metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(4-chloro­benzo­yl)-3-methyl-1-phenyl-1H-pyrazol-5-olato-κ2O,O′]bis­­(methanol-κO)nickel(II)

aCollege of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: zxin_tj@126.com

(Received 7 September 2010; accepted 29 September 2010; online 9 October 2010)

The mol­ecular structure of the neutral mononuclear title complex, [Ni(C17H12ClN2O2)2(CH3OH)2], is centrosymmetric. The NiII atom, which is located on an inversion center, is in a distorted octahedral coordination, defined by four O atoms from two ligands as well as two O atoms from two methanol mol­ecules. Inter­molecular O—H⋯N hydrogen bonds between the hy­droxy group of methanol and a pyrazole N atom link the mol­ecules, forming a two-dimensional network parallel to (100).

Related literature

For general background to Schiff base compounds in coordin­ation chemistry, see: Harrop et al. (2003[Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410-411.]); Yu et al. (1993[Yu, S. Y. , Wang, S. X., Luo, Q. H., Wang, L. F, Peng, Z. R. & Gao, X. (1993). Polyhedron, 12, 1093-1096.]); Wu et al. (1993[Wu, J. G., Deng, R. W. & Chen, Z. N. (1993). Transition Met. Chem. 18, 23-26.]). For the anti­bacterial properties of Schiff bases derived from 4-acyl-5-pyrazolo­nes and their metal complexes, see: Li et al. (1997[Li, J.-Z., Yu, W.-J. & Du, X.-Y. (1997). Chin. J. Appl. Chem. 14, 98-100.], 2004[Li, J.-Z., Jiang, L. & An, Y.-M. (2004). Chin. J. Appl. Chem. 21, 150-153.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C17H12ClN2O2)2(CH4O)2]

  • Mr = 746.27

  • Monoclinic, P 21 /c

  • a = 11.8398 (7) Å

  • b = 12.3162 (7) Å

  • c = 13.2104 (8) Å

  • β = 114.706 (1)°

  • V = 1750.03 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 296 K

  • 0.24 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.834, Tmax = 0.872

  • 8808 measured reflections

  • 3089 independent reflections

  • 2534 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.03

  • 3089 reflections

  • 225 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N2i 0.85 2.00 2.795 (2) 156
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, Schiff base complexes with metals have generated a wide interest because they possess a large spectrum of biological, pharmaceutical and catalytic properties, such as antitumor and antioxidative activities, as well as the inhibition of lipid peroxidation, among others (Harrop et al., 2003; Yu et al., 1993; Wu et al., 1993). The Schiff bases derived from 4-acyl-5-pyrazolones and their metal complexes have also been widely studied for their high antibacterial activity (Li et al., 1997, 2004). In this paper, we report the synthesis and crystal structure of the title compound, (I), containing a β-ketoamine ligand with organic chlorine, based on a pyrazolone derivative.

The molecular structure of (I) reveals a neutral centrosymmetric mononuclear complex, with the asymmetric unit comprising a half molecule (Fig. 1). The distorted octahedral NiII center, which locates on a crystallographic inversion center, is coordinated to four O donors from a couple of ligands, and two O atoms from two methanol molecules. The equatorial Ni—O bond lengths are comparable with an average value of 2.0345 (6) Å, which are significantly shorter than that of the axial Ni—O distance of 2.0651 (16) Å. The cis bond angles around the NiII center range from 88.47 (7) to 91.53 (7)°. Intermolecular hydrogen bonds (Table 1) link the molecules together, forming a two-dimensional network (Fig. 2).

Related literature top

For general background to Schiff base compounds in coordination chemistry, see: Harrop et al. (2003); Yu et al. (1993); Wu et al. (1993). For the antibacterial properties of Schiff bases derived from 4-acyl-5-pyrazolones and their metal complexes, see: Li et al. (1997, 2004).

Experimental top

A mixture of Ni(OAc)2.4H2O (24.8 mg, 0.10 mmol), 4(Z)-4-((4-chlorophenyl)(hydroxy)methylene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (62.6 mg, 0.20 mmol) and methanol (12 ml) was heated at 433 K for 2 days in a sealed Teflon-lined stainless steel vessel (20 mL) under autogenous pressure. After the reaction system was slowly cooled down to the room temperature, it was placed to stand at room temperature for a period of four weeks, affording green block crystals in 60% yield.

Refinement top

Although all H atoms were visible in difference maps, they were placed in geometrically calculated positions, with C—H distances in the range 0.93–0.96 Å, and O—H = 0.85 Å. Isotropic displacement parameters were calculated as Uiso(H)=1.2 or 1.5Ueq(carrier atom).

Structure description top

In recent years, Schiff base complexes with metals have generated a wide interest because they possess a large spectrum of biological, pharmaceutical and catalytic properties, such as antitumor and antioxidative activities, as well as the inhibition of lipid peroxidation, among others (Harrop et al., 2003; Yu et al., 1993; Wu et al., 1993). The Schiff bases derived from 4-acyl-5-pyrazolones and their metal complexes have also been widely studied for their high antibacterial activity (Li et al., 1997, 2004). In this paper, we report the synthesis and crystal structure of the title compound, (I), containing a β-ketoamine ligand with organic chlorine, based on a pyrazolone derivative.

The molecular structure of (I) reveals a neutral centrosymmetric mononuclear complex, with the asymmetric unit comprising a half molecule (Fig. 1). The distorted octahedral NiII center, which locates on a crystallographic inversion center, is coordinated to four O donors from a couple of ligands, and two O atoms from two methanol molecules. The equatorial Ni—O bond lengths are comparable with an average value of 2.0345 (6) Å, which are significantly shorter than that of the axial Ni—O distance of 2.0651 (16) Å. The cis bond angles around the NiII center range from 88.47 (7) to 91.53 (7)°. Intermolecular hydrogen bonds (Table 1) link the molecules together, forming a two-dimensional network (Fig. 2).

For general background to Schiff base compounds in coordination chemistry, see: Harrop et al. (2003); Yu et al. (1993); Wu et al. (1993). For the antibacterial properties of Schiff bases derived from 4-acyl-5-pyrazolones and their metal complexes, see: Li et al. (1997, 2004).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with anisotropic displacement ellipsoids drawn at the 30° probability level. [Symmetry code:(i)1-x,-y,-z.]
[Figure 2] Fig. 2. The two-dimensional supra-molecular network of (I) produced by the inter-molecular O-H···N weak hydrogen-bonding interactions.
Bis[4-(4-chlorobenzoyl)-3-methyl-1-phenyl-1H-pyrazol-5-olato- κ2O,O']bis(methanol-κO)nickel(II) top
Crystal data top
[Ni(C17H12ClN2O2)2(CH4O)2]F(000) = 772
Mr = 746.27Dx = 1.416 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3041 reflections
a = 11.8398 (7) Åθ = 2.4–25.4°
b = 12.3162 (7) ŵ = 0.76 mm1
c = 13.2104 (8) ÅT = 296 K
β = 114.706 (1)°Block, green
V = 1750.03 (18) Å30.24 × 0.22 × 0.18 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3089 independent reflections
Radiation source: fine-focus sealed tube2534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 148
Tmin = 0.834, Tmax = 0.872k = 1414
8808 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.7427P]
where P = (Fo2 + 2Fc2)/3
3089 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.34 e Å3
0 constraints
Crystal data top
[Ni(C17H12ClN2O2)2(CH4O)2]V = 1750.03 (18) Å3
Mr = 746.27Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.8398 (7) ŵ = 0.76 mm1
b = 12.3162 (7) ÅT = 296 K
c = 13.2104 (8) Å0.24 × 0.22 × 0.18 mm
β = 114.706 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3089 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2534 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 0.872Rint = 0.021
8808 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
3089 reflectionsΔρmin = 0.34 e Å3
225 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.00000.03539 (14)
Cl10.04928 (8)0.55881 (7)0.33203 (7)0.0790 (3)
O10.39759 (15)0.13217 (12)0.07861 (12)0.0421 (4)
O20.61693 (14)0.09579 (12)0.12531 (12)0.0423 (4)
O30.39208 (16)0.01739 (13)0.08784 (14)0.0476 (4)
H3A0.39700.07840.11960.071*
C10.1856 (2)0.2801 (2)0.1767 (2)0.0613 (7)
H10.15670.21000.17650.074*
C20.1060 (3)0.3578 (2)0.2451 (3)0.0667 (8)
H20.02340.34060.28930.080*
C30.1491 (3)0.4595 (2)0.2474 (2)0.0529 (6)
C40.2709 (3)0.4855 (2)0.1845 (2)0.0609 (8)
H40.30060.55450.18870.073*
C50.3491 (2)0.4082 (2)0.1151 (2)0.0553 (7)
H50.43170.42580.07160.066*
C60.3072 (2)0.30524 (18)0.10879 (18)0.0407 (5)
C70.3925 (2)0.22122 (17)0.03395 (18)0.0379 (5)
C80.4653 (2)0.24382 (18)0.08010 (18)0.0403 (5)
C90.4556 (2)0.32600 (19)0.1533 (2)0.0457 (6)
N20.54567 (19)0.31717 (16)0.25322 (17)0.0483 (5)
N10.61951 (18)0.22984 (15)0.24962 (15)0.0427 (5)
C110.5709 (2)0.17991 (17)0.14723 (18)0.0376 (5)
C100.3568 (3)0.4093 (2)0.1350 (2)0.0698 (9)
H10A0.36320.43540.20560.105*
H10B0.27640.37710.09470.105*
H10C0.36740.46870.09280.105*
C120.7225 (2)0.19863 (18)0.34771 (19)0.0429 (6)
C130.7201 (3)0.2167 (2)0.4506 (2)0.0538 (7)
H130.65010.24680.45480.065*
C140.8222 (3)0.1898 (2)0.5459 (2)0.0695 (9)
H140.82110.20230.61490.083*
C150.9255 (3)0.1449 (3)0.5412 (2)0.0766 (10)
H150.99420.12730.60630.092*
C160.9266 (3)0.1260 (3)0.4383 (3)0.0714 (9)
H160.99630.09490.43450.086*
C170.8256 (2)0.1529 (2)0.3416 (2)0.0543 (7)
H170.82700.14020.27270.065*
C200.2607 (3)0.0031 (2)0.0339 (3)0.0652 (8)
H20A0.23940.06760.05120.098*
H20B0.22070.05760.05950.098*
H20C0.23350.00970.04520.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0489 (3)0.0260 (2)0.0311 (2)0.00240 (17)0.01650 (18)0.00093 (16)
Cl10.0751 (5)0.0799 (6)0.0691 (5)0.0358 (4)0.0176 (4)0.0205 (4)
O10.0575 (10)0.0310 (8)0.0355 (8)0.0043 (7)0.0170 (7)0.0009 (7)
O20.0486 (9)0.0340 (8)0.0383 (9)0.0065 (7)0.0124 (7)0.0067 (7)
O30.0580 (11)0.0439 (10)0.0459 (10)0.0027 (8)0.0266 (8)0.0103 (7)
C10.0505 (16)0.0468 (16)0.0721 (19)0.0082 (12)0.0114 (14)0.0034 (13)
C20.0428 (15)0.067 (2)0.0699 (19)0.0032 (13)0.0034 (14)0.0038 (15)
C30.0528 (16)0.0539 (16)0.0483 (15)0.0150 (13)0.0173 (13)0.0065 (12)
C40.0630 (18)0.0404 (15)0.0701 (19)0.0015 (12)0.0187 (15)0.0158 (13)
C50.0474 (15)0.0422 (14)0.0627 (17)0.0024 (12)0.0096 (13)0.0075 (12)
C60.0470 (14)0.0345 (12)0.0400 (13)0.0002 (10)0.0175 (11)0.0025 (10)
C70.0440 (13)0.0309 (12)0.0397 (12)0.0017 (9)0.0186 (10)0.0005 (9)
C80.0500 (14)0.0307 (12)0.0375 (12)0.0033 (10)0.0155 (11)0.0027 (10)
C90.0525 (15)0.0374 (13)0.0437 (13)0.0047 (11)0.0165 (12)0.0054 (11)
N20.0574 (13)0.0392 (11)0.0458 (12)0.0072 (9)0.0191 (10)0.0108 (9)
N10.0508 (12)0.0353 (10)0.0380 (10)0.0050 (9)0.0147 (9)0.0063 (8)
C110.0464 (13)0.0319 (11)0.0348 (12)0.0017 (10)0.0174 (10)0.0035 (9)
C100.080 (2)0.0624 (18)0.0577 (18)0.0262 (16)0.0197 (16)0.0109 (14)
C120.0522 (14)0.0317 (12)0.0372 (12)0.0025 (10)0.0112 (11)0.0012 (10)
C130.0681 (18)0.0466 (15)0.0426 (14)0.0009 (13)0.0192 (13)0.0045 (11)
C140.099 (2)0.0566 (18)0.0400 (15)0.0049 (17)0.0166 (16)0.0028 (13)
C150.084 (2)0.065 (2)0.0479 (17)0.0118 (17)0.0044 (16)0.0003 (14)
C160.0635 (19)0.072 (2)0.0637 (19)0.0156 (16)0.0115 (15)0.0039 (16)
C170.0572 (16)0.0520 (16)0.0481 (15)0.0063 (13)0.0166 (13)0.0006 (12)
C200.0612 (19)0.0661 (19)0.079 (2)0.0106 (14)0.0405 (16)0.0183 (15)
Geometric parameters (Å, º) top
Ni1—O22.0330 (15)C8—C91.438 (3)
Ni1—O2i2.0330 (15)C9—N21.309 (3)
Ni1—O12.0361 (15)C9—C101.497 (3)
Ni1—O1i2.0361 (15)N2—N11.399 (3)
Ni1—O3i2.0651 (16)N1—C111.374 (3)
Ni1—O32.0651 (16)N1—C121.411 (3)
Cl1—C31.744 (3)C10—H10A0.9600
O1—C71.259 (3)C10—H10B0.9600
O2—C111.259 (3)C10—H10C0.9600
O3—C201.425 (3)C12—C171.378 (3)
O3—H3A0.8505C12—C131.389 (3)
C1—C61.376 (3)C13—C141.373 (4)
C1—C21.382 (4)C13—H130.9300
C1—H10.9300C14—C151.367 (4)
C2—C31.357 (4)C14—H140.9300
C2—H20.9300C15—C161.385 (4)
C3—C41.368 (4)C15—H150.9300
C4—C51.377 (4)C16—C171.376 (4)
C4—H40.9300C16—H160.9300
C5—C61.376 (3)C17—H170.9300
C5—H50.9300C20—H20A0.9600
C6—C71.494 (3)C20—H20B0.9600
C7—C81.416 (3)C20—H20C0.9600
C8—C111.429 (3)
O2—Ni1—O2i180.00 (10)C7—C8—C9132.1 (2)
O2—Ni1—O190.52 (6)C11—C8—C9105.41 (19)
O2i—Ni1—O189.48 (6)N2—C9—C8111.0 (2)
O2—Ni1—O1i89.48 (6)N2—C9—C10118.2 (2)
O2i—Ni1—O1i90.52 (6)C8—C9—C10130.6 (2)
O1—Ni1—O1i180.00 (5)C9—N2—N1106.68 (18)
O2—Ni1—O3i91.53 (7)C11—N1—N2111.53 (18)
O2i—Ni1—O3i88.47 (7)C11—N1—C12128.86 (19)
O1—Ni1—O3i90.39 (6)N2—N1—C12119.36 (18)
O1i—Ni1—O3i89.61 (6)O2—C11—N1123.5 (2)
O2—Ni1—O388.47 (7)O2—C11—C8131.4 (2)
O2i—Ni1—O391.53 (7)N1—C11—C8105.20 (18)
O1—Ni1—O389.61 (6)C9—C10—H10A109.5
O1i—Ni1—O390.39 (6)C9—C10—H10B109.5
O3i—Ni1—O3180.00 (6)H10A—C10—H10B109.5
C7—O1—Ni1126.33 (14)C9—C10—H10C109.5
C11—O2—Ni1116.87 (14)H10A—C10—H10C109.5
C20—O3—Ni1120.58 (16)H10B—C10—H10C109.5
C20—O3—H3A101.0C17—C12—C13120.3 (2)
Ni1—O3—H3A116.0C17—C12—N1120.3 (2)
C6—C1—C2120.9 (3)C13—C12—N1119.4 (2)
C6—C1—H1119.6C14—C13—C12119.2 (3)
C2—C1—H1119.6C14—C13—H13120.4
C3—C2—C1119.5 (3)C12—C13—H13120.4
C3—C2—H2120.2C15—C14—C13121.1 (3)
C1—C2—H2120.2C15—C14—H14119.4
C2—C3—C4120.9 (2)C13—C14—H14119.4
C2—C3—Cl1120.0 (2)C14—C15—C16119.3 (3)
C4—C3—Cl1119.0 (2)C14—C15—H15120.4
C3—C4—C5119.1 (2)C16—C15—H15120.4
C3—C4—H4120.4C17—C16—C15120.6 (3)
C5—C4—H4120.4C17—C16—H16119.7
C6—C5—C4121.3 (2)C15—C16—H16119.7
C6—C5—H5119.4C16—C17—C12119.4 (3)
C4—C5—H5119.4C16—C17—H17120.3
C5—C6—C1118.2 (2)C12—C17—H17120.3
C5—C6—C7121.1 (2)O3—C20—H20A109.5
C1—C6—C7120.6 (2)O3—C20—H20B109.5
O1—C7—C8122.9 (2)H20A—C20—H20B109.5
O1—C7—C6116.40 (19)O3—C20—H20C109.5
C8—C7—C6120.69 (19)H20A—C20—H20C109.5
C7—C8—C11122.5 (2)H20B—C20—H20C109.5
O2—Ni1—O1—C722.71 (18)C6—C7—C8—C918.3 (4)
O2i—Ni1—O1—C7157.29 (18)C7—C8—C9—N2179.0 (2)
O3i—Ni1—O1—C7114.24 (18)C11—C8—C9—N21.7 (3)
O3—Ni1—O1—C765.76 (18)C7—C8—C9—C106.5 (5)
O1—Ni1—O2—C1130.69 (16)C11—C8—C9—C10172.8 (3)
O1i—Ni1—O2—C11149.31 (16)C8—C9—N2—N10.8 (3)
O3i—Ni1—O2—C11121.10 (16)C10—C9—N2—N1176.1 (2)
O3—Ni1—O2—C1158.90 (16)C9—N2—N1—C113.2 (3)
O2—Ni1—O3—C20132.23 (18)C9—N2—N1—C12177.8 (2)
O2i—Ni1—O3—C2047.77 (18)Ni1—O2—C11—N1155.00 (18)
O1—Ni1—O3—C2041.70 (18)Ni1—O2—C11—C825.3 (3)
O1i—Ni1—O3—C20138.30 (18)N2—N1—C11—O2176.1 (2)
C6—C1—C2—C31.6 (5)C12—N1—C11—O22.0 (4)
C1—C2—C3—C41.3 (5)N2—N1—C11—C84.1 (3)
C1—C2—C3—Cl1179.2 (2)C12—N1—C11—C8178.1 (2)
C2—C3—C4—C52.5 (5)C7—C8—C11—O22.6 (4)
Cl1—C3—C4—C5178.1 (2)C9—C8—C11—O2176.8 (2)
C3—C4—C5—C60.7 (5)C7—C8—C11—N1177.1 (2)
C4—C5—C6—C12.1 (4)C9—C8—C11—N13.4 (3)
C4—C5—C6—C7179.5 (3)C11—N1—C12—C1736.5 (4)
C2—C1—C6—C53.3 (4)N2—N1—C12—C17149.9 (2)
C2—C1—C6—C7179.3 (3)C11—N1—C12—C13145.0 (2)
Ni1—O1—C7—C83.6 (3)N2—N1—C12—C1328.7 (3)
Ni1—O1—C7—C6178.18 (14)C17—C12—C13—C140.8 (4)
C5—C6—C7—O1126.5 (2)N1—C12—C13—C14177.7 (2)
C1—C6—C7—O150.9 (3)C12—C13—C14—C150.4 (4)
C5—C6—C7—C851.8 (3)C13—C14—C15—C160.3 (5)
C1—C6—C7—C8130.8 (3)C14—C15—C16—C170.6 (5)
O1—C7—C8—C1115.7 (4)C15—C16—C17—C120.2 (5)
C6—C7—C8—C11162.5 (2)C13—C12—C17—C160.5 (4)
O1—C7—C8—C9163.6 (2)N1—C12—C17—C16178.0 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N2ii0.852.002.795 (2)156
Symmetry code: (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C17H12ClN2O2)2(CH4O)2]
Mr746.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.8398 (7), 12.3162 (7), 13.2104 (8)
β (°) 114.706 (1)
V3)1750.03 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.834, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
8808, 3089, 2534
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.03
No. of reflections3089
No. of parameters225
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.34

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N2i0.852.002.795 (2)156.0
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20771083).

References

First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410–411.  Web of Science CSD CrossRef Google Scholar
First citationLi, J.-Z., Jiang, L. & An, Y.-M. (2004). Chin. J. Appl. Chem. 21, 150–153.  CAS Google Scholar
First citationLi, J.-Z., Yu, W.-J. & Du, X.-Y. (1997). Chin. J. Appl. Chem. 14, 98–100.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J. G., Deng, R. W. & Chen, Z. N. (1993). Transition Met. Chem. 18, 23–26.  CrossRef CAS Web of Science Google Scholar
First citationYu, S. Y. , Wang, S. X., Luo, Q. H., Wang, L. F, Peng, Z. R. & Gao, X. (1993). Polyhedron, 12, 1093–1096.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds