142.1 (2 C, m, 2 x ortho Ar—CH), 165.2 (CONH), 168.2 (CO2Pfp); δF (C6D6, 376 MHz): -162.3 (2 F, dd, 3JFmeta,Fpara 23.2 Hz, 3JFmeta,Fortho 18.8 Hz, 2 x Fmeta), -157.3 (1 F, t, 3JFpara,Fmeta 23.3 Hz, Fpara), -153.0 (2 F, d, 3JFortho,Fmeta 18.5 Hz, 2 x Fortho).

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration assigned from the known starting materials.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.30) reflects changes in the illuminated volume of the crystal. These were kept to a minimum, and were taken into account by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. All H atoms except that on C118 (at the start of the disordered azide group) were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H to 0.86 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints (Cooper et al., 2010).

In spite of the poor quality of the crystal, distance and adp similarity restraints were only necessary for the disordered azide group in molecule B.

Structure description top

Sugar amino acids (SAAs) have been extensively used in the design of peptidomimetics (Smith & Fleet, 1999; Gibson et al., 2009), cyclodextrin mimics (Mayes, Stetz et al., 2004), and foldamers (Hungerford et al., 2000; Jagadeesh et al., 2009). Foldamers provide increased understanding of the factors which induce secondary structures in proteins (Edwards et al., 2008). Pentafluorophenyl esters have been shown to be particularly useful in the synthesis of homo-oligomers of SAAs (Mayes, Cowley et al., 2004; Mayes, Simon et al., 2004). Hitherto, all SAAs (Risseeuw et al., 2007) used as peptidomimetics contain linear carbon chains. Efficient syntheses of branched sugars by the Ho-crossed aldol condensation (Ho & Wong, 1985; Simone et al., 2005) allows access to carbon-branched SAA scaffolds, such as (1), which may provide monomers for new classes of foldamers.

The key step in the synthesis of the branched SAA precursor (1) is the reaction of formaldehyde with a suitably protected lactol derived from 2,3-O-isopropylidene-L-lyxono-1,4-lactone (Simone et al., 2008). The SAA precursor (1) was converted by standard peptide procedures into the branched dimeric pentafluorophenyl ester (2)- a key intermediate in the synthesis of longer homo-oligomeric carbopeptoids (Simone et al., 2010). The absolute configuration of the dimeric branched pentafluorophenyl ester (2) was determined by the use of 2,3-O-isopropylidene-L-lyxono-1,4-lactone as the starting material (Fig. 1). This structure is epimeric to the dimeric pentafluorophenyl ester with stereochemistry (3R,4R,5R) (Punzo et al., 2006) which was synthesized using D-ribose as starting material.

The title material (2) crystallizes with two molecules in the asymmetric unit (Z'= 2, Fig. 2 and 3), and is twinned (twin law 1,0,0/0,-1,0/-0.397,0,-1; twin ratio 0.939:0.061). The two molecules have substantially different conformations (r.m.s. positional deviations after best-matching = 1.07 Å, r.m.s. torsion angle deviation = 22.3°). However, the local geometries in both are quite normal (r.m.s. bond length deviation = 0.02 Å). The principal differences are in the region O6—C7—C11—N12—C13—C14—O25 (in molecule A, Fig. 2) and the corresponding region O106—C107—C111—N112—C113—C114—O125 (in molecule B, Fig. 3; see Table 2). The especially large deviations for C7—C11—N12—C13 and N12—C13—C14—O25 leads to molecule A being partially folded back on itself so that it is less extended than molecule B (Fig. 4). Molecule B has disorder in the azide that can be modelled as two distinct sites. In both A and B, some of the atoms in the 5-membered rings and adjacent methyl groups show large adp's. This is consistent with the ring fluxion commonly seen in this class of compounds, and cannot really be modelled as split atoms. The non-linearity of the azide group [N22—N23—N24: 170.6 (8)°] and slight alternation in the N adp's are common in this class of structures (Humphreys et al., 2005).

The crystal structure consists of infinite chains with an equivalent hydrogen bond linking molecule A to B as that linking B to the next A (Fig. 5). These chains are stacked side-by-side to form layers (Fig. 6). One face of this layer consists of pentafluorophenyl groups, the other face contains the terminal azide groups. The aromatic face is essentially flat, and opposes the aromatic face of the adjacent layer. The azide face is pleated (as a result of the differing over-all length of the molecules), with the ridges in one layer fitting into the hollows of the next.

For the synthesis and use of sugar amino acids, see: Smith & Fleet (1999); Gibson et al. (2009); Mayes, Stetz et al. (2004); Hungerford et al. (2000); Jagadeesh et al. (2009); Risseeuw et al. (2007); Edwards et al. (2008). For the synthesis of pentafluorophenyl esters in this series of compounds, see: Mayes, Cowley et al. (2004); Mayes, Simon et al. (2004). For other procedures for the synthesis of branched sugars, see: Ho & Wong (1985); Simone et al. (2005). For the synthesis of the title compound, see: Simone et al. (2008, 2010). For structures related to the title molecule, and their characteristic features, see: Punzo et al. (2006); Humphreys et al. (2005).

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003; Cooper et al., 2010); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003; Cooper et al., 2010).

Figures top
[Figure 1] Fig. 1. Synthetic route for the title compound (2).
[Figure 2] Fig. 2. The contracted molecule (A) in the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 3] Fig. 3. The extended molecule (B) in the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 4] Fig. 4. Best-match projection of molecule A and B. The C atoms in molecule A are red, those in B green.
[Figure 5] Fig. 5. Part of the hydrogen bond ribbon. Even though molecules A and B have different configurations, the hydrogen bonding between A and B is very similar to that between B and A (Table 1). The short internal contact involving N—H···O is probably not a real hydrogen bond because the angle is too acute, but it may play a role in conserving the geometry in this region (Table 1).
[Figure 6] Fig. 6. The hydrogen bonded ribbons are packed side-by-side into layers. The aromatic face of one layer lies adjacent to the corresponding face of an adjacent layer.
Pentafluorophenyl (3R,4R,5S)-5-{[(3R,4R,5S)-5- azidomethyl-3,4-dimethoxy-2,3,4,5-tetrahydrofuran-3-carboxamido]methyl}-3,4- dimethoxy-2,3,4,5-tetrahydrofuran-3-carboxylate top
Crystal data top
C22H25F5N4O9F(000) = 2416.000
Mr = 584.45Dx = 1.509 Mg m3
Monoclinic, C2Melting point: 364.2 K
Hall symbol: C 2yMo Kα radiation, λ = 0.71073 Å
a = 26.8973 (4) ÅCell parameters from 4194 reflections
b = 7.9070 (1) Åθ = 5–25°
c = 24.7763 (5) ŵ = 0.14 mm1
β = 102.4436 (6)°T = 150 K
V = 5145.56 (15) Å3Plate, colourless
Z = 80.80 × 0.08 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
4160 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 25.0°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 3132
Tmin = 0.76, Tmax = 0.99k = 89
17175 measured reflectionsl = 2929
4754 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 0.99 w = 1/[σ2(F2) + (0.12P)2 + 4.59P],
where P = [max(Fo2,0) + 2Fc2]/3
4754 reflections(Δ/σ)max = 0.0002536
759 parametersΔρmax = 0.90 e Å3
83 restraintsΔρmin = 0.43 e Å3
Crystal data top
C22H25F5N4O9V = 5145.56 (15) Å3
Mr = 584.45Z = 8
Monoclinic, C2Mo Kα radiation
a = 26.8973 (4) ŵ = 0.14 mm1
b = 7.9070 (1) ÅT = 150 K
c = 24.7763 (5) Å0.80 × 0.08 × 0.08 mm
β = 102.4436 (6)°
Data collection top
Nonius KappaCCD
diffractometer
4754 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
4160 reflections with I > 2.0σ(I)
Tmin = 0.76, Tmax = 0.99Rint = 0.023
17175 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05783 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 0.99Δρmax = 0.90 e Å3
4754 reflectionsΔρmin = 0.43 e Å3
759 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat, with a nominal stability of 0.1 K.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4720 (2)0.0750 (9)0.3805 (2)0.0420
O20.44018 (13)0.1870 (6)0.34614 (16)0.0397
C30.38899 (19)0.1640 (8)0.3421 (2)0.0393
C40.35842 (18)0.2805 (7)0.2970 (2)0.0334
C50.30354 (19)0.2195 (8)0.2792 (3)0.0406
O60.27353 (15)0.3616 (6)0.2641 (2)0.0581
C70.3045 (2)0.5121 (7)0.2749 (2)0.0386
C80.35104 (18)0.4609 (7)0.3173 (2)0.0334
O90.34056 (13)0.4538 (6)0.37104 (15)0.0449
C100.3731 (3)0.5595 (13)0.4103 (3)0.0746
C110.2724 (2)0.6557 (8)0.2890 (3)0.0440
N120.23588 (15)0.7098 (6)0.2389 (2)0.0377
C130.2519 (2)0.8066 (7)0.2025 (3)0.0418
C140.21709 (19)0.8268 (7)0.1449 (3)0.0408
C150.2357 (2)0.7039 (8)0.1041 (2)0.0396
O160.27759 (15)0.6052 (6)0.13194 (17)0.0465
C170.2760 (5)0.4357 (10)0.1194 (5)0.1005
C180.2499 (2)0.8238 (9)0.0613 (3)0.0500
O190.2628 (2)0.9862 (7)0.0925 (2)0.0662
C200.2237 (3)1.0042 (8)0.1210 (4)0.0604
C210.2956 (3)0.7817 (11)0.0418 (3)0.0663
N220.3103 (2)0.9143 (9)0.0060 (2)0.0644
N230.33914 (17)1.0349 (8)0.0317 (2)0.0455
N240.3598 (3)1.1349 (12)0.0451 (4)0.0996
O250.16578 (14)0.7812 (6)0.14434 (18)0.0475
C260.1388 (3)0.9057 (11)0.1697 (3)0.0646
O270.29382 (14)0.8802 (6)0.2127 (2)0.0511
O280.38321 (12)0.3016 (5)0.25249 (14)0.0301
C290.38704 (19)0.1522 (8)0.2206 (2)0.0367
O300.37183 (15)0.0637 (7)0.3697 (2)0.0587
C310.4741 (3)0.0927 (9)0.3682 (3)0.0514
C320.5094 (3)0.1973 (12)0.4007 (4)0.0747
C330.5434 (3)0.1318 (14)0.4461 (3)0.0724
C340.5418 (2)0.0377 (14)0.4584 (3)0.0654
C350.5070 (2)0.1392 (11)0.4262 (3)0.0514
F360.50605 (14)0.3058 (7)0.43773 (17)0.0658
F370.57451 (14)0.1043 (9)0.50139 (17)0.0893
F380.5772 (2)0.2327 (9)0.4771 (2)0.1124
F390.5108 (3)0.3608 (7)0.3887 (3)0.1051
F400.44264 (17)0.1554 (6)0.32414 (17)0.0674
H510.29300.16630.31010.0515*
H520.29920.13990.24860.0513*
H710.31640.53950.24090.0450*
H810.37920.53290.31590.0414*
H1010.36180.56130.44450.1108*
H1020.40760.51710.41640.1109*
H1030.37190.67220.39550.1114*
H1110.25390.61840.31680.0536*
H1120.29370.75120.30250.0536*
H1510.20730.62920.08730.0484*
H1710.30630.38110.14160.1369*
H1720.27560.42180.08050.1373*
H1730.24520.38640.12740.1370*
H1810.21930.85170.03300.0616*
H2010.23281.09040.15010.0843*
H2020.19221.03730.09610.0842*
H2110.29020.67300.02190.0866*
H2120.32330.76990.07470.0861*
H2610.10430.86600.16740.1063*
H2620.15570.91800.20810.1062*
H2630.13851.01310.15080.1062*
H2910.40640.17520.19290.0577*
H2920.40420.06410.24450.0578*
H2930.35340.11330.20300.0571*
H1210.20490.67030.23140.0453*
C1170.5021 (3)0.2319 (13)0.0929 (4)0.0801
O1160.49194 (18)0.4042 (8)0.0831 (2)0.0722
C1150.4454 (2)0.4581 (10)0.0950 (3)0.0550
C1140.45486 (17)0.5879 (7)0.1427 (2)0.0310
C1200.4646 (3)0.7465 (9)0.1117 (2)0.0497
O1190.4268 (2)0.7415 (9)0.06111 (19)0.0794
C1180.4153 (2)0.5647 (11)0.0463 (2)0.0621
C1210.4308 (5)0.575 (2)0.0090 (4)0.05810.511 (18)
N1220.3979 (5)0.6849 (15)0.0521 (5)0.04830.511 (18)
N1230.4064 (5)0.8486 (15)0.0497 (5)0.04430.511 (18)
N1240.4131 (5)0.9747 (17)0.0512 (5)0.06370.511 (18)
C1130.49815 (17)0.5442 (7)0.1907 (2)0.0312
N1120.48531 (14)0.4574 (6)0.23224 (18)0.0337
C1110.5243 (2)0.3948 (8)0.2780 (2)0.0373
C1070.55076 (18)0.2409 (7)0.2601 (2)0.0312
O1060.51648 (13)0.0987 (5)0.25502 (17)0.0412
C1050.54569 (18)0.0488 (8)0.2533 (2)0.0372
C1040.60205 (17)0.0040 (7)0.2762 (2)0.0291
C1080.59836 (18)0.1781 (7)0.2994 (2)0.0320
O1090.59212 (13)0.1648 (5)0.35444 (15)0.0383
C1100.6201 (2)0.2895 (9)0.3900 (2)0.0492
C1030.62809 (17)0.1243 (7)0.3212 (2)0.0308
O1020.67965 (12)0.0920 (5)0.33282 (14)0.0312
C1010.71065 (17)0.1939 (7)0.3717 (2)0.0301
C1310.71597 (19)0.3638 (7)0.3636 (2)0.0333
C1320.7505 (2)0.4588 (8)0.4010 (2)0.0419
C1330.7793 (2)0.3825 (8)0.4467 (2)0.0398
C1340.7739 (2)0.2145 (8)0.4554 (2)0.0397
C1350.73976 (19)0.1191 (7)0.4179 (2)0.0337
F1360.73630 (13)0.0473 (5)0.42632 (14)0.0484
F1370.80219 (14)0.1370 (6)0.50043 (14)0.0575
F1380.81310 (13)0.4746 (5)0.48326 (15)0.0551
F1390.75578 (15)0.6241 (5)0.39232 (16)0.0559
F1400.68948 (12)0.4392 (5)0.31769 (13)0.0459
O1300.60865 (14)0.2288 (5)0.34484 (17)0.0434
O1280.63024 (12)0.0180 (5)0.23410 (14)0.0319
C1290.63836 (19)0.1350 (8)0.2052 (2)0.0382
O1270.54240 (12)0.5832 (5)0.19084 (17)0.0420
O1250.40702 (12)0.5920 (5)0.15871 (14)0.0350
C1260.3985 (2)0.7382 (9)0.1890 (3)0.0533
C2210.4201 (5)0.4784 (19)0.0043 (4)0.06220.489 (18)
N2220.3914 (4)0.581 (2)0.0501 (4)0.07130.489 (18)
N2230.4109 (6)0.730 (3)0.0551 (7)0.06820.489 (18)
N2240.4213 (7)0.848 (2)0.0642 (7)0.07420.489 (18)
H11710.53780.21190.09440.1160*
H11720.48170.16630.06380.1159*
H11730.49440.20230.12800.1160*
H11510.42630.36040.10320.0717*
H12010.49930.74680.10620.0583*
H12020.45910.84590.13190.0583*
H11110.50840.36350.30830.0432*
H11120.55020.48220.28990.0435*
H10710.55960.26330.22390.0365*
H10510.54130.09050.21540.0461*
H10520.53540.13700.27600.0454*
H10810.62820.24770.29730.0372*
H11010.61170.27920.42570.0722*
H11020.61130.40090.37530.0721*
H11030.65560.27050.39400.0721*
H12910.65310.10530.17460.0582*
H12920.60690.19470.19260.0584*
H12930.66170.20710.22990.0583*
H12610.37080.71690.20700.0804*
H12620.38990.83320.16460.0800*
H12630.42910.76340.21630.0800*
H11210.45380.43250.23070.0413*
H12110.43100.45760.02430.0720*0.511 (18)
H12120.46610.62210.00160.0720*0.511 (18)
H22110.40580.36150.00540.0681*0.489 (18)
H22120.45680.47240.00610.0681*0.489 (18)
H11810.37820.54630.04430.0747*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (3)0.055 (4)0.037 (3)0.011 (3)0.016 (2)0.012 (3)
O20.0326 (17)0.043 (2)0.044 (2)0.0024 (17)0.0089 (16)0.0094 (18)
C30.033 (3)0.044 (3)0.045 (3)0.004 (2)0.018 (2)0.009 (3)
C40.031 (2)0.036 (3)0.035 (3)0.001 (2)0.011 (2)0.002 (2)
C50.032 (3)0.038 (3)0.056 (4)0.001 (2)0.019 (2)0.002 (3)
O60.038 (2)0.032 (2)0.090 (3)0.0027 (18)0.017 (2)0.020 (2)
C70.038 (3)0.033 (3)0.042 (3)0.005 (2)0.002 (2)0.010 (2)
C80.030 (2)0.037 (3)0.033 (3)0.006 (2)0.007 (2)0.005 (2)
O90.0368 (18)0.063 (3)0.037 (2)0.0122 (19)0.0117 (16)0.017 (2)
C100.074 (4)0.103 (7)0.045 (4)0.036 (5)0.010 (3)0.032 (4)
C110.046 (3)0.033 (3)0.053 (3)0.008 (3)0.010 (3)0.012 (3)
N120.025 (2)0.032 (2)0.055 (3)0.0005 (19)0.0082 (19)0.001 (2)
C130.034 (3)0.027 (3)0.065 (4)0.004 (2)0.012 (2)0.010 (3)
C140.033 (3)0.029 (3)0.064 (4)0.001 (2)0.020 (2)0.008 (3)
C150.039 (3)0.029 (3)0.050 (3)0.002 (2)0.010 (2)0.007 (3)
O160.051 (2)0.037 (2)0.050 (2)0.0119 (19)0.0072 (18)0.003 (2)
C170.144 (9)0.030 (4)0.103 (7)0.020 (5)0.028 (6)0.004 (4)
C180.052 (3)0.051 (4)0.046 (3)0.005 (3)0.008 (3)0.009 (3)
O190.081 (3)0.047 (3)0.075 (3)0.013 (3)0.026 (3)0.002 (3)
C200.059 (4)0.032 (3)0.103 (6)0.015 (3)0.043 (4)0.023 (3)
C210.063 (4)0.065 (5)0.078 (5)0.003 (4)0.031 (4)0.020 (4)
N220.061 (3)0.079 (4)0.055 (3)0.023 (3)0.016 (3)0.010 (3)
N230.037 (2)0.060 (3)0.039 (2)0.0045 (19)0.0064 (19)0.023 (2)
N240.101 (5)0.078 (5)0.112 (5)0.033 (4)0.006 (4)0.004 (4)
O250.0341 (18)0.047 (2)0.062 (2)0.0003 (18)0.0126 (17)0.012 (2)
C260.057 (4)0.072 (5)0.076 (5)0.026 (4)0.038 (4)0.035 (4)
O270.0330 (19)0.036 (2)0.086 (3)0.0095 (18)0.0182 (19)0.017 (2)
O280.0293 (15)0.0281 (18)0.0354 (18)0.0036 (14)0.0122 (14)0.0013 (15)
C290.035 (2)0.039 (3)0.039 (3)0.001 (2)0.013 (2)0.002 (2)
O300.042 (2)0.070 (3)0.068 (3)0.002 (2)0.022 (2)0.030 (3)
C310.062 (4)0.051 (4)0.047 (4)0.018 (3)0.026 (3)0.015 (3)
C320.085 (5)0.071 (5)0.081 (6)0.040 (5)0.046 (5)0.037 (5)
C330.061 (4)0.101 (7)0.062 (5)0.031 (5)0.027 (4)0.045 (5)
C340.037 (3)0.116 (8)0.043 (4)0.010 (4)0.007 (3)0.025 (4)
C350.038 (3)0.075 (5)0.045 (3)0.008 (3)0.016 (3)0.013 (3)
F360.050 (2)0.086 (3)0.057 (2)0.001 (2)0.0006 (17)0.003 (2)
F370.046 (2)0.165 (6)0.053 (2)0.012 (3)0.0010 (18)0.024 (3)
F380.088 (3)0.148 (6)0.105 (4)0.067 (4)0.029 (3)0.081 (4)
F390.134 (5)0.063 (3)0.133 (5)0.051 (3)0.062 (4)0.043 (3)
F400.088 (3)0.055 (3)0.060 (2)0.011 (2)0.018 (2)0.001 (2)
C1170.064 (5)0.088 (7)0.085 (6)0.031 (5)0.010 (4)0.006 (5)
O1160.051 (3)0.076 (4)0.100 (4)0.007 (3)0.039 (3)0.044 (3)
C1150.034 (3)0.062 (4)0.075 (5)0.017 (3)0.028 (3)0.039 (4)
C1140.028 (2)0.029 (3)0.038 (3)0.004 (2)0.013 (2)0.005 (2)
C1200.059 (4)0.050 (4)0.034 (3)0.021 (3)0.003 (3)0.005 (3)
O1190.081 (3)0.110 (5)0.037 (2)0.046 (4)0.011 (2)0.025 (3)
C1180.039 (3)0.101 (5)0.047 (3)0.015 (3)0.011 (2)0.028 (4)
C1210.048 (5)0.088 (7)0.034 (4)0.007 (5)0.002 (4)0.005 (5)
N1220.043 (6)0.067 (6)0.030 (5)0.003 (5)0.004 (4)0.013 (5)
N1230.034 (5)0.068 (6)0.032 (5)0.005 (5)0.008 (4)0.001 (5)
N1240.056 (6)0.077 (7)0.052 (6)0.022 (6)0.001 (5)0.020 (6)
C1130.028 (2)0.022 (2)0.045 (3)0.003 (2)0.012 (2)0.001 (2)
N1120.0247 (19)0.029 (2)0.048 (3)0.0015 (18)0.0104 (18)0.002 (2)
C1110.035 (3)0.033 (3)0.045 (3)0.006 (2)0.011 (2)0.003 (2)
C1070.028 (2)0.029 (3)0.038 (3)0.003 (2)0.007 (2)0.003 (2)
O1060.0254 (16)0.033 (2)0.062 (2)0.0001 (16)0.0021 (16)0.0063 (19)
C1050.023 (2)0.038 (3)0.049 (3)0.002 (2)0.002 (2)0.005 (3)
C1040.024 (2)0.031 (3)0.032 (3)0.001 (2)0.0060 (19)0.003 (2)
C1080.029 (2)0.032 (3)0.033 (3)0.001 (2)0.004 (2)0.001 (2)
O1090.0365 (18)0.045 (2)0.0333 (19)0.0085 (17)0.0083 (15)0.0040 (17)
C1100.046 (3)0.056 (4)0.042 (3)0.008 (3)0.002 (2)0.017 (3)
C1030.027 (2)0.031 (3)0.033 (3)0.001 (2)0.0053 (19)0.002 (2)
O1020.0243 (15)0.035 (2)0.0326 (18)0.0005 (14)0.0020 (13)0.0118 (15)
C1010.026 (2)0.034 (3)0.032 (3)0.007 (2)0.011 (2)0.008 (2)
C1310.033 (2)0.033 (3)0.036 (3)0.001 (2)0.012 (2)0.005 (2)
C1320.049 (3)0.037 (3)0.043 (3)0.010 (3)0.016 (3)0.002 (3)
C1330.039 (3)0.038 (3)0.044 (3)0.013 (2)0.011 (2)0.018 (3)
C1340.037 (3)0.046 (3)0.034 (3)0.002 (3)0.003 (2)0.004 (3)
C1350.037 (3)0.027 (3)0.036 (3)0.001 (2)0.004 (2)0.002 (2)
F1360.060 (2)0.037 (2)0.0441 (18)0.0018 (16)0.0029 (15)0.0008 (15)
F1370.063 (2)0.059 (3)0.0395 (19)0.0037 (19)0.0133 (16)0.0017 (17)
F1380.0474 (17)0.059 (2)0.056 (2)0.0174 (17)0.0050 (16)0.0249 (18)
F1390.068 (2)0.0328 (19)0.070 (2)0.0132 (17)0.0213 (19)0.0058 (18)
F1400.0512 (17)0.042 (2)0.0420 (17)0.0038 (15)0.0045 (14)0.0093 (15)
O1300.0372 (19)0.042 (2)0.052 (2)0.0032 (17)0.0132 (17)0.016 (2)
O1280.0317 (16)0.0315 (19)0.0328 (18)0.0007 (15)0.0075 (14)0.0030 (15)
C1290.034 (2)0.040 (3)0.041 (3)0.003 (2)0.008 (2)0.010 (3)
O1270.0288 (17)0.035 (2)0.066 (2)0.0019 (16)0.0172 (16)0.0063 (19)
O1250.0276 (16)0.041 (2)0.0385 (19)0.0041 (16)0.0116 (14)0.0029 (17)
C1260.056 (3)0.055 (4)0.049 (3)0.023 (3)0.013 (3)0.004 (3)
C2210.042 (5)0.097 (8)0.046 (5)0.030 (5)0.005 (4)0.034 (5)
N2220.056 (6)0.110 (9)0.047 (5)0.036 (6)0.009 (4)0.020 (5)
N2230.054 (7)0.115 (11)0.033 (6)0.031 (7)0.004 (5)0.006 (7)
N2240.075 (9)0.101 (11)0.040 (7)0.015 (8)0.001 (6)0.009 (8)
Geometric parameters (Å, º) top
C1—O21.388 (7)O116—C1151.411 (7)
C1—C311.365 (10)C115—C1141.545 (8)
C1—C351.401 (10)C115—C1181.548 (11)
O2—C31.371 (6)C115—H11510.973
C3—C41.542 (8)C114—C1201.523 (8)
C3—O301.202 (7)C114—C1131.514 (7)
C4—C51.525 (7)C114—O1251.426 (5)
C4—C81.540 (8)C120—O1191.434 (7)
C4—O281.416 (6)C120—H12010.971
C5—O61.387 (7)C120—H12020.960
C5—H510.966O119—C1181.461 (11)
C5—H520.973C118—C1211.519 (8)
O6—C71.444 (7)C118—H11811.000
C7—C81.507 (7)C118—C2211.458 (8)
C7—C111.512 (8)C118—H11811.000
C7—H710.986C121—N1221.508 (9)
C8—O91.420 (6)C121—H12111.000
C8—H810.954C121—H12121.000
O9—C101.429 (8)N122—N1231.313 (9)
C10—H1010.959N123—N1241.015 (9)
C10—H1020.968C113—N1121.343 (7)
C10—H1030.962C113—O1271.229 (6)
C11—N121.471 (8)N112—C1111.455 (7)
C11—H1110.979N112—H11210.863
C11—H1120.963C111—C1071.524 (7)
N12—C131.324 (8)C111—H11110.971
N12—H1210.870C111—H11120.981
C13—C141.538 (9)C107—O1061.442 (7)
C13—O271.245 (7)C107—C1081.515 (7)
C14—C151.559 (8)C107—H10710.992
C14—C201.546 (8)O106—C1051.412 (7)
C14—O251.424 (6)C105—C1041.541 (6)
C15—O161.422 (7)C105—H10510.979
C15—C181.531 (9)C105—H10520.973
C15—H1510.983C104—C1081.562 (7)
O16—C171.374 (9)C104—C1031.518 (7)
C17—H1710.980C104—O1281.425 (6)
C17—H1720.969C108—O1091.414 (6)
C17—H1730.972C108—H10810.983
C18—O191.500 (9)O109—C1101.424 (7)
C18—C211.453 (9)C110—H11010.963
C18—H1810.985C110—H11020.962
O19—C201.397 (8)C110—H11030.952
C20—H2010.984C103—O1021.378 (6)
C20—H2020.970C103—O1301.196 (6)
C21—N221.482 (9)O102—C1011.387 (6)
C21—H2110.986C101—C1311.370 (8)
C21—H2120.982C101—C1351.374 (8)
N22—N231.305 (8)C131—C1321.385 (8)
N23—N240.983 (9)C131—F1401.344 (6)
O25—C261.446 (9)C132—C1331.366 (9)
C26—H2610.968C132—F1391.337 (7)
C26—H2620.967C133—C1341.359 (9)
C26—H2630.969C133—F1381.350 (6)
O28—C291.438 (7)C134—C1351.382 (8)
C29—H2910.962C134—F1371.354 (7)
C29—H2920.965C135—F1361.339 (7)
C29—H2930.967O128—C1291.446 (7)
C31—C321.379 (10)C129—H12910.958
C31—F401.325 (9)C129—H12920.961
C32—C331.388 (14)C129—H12930.963
C32—F391.329 (12)O125—C1261.423 (8)
C33—C341.377 (14)C126—H12610.963
C33—F381.323 (9)C126—H12620.961
C34—C351.356 (10)C126—H12630.967
C34—F371.335 (10)C221—N2221.474 (9)
C35—F361.350 (9)C221—H22111.000
C117—O1161.400 (12)C221—H22121.000
C117—H11710.967N222—N2231.301 (9)
C117—H11720.958N223—N2241.014 (9)
C117—H11730.967
O2—C1—C31122.2 (6)O116—C115—C114110.7 (4)
O2—C1—C35118.8 (6)O116—C115—C118109.9 (6)
C31—C1—C35118.6 (6)C114—C115—C118101.9 (6)
C1—O2—C3115.9 (4)O116—C115—H1151109.7
O2—C3—C4110.1 (4)C114—C115—H1151111.9
O2—C3—O30123.3 (5)C118—C115—H1151112.6
C4—C3—O30126.6 (5)C115—C114—C120100.3 (5)
C3—C4—C5110.6 (5)C115—C114—C113114.9 (5)
C3—C4—C8113.7 (4)C120—C114—C113113.4 (4)
C5—C4—C8101.7 (4)C115—C114—O125102.7 (4)
C3—C4—O28111.6 (4)C120—C114—O125112.6 (5)
C5—C4—O28113.7 (4)C113—C114—O125111.9 (4)
C8—C4—O28105.1 (4)C114—C120—O119104.6 (5)
C4—C5—O6107.0 (5)C114—C120—H1201110.3
C4—C5—H51109.8O119—C120—H1201113.4
O6—C5—H51108.3C114—C120—H1202110.4
C4—C5—H52112.0O119—C120—H1202108.6
O6—C5—H52110.4H1201—C120—H1202109.4
H51—C5—H52109.2C120—O119—C118108.5 (5)
C5—O6—C7109.8 (4)C115—C118—O119106.2 (5)
O6—C7—C8105.5 (5)C115—C118—C121122.1 (6)
O6—C7—C11109.0 (4)O119—C118—C12195.3 (8)
C8—C7—C11118.0 (5)C115—C118—H1181108.0
O6—C7—H71107.7O119—C118—H1181108.0
C8—C7—H71106.3C121—C118—H1181115.2
C11—C7—H71109.8C115—C118—O119106.2 (5)
C4—C8—C799.6 (4)C115—C118—C221106.6 (8)
C4—C8—O9109.6 (4)O119—C118—C221127.6 (8)
C7—C8—O9111.3 (4)C115—C118—H1181108.0
C4—C8—H81112.4O119—C118—H1181108.0
C7—C8—H81111.1C221—C118—H118199.2
O9—C8—H81112.2C118—C121—N122115.8 (7)
C8—O9—C10113.5 (5)C118—C121—H1211108.7
O9—C10—H101110.3N122—C121—H1211108.5
O9—C10—H102109.3C118—C121—H1212106.7
H101—C10—H102110.0N122—C121—H1212107.5
O9—C10—H103108.5H1211—C121—H1212109.5
H101—C10—H103109.5C121—N122—N123118.0 (8)
H102—C10—H103109.3N122—N123—N124175.3 (16)
C7—C11—N12109.5 (5)C114—C113—N112115.9 (4)
C7—C11—H111109.8C114—C113—O127121.7 (5)
N12—C11—H111109.5N112—C113—O127122.4 (5)
C7—C11—H112110.0C113—N112—C111120.7 (4)
N12—C11—H112107.8C113—N112—H1121119.7
H111—C11—H112110.2C111—N112—H1121119.4
C11—N12—C13119.1 (4)N112—C111—C107110.3 (4)
C11—N12—H121120.7N112—C111—H1111109.1
C13—N12—H121119.9C107—C111—H1111109.4
N12—C13—C14118.0 (5)N112—C111—H1112109.9
N12—C13—O27123.1 (6)C107—C111—H1112107.7
C14—C13—O27118.9 (5)H1111—C111—H1112110.4
C13—C14—C15108.7 (4)C111—C107—O106108.5 (4)
C13—C14—C20110.6 (5)C111—C107—C108117.2 (5)
C15—C14—C20103.8 (5)O106—C107—C108103.7 (4)
C13—C14—O25112.2 (4)C111—C107—H1071109.9
C15—C14—O25106.3 (5)O106—C107—H1071109.5
C20—C14—O25114.6 (5)C108—C107—H1071107.8
C14—C15—O16111.1 (5)C107—O106—C105107.3 (3)
C14—C15—C18103.0 (5)O106—C105—C104108.0 (4)
O16—C15—C18112.6 (5)O106—C105—H1051110.7
C14—C15—H151108.8C104—C105—H1051109.6
O16—C15—H151109.7O106—C105—H1052110.2
C18—C15—H151111.4C104—C105—H1052109.4
C15—O16—C17116.3 (6)H1051—C105—H1052108.9
O16—C17—H171108.8C105—C104—C108102.2 (4)
O16—C17—H172109.2C105—C104—C103112.8 (4)
H171—C17—H172109.7C108—C104—C103111.3 (4)
O16—C17—H173109.4C105—C104—O128113.3 (4)
H171—C17—H173110.6C108—C104—O128104.1 (4)
H172—C17—H173109.1C103—C104—O128112.3 (4)
C15—C18—O19103.8 (5)C104—C108—C107100.2 (4)
C15—C18—C21116.4 (6)C104—C108—O109108.5 (4)
O19—C18—C21104.4 (6)C107—C108—O109112.6 (4)
C15—C18—H181109.7C104—C108—H1081112.3
O19—C18—H181103.9C107—C108—H1081111.6
C21—C18—H181116.8O109—C108—H1081111.1
C18—O19—C20103.4 (5)C108—O109—C110112.8 (4)
C14—C20—O19105.2 (5)O109—C110—H1101108.2
C14—C20—H201112.3O109—C110—H1102110.3
O19—C20—H201110.2H1101—C110—H1102109.7
C14—C20—H202109.4O109—C110—H1103109.9
O19—C20—H202110.7H1101—C110—H1103108.6
H201—C20—H202109.0H1102—C110—H1103110.1
C18—C21—N22113.0 (6)C104—C103—O102108.8 (4)
C18—C21—H211108.8C104—C103—O130127.7 (4)
N22—C21—H211110.2O102—C103—O130123.5 (5)
C18—C21—H212106.9C103—O102—C101117.7 (4)
N22—C21—H212108.2O102—C101—C131122.3 (5)
H211—C21—H212109.7O102—C101—C135118.5 (5)
C21—N22—N23115.5 (6)C131—C101—C135119.1 (5)
N22—N23—N24170.6 (8)C101—C131—C132120.7 (5)
C14—O25—C26113.6 (5)C101—C131—F140120.4 (5)
O25—C26—H261108.5C132—C131—F140118.9 (5)
O25—C26—H262108.8C131—C132—C133119.6 (5)
H261—C26—H262109.5C131—C132—F139120.1 (6)
O25—C26—H263109.7C133—C132—F139120.3 (5)
H261—C26—H263110.5C132—C133—C134120.1 (5)
H262—C26—H263109.8C132—C133—F138119.8 (5)
C4—O28—C29115.7 (4)C134—C133—F138120.1 (6)
O28—C29—H291110.5C133—C134—C135120.4 (6)
O28—C29—H292109.7C133—C134—F137120.8 (5)
H291—C29—H292108.3C135—C134—F137118.8 (6)
O28—C29—H293109.8C134—C135—C101120.1 (5)
H291—C29—H293109.7C134—C135—F136119.3 (5)
H292—C29—H293108.9C101—C135—F136120.5 (5)
C1—C31—C32120.6 (8)C104—O128—C129114.9 (4)
C1—C31—F40119.8 (6)O128—C129—H1291108.6
C32—C31—F40119.6 (7)O128—C129—H1292110.8
C31—C32—C33120.0 (9)H1291—C129—H1292110.4
C31—C32—F39120.1 (10)O128—C129—H1293109.1
C33—C32—F39119.9 (8)H1291—C129—H1293109.0
C32—C33—C34119.8 (7)H1292—C129—H1293108.9
C32—C33—F38119.8 (10)C114—O125—C126115.0 (4)
C34—C33—F38120.5 (9)O125—C126—H1261109.3
C33—C34—C35119.7 (8)O125—C126—H1262110.3
C33—C34—F37121.0 (7)H1261—C126—H1262108.8
C35—C34—F37119.3 (9)O125—C126—H1263109.1
C1—C35—C34121.3 (8)H1261—C126—H1263109.8
C1—C35—F36119.0 (6)H1262—C126—H1263109.4
C34—C35—F36119.6 (7)C118—C221—N222106.0 (7)
O116—C117—H1171108.7C118—C221—H2211110.6
O116—C117—H1172109.8N222—C221—H2211110.7
H1171—C117—H1172110.1C118—C221—H2212109.4
O116—C117—H1173108.7N222—C221—H2212110.5
H1171—C117—H1173109.2H2211—C221—H2212109.5
H1172—C117—H1173110.4C221—N222—N223114.5 (8)
C117—O116—C115113.9 (7)N222—N223—N224170.8 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H52···O27i0.972.233.131 (10)153
C20—H202···N222ii0.972.323.269 (10)167
C26—H263···N222ii0.972.513.214 (10)129
C29—H293···O27i0.972.493.278 (10)139
N12—H121···O128iii0.872.363.200 (10)164
C129—H1292···O127i0.962.463.370 (10)158
C126—H1261···O270.962.473.202 (10)133
N112—H1121···O280.862.333.147 (10)159
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC22H25F5N4O9
Mr584.45
Crystal system, space groupMonoclinic, C2
Temperature (K)150
a, b, c (Å)26.8973 (4), 7.9070 (1), 24.7763 (5)
β (°) 102.4436 (6)
V3)5145.56 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.80 × 0.08 × 0.08
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.76, 0.99
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
17175, 4754, 4160
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.159, 0.99
No. of reflections4754
No. of parameters759
No. of restraints83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.90, 0.43

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003; Cooper et al., 2010), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H52···O27i0.972.233.131 (10)153
C20—H202···N222ii0.972.323.269 (10)167
C26—H263···N222ii0.972.513.214 (10)129
C29—H293···O27i0.972.493.278 (10)139
N12—H121···O128iii0.872.363.200 (10)164
C129—H1292···O127i0.962.463.370 (10)158
C126—H1261···O270.962.473.202 (10)133
N112—H1121···O280.862.333.147 (10)159
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z.
Selected torsion angles (°) leading to extended and contracted geometries. top
AtomsMolecule AMolecule B
O6—C7—C11—N1271.6104.2
C7—C11—N12—C1378.1-176.8
C11—N12—C13—C14-165.8-174.1
N12—C13—C14—O25-18.6-155.9
 

Footnotes

Alternative affiliation: Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England.

Acknowledgements

Financial support to MIS provided through the European Community's Human Potential Programme under contract HPRN-CT-2002–00173 is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEdwards, A. A., Alexander, B. D., Fleet, G. W. J. & Tranter, G. E. (2008). Chirality, 20, 969–972.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGibson, D., Homans, S. W. & Field, R. A. (2009). Tetrahedron Asymmetry, 20, 730–732.  Web of Science CrossRef CAS Google Scholar
First citationHo, P. T. & Wong, S. (1985). Can. J. Chem. 63, 2221–2224.  CrossRef CAS Web of Science Google Scholar
First citationHumphreys, S., Watkin, D. J., Sanjayan, G. J., Tranter, G. E., Edwards, A. A. & Fleet, G. W. J. (2005). Acta Cryst. E61, o918–o919.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHungerford, N. L., Claridge, T. D. W., Watterson, M. P., Aplin, R. T., Moreno, A. & Fleet, G. W. J. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 3666–3679.  Web of Science CrossRef Google Scholar
First citationJagadeesh, B., Kiran, M. U., Sudhakar, A. & Chandrasekhar, S. (2009). Chem. Eur. J. 15, 12592–12595.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMayes, B. A., Cowley, A. R., Ansell, C. W. G. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 163–166.  Web of Science CSD CrossRef CAS Google Scholar
First citationMayes, B. A., Simon, L., Watkin, D. J., Ansell, C. W. G. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 157–162.  Web of Science CSD CrossRef CAS Google Scholar
First citationMayes, B. A., Stetz, R. J. E., Ansell, C. W. G. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 153–156.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPunzo, F., Cowley, A. R., Watkin, D. J., Iezzi Simone, M., Edwards, A. A., Tranter, G. E. & Fleet, G. W. J. (2006). Acta Cryst. E62, o473–o475.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRisseeuw, M. D. P., Overhand, M., Fleet, G. W. J. & Simone, M. I. (2007). Tetrahedron Asymmetry, 18, 2001–2010.  Web of Science CrossRef CAS Google Scholar
First citationSimone, M. I., Edwards, A. A., Tranter, G. E. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 2887–2894.  Web of Science CrossRef CAS Google Scholar
First citationSimone, M., Edwards, A. A., Tranter, G. E. & Fleet, G. W. J. (2010). In preparation.  Google Scholar
First citationSimone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, M. D. & Fleet, G. W. J. (1999). J. Pept. Sci. 5, 425–441.  CrossRef PubMed CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds