organic compounds
4-Bromomethyl-6-methoxy-2H-chromen-2-one
aDepartment of Physics, Govt. College for Women, Kolar 563 101, Karnataka, India, bDepartment of Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India, and cDepartment of Physics, Govt. First Grade College, K.R. Pura, Bangalore 560 036, Karnataka, India
*Correspondence e-mail: rkgowdaphy@gmail.com
The structure of the title coumarin derivative, C11H9BrO3, is stabilized by weak intermolecular C—H⋯O hydrogen bonds.
Related literature
For the properties of et al. (2006); Fylaktakidou et al. (2004); Neyts et al. (2009); Kempen et al. (2003). For structural analysis of see: Gnanaguru et al. (1985); Munshi & Guru Row (2005); Gavuzzo et al. (1974); Moorthy et al. (2003); Katerinopoulos (2004). For Br-containing see: Gaultier & Hauw (1965); Kokila et al. (1996); Vasudevan et al. (1991).
see: KulkarniExperimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536810042005/bh2314sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810042005/bh2314Isup2.hkl
To a mixture of equimolar quantity of 4-methoxy phenol (0.1 mol) and 4-bromoethylacetoacetate (0.1 mol) was added drop wise sulfuric acid (30 ml) with stirring and maintaining the temperature between 0-5 °C. The reaction mixture was allowed to stand in ice chest overnight and deep red coloured solution was poured into the stream of crushed ice. Solid separated was filtered and washed with water and then with cold ethanol so as to get a colourless compound. Finally, it is recrystallized from acetic acid.
All the H atoms were positioned geometrically and refined using a riding model with bond lengths 0.97 (methylene), 0.96 (methyl) or 0.93 Å (aromatic). Isotropic displacement parameters were calculated as Uĩso~(H) = 1.5U~eq~(C) for methyl group C11 and Uĩso~(H) = 1.2U~eq~(C) for all other H atoms.
Coumarins are a class of naturally occurring oxygen heterocycles which have been found to exhibit wide ranging biological activities (Kulkarni et al., 2006; Fylaktakidou et al., 2004; Neyts et al., 2009) through its innumerable derivatives. Structural studies on
have been focused on their solid state photochemical dimerization (Gnanaguru et al., 1985), hydrogen bonding (Munshi et al., 2005), mode of packing (Gavuzzo et al., 1974), molecular self assembling (Moorthy et al., 2003) and photophysical properties (Katerinopoulos et al., 2004). Introduction of bromine has resulted in formation of hydrates, intermolecular hydrogen bonds, and eclipsed conformation, as observed in 3-bromocoumarin (Gaultier et al., 1965), 6-bromo-3-acetylcoumarin (Kokila et al., 1996), and 3-bromoacetylcoumarin (Vasudevan et al., 1991), respectively. 3-Bromophenyl-6-acetoxymethyl-coumarin-3-carboxylates have been found to exhibit potential anticancer and antitumour activity (Kempen et al., 2003).The title compound is cyclic, planar and aromatic in nature due to the continuous delocalization of electrons over the coumarin rings system. There is a significant deviation from trigonality in bond angle at O1—C1—C2 [117.0 (3)°], due to the electronic repulsion of atom O2 which is bonded to C1. This is also reflected at C9—C4—C5 [117.9 (3)°] and C9—C4—C3 [117.6 (3)°] but these are due to fused benzene and α pyrone rings. Another significant deviation in bond angle is observed at C6—O3—C11 [118.0 (3)°] due to the repulsion between lone pair electrons of atom O3 with valence electrons of C6—O3 and O3—C11 bonds.
For the properties of
see: Kulkarni et al. (2006); Fylaktakidou et al. (2004); Neyts et al. (2009); Kempen et al. (2003). For structural analysis of see: Gnanaguru et al. (1985); Munshi & Guru Row (2005); Gavuzzo et al. (1974); Moorthy et al. (2003); Katerinopoulos (2004). For Br-containing see: Gaultier & Hauw (1965); Kokila et al. (1996); Vasudevan et al. (1991).Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. ORTEP diagram of the title molecule with 50% probability displacement ellipsoids for non-H atoms. |
C11H9BrO3 | F(000) = 536 |
Mr = 269.09 | Dx = 1.749 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3217 reflections |
a = 4.3573 (3) Å | θ = 2.3–25.4° |
b = 9.2859 (6) Å | µ = 4.01 mm−1 |
c = 25.2677 (17) Å | T = 293 K |
β = 91.927 (3)° | Needle, colourless |
V = 1021.79 (12) Å3 | 0.25 × 0.15 × 0.1 mm |
Z = 4 |
Bruker Kappa APEXII CCD diffractometer | 2128 independent reflections |
Radiation source: fine-focus sealed tube | 1501 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω and φ scans | θmax = 26.6°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −5→3 |
Tmin = 0.434, Tmax = 0.501 | k = −11→11 |
9950 measured reflections | l = −31→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 0.96 | w = 1/[σ2(Fo2) + (0.0467P)2 + 1.203P] where P = (Fo2 + 2Fc2)/3 |
2128 reflections | (Δ/σ)max = 0.008 |
137 parameters | Δρmax = 0.93 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
0 constraints |
C11H9BrO3 | V = 1021.79 (12) Å3 |
Mr = 269.09 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 4.3573 (3) Å | µ = 4.01 mm−1 |
b = 9.2859 (6) Å | T = 293 K |
c = 25.2677 (17) Å | 0.25 × 0.15 × 0.1 mm |
β = 91.927 (3)° |
Bruker Kappa APEXII CCD diffractometer | 2128 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 1501 reflections with I > 2σ(I) |
Tmin = 0.434, Tmax = 0.501 | Rint = 0.037 |
9950 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 0.96 | Δρmax = 0.93 e Å−3 |
2128 reflections | Δρmin = −0.26 e Å−3 |
137 parameters |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3658 (8) | 0.2636 (4) | 0.73840 (14) | 0.0406 (9) | |
C2 | 0.4641 (8) | 0.1339 (4) | 0.71330 (13) | 0.0375 (8) | |
H2 | 0.3944 | 0.0462 | 0.7260 | 0.045* | |
C3 | 0.6518 (7) | 0.1332 (4) | 0.67239 (13) | 0.0321 (7) | |
C4 | 0.7577 (7) | 0.2706 (4) | 0.65171 (12) | 0.0318 (7) | |
C5 | 0.9489 (7) | 0.2851 (4) | 0.60828 (13) | 0.0348 (8) | |
H5 | 1.0139 | 0.2035 | 0.5905 | 0.042* | |
C6 | 1.0401 (7) | 0.4188 (4) | 0.59198 (13) | 0.0378 (9) | |
C7 | 0.9456 (8) | 0.5407 (4) | 0.61872 (14) | 0.0429 (9) | |
H7 | 1.0121 | 0.6311 | 0.6081 | 0.051* | |
C8 | 0.7556 (8) | 0.5293 (4) | 0.66048 (14) | 0.0401 (9) | |
H8 | 0.6889 | 0.6113 | 0.6778 | 0.048* | |
C9 | 0.6642 (7) | 0.3941 (4) | 0.67652 (13) | 0.0345 (8) | |
C10 | 0.7530 (9) | −0.0074 (4) | 0.65024 (14) | 0.0421 (9) | |
H10A | 0.7086 | −0.0837 | 0.6751 | 0.050* | |
H10B | 0.9733 | −0.0052 | 0.6460 | 0.050* | |
C11 | 1.2815 (9) | 0.3270 (5) | 0.51587 (15) | 0.0535 (11) | |
H11A | 1.4005 | 0.2554 | 0.5347 | 0.080* | |
H11B | 1.3939 | 0.3612 | 0.4863 | 0.080* | |
H11C | 1.0908 | 0.2856 | 0.5033 | 0.080* | |
O1 | 0.4744 (5) | 0.3905 (3) | 0.71899 (9) | 0.0397 (6) | |
O2 | 0.1939 (7) | 0.2719 (3) | 0.77495 (11) | 0.0569 (7) | |
O3 | 1.2213 (6) | 0.4438 (3) | 0.55030 (10) | 0.0500 (7) | |
Br1 | 0.54925 (10) | −0.04981 (5) | 0.582134 (17) | 0.0612 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0437 (19) | 0.039 (2) | 0.039 (2) | −0.0003 (18) | 0.0059 (16) | −0.0004 (17) |
C2 | 0.0442 (19) | 0.029 (2) | 0.0390 (19) | −0.0025 (16) | 0.0024 (16) | 0.0004 (16) |
C3 | 0.0345 (17) | 0.027 (2) | 0.0344 (18) | 0.0024 (15) | 0.0010 (14) | −0.0003 (14) |
C4 | 0.0310 (16) | 0.034 (2) | 0.0301 (17) | 0.0032 (15) | −0.0022 (13) | 0.0012 (15) |
C5 | 0.0338 (17) | 0.036 (2) | 0.0350 (18) | 0.0037 (16) | 0.0031 (14) | −0.0014 (16) |
C6 | 0.0371 (18) | 0.042 (2) | 0.0343 (19) | −0.0030 (16) | 0.0050 (15) | 0.0044 (15) |
C7 | 0.051 (2) | 0.030 (2) | 0.048 (2) | −0.0055 (18) | 0.0027 (17) | 0.0076 (17) |
C8 | 0.050 (2) | 0.029 (2) | 0.042 (2) | 0.0018 (17) | 0.0008 (16) | −0.0045 (16) |
C9 | 0.0335 (17) | 0.037 (2) | 0.0333 (18) | −0.0008 (15) | 0.0020 (14) | −0.0007 (15) |
C10 | 0.048 (2) | 0.032 (2) | 0.046 (2) | 0.0050 (17) | 0.0039 (17) | 0.0013 (17) |
C11 | 0.063 (3) | 0.053 (3) | 0.045 (2) | 0.000 (2) | 0.0162 (19) | 0.002 (2) |
O1 | 0.0483 (14) | 0.0339 (15) | 0.0376 (13) | 0.0013 (12) | 0.0117 (11) | −0.0024 (11) |
O2 | 0.0759 (19) | 0.0461 (18) | 0.0508 (16) | 0.0039 (15) | 0.0305 (15) | −0.0005 (13) |
O3 | 0.0618 (16) | 0.0435 (17) | 0.0460 (15) | −0.0072 (13) | 0.0208 (13) | 0.0030 (13) |
Br1 | 0.0732 (3) | 0.0518 (3) | 0.0587 (3) | 0.0043 (2) | 0.0017 (2) | −0.0214 (2) |
C1—O2 | 1.211 (4) | C7—C8 | 1.367 (5) |
C1—O1 | 1.367 (4) | C7—H7 | 0.9300 |
C1—C2 | 1.434 (5) | C8—C9 | 1.382 (5) |
C2—C3 | 1.340 (5) | C8—H8 | 0.9300 |
C2—H2 | 0.9300 | C9—O1 | 1.377 (4) |
C3—C4 | 1.459 (5) | C10—Br1 | 1.950 (4) |
C3—C10 | 1.493 (5) | C10—H10A | 0.9700 |
C4—C9 | 1.375 (5) | C10—H10B | 0.9700 |
C4—C5 | 1.406 (5) | C11—O3 | 1.420 (5) |
C5—C6 | 1.371 (5) | C11—H11A | 0.9600 |
C5—H5 | 0.9300 | C11—H11B | 0.9600 |
C6—O3 | 1.357 (4) | C11—H11C | 0.9600 |
C6—C7 | 1.388 (5) | ||
O2—C1—O1 | 116.7 (3) | C7—C8—C9 | 119.0 (3) |
O2—C1—C2 | 126.3 (4) | C7—C8—H8 | 120.5 |
O1—C1—C2 | 117.0 (3) | C9—C8—H8 | 120.5 |
C3—C2—C1 | 123.0 (3) | C4—C9—C8 | 122.1 (3) |
C3—C2—H2 | 118.5 | C4—C9—O1 | 122.0 (3) |
C1—C2—H2 | 118.5 | C8—C9—O1 | 115.9 (3) |
C2—C3—C4 | 118.7 (3) | C3—C10—Br1 | 112.1 (2) |
C2—C3—C10 | 119.3 (3) | C3—C10—H10A | 109.2 |
C4—C3—C10 | 122.0 (3) | Br1—C10—H10A | 109.2 |
C9—C4—C5 | 117.9 (3) | C3—C10—H10B | 109.2 |
C9—C4—C3 | 117.6 (3) | Br1—C10—H10B | 109.2 |
C5—C4—C3 | 124.5 (3) | H10A—C10—H10B | 107.9 |
C6—C5—C4 | 120.4 (3) | O3—C11—H11A | 109.5 |
C6—C5—H5 | 119.8 | O3—C11—H11B | 109.5 |
C4—C5—H5 | 119.8 | H11A—C11—H11B | 109.5 |
O3—C6—C5 | 124.7 (3) | O3—C11—H11C | 109.5 |
O3—C6—C7 | 115.4 (3) | H11A—C11—H11C | 109.5 |
C5—C6—C7 | 119.9 (3) | H11B—C11—H11C | 109.5 |
C8—C7—C6 | 120.7 (3) | C1—O1—C9 | 121.6 (3) |
C8—C7—H7 | 119.7 | C6—O3—C11 | 118.0 (3) |
C6—C7—H7 | 119.7 | ||
O2—C1—C2—C3 | 179.0 (3) | C5—C4—C9—C8 | −0.9 (5) |
O1—C1—C2—C3 | −0.5 (5) | C3—C4—C9—C8 | 179.0 (3) |
C1—C2—C3—C4 | −1.0 (5) | C5—C4—C9—O1 | 179.3 (3) |
C1—C2—C3—C10 | 177.4 (3) | C3—C4—C9—O1 | −0.8 (4) |
C2—C3—C4—C9 | 1.6 (4) | C7—C8—C9—C4 | −0.2 (5) |
C10—C3—C4—C9 | −176.7 (3) | C7—C8—C9—O1 | 179.6 (3) |
C2—C3—C4—C5 | −178.5 (3) | C2—C3—C10—Br1 | 106.3 (3) |
C10—C3—C4—C5 | 3.2 (5) | C4—C3—C10—Br1 | −75.4 (3) |
C9—C4—C5—C6 | 0.7 (5) | O2—C1—O1—C9 | −178.1 (3) |
C3—C4—C5—C6 | −179.2 (3) | C2—C1—O1—C9 | 1.4 (5) |
C4—C5—C6—O3 | −179.3 (3) | C4—C9—O1—C1 | −0.8 (5) |
C4—C5—C6—C7 | 0.5 (5) | C8—C9—O1—C1 | 179.4 (3) |
O3—C6—C7—C8 | 178.2 (3) | C5—C6—O3—C11 | 10.6 (5) |
C5—C6—C7—C8 | −1.6 (5) | C7—C6—O3—C11 | −169.2 (3) |
C6—C7—C8—C9 | 1.4 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.93 | 2.60 | 3.451 (4) | 152 |
C2—H2···O2i | 0.93 | 2.58 | 3.446 (5) | 155 |
C10—H10A···O2i | 0.97 | 2.57 | 3.437 (5) | 148 |
C8—H8···O2ii | 0.93 | 2.56 | 3.433 (5) | 156 |
C10—H10A···O1iii | 0.97 | 2.98 | 3.601 (4) | 122 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1/2, y+1/2, −z+3/2; (iii) −x+3/2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C11H9BrO3 |
Mr | 269.09 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 4.3573 (3), 9.2859 (6), 25.2677 (17) |
β (°) | 91.927 (3) |
V (Å3) | 1021.79 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.01 |
Crystal size (mm) | 0.25 × 0.15 × 0.1 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.434, 0.501 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9950, 2128, 1501 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.630 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.101, 0.96 |
No. of reflections | 2128 |
No. of parameters | 137 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.93, −0.26 |
Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.93 | 2.60 | 3.451 (4) | 152 |
C2—H2···O2i | 0.93 | 2.58 | 3.446 (5) | 155 |
C10—H10A···O2i | 0.97 | 2.57 | 3.437 (5) | 148 |
C8—H8···O2ii | 0.93 | 2.56 | 3.433 (5) | 156 |
C10—H10A···O1iii | 0.97 | 2.98 | 3.601 (4) | 122 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1/2, y+1/2, −z+3/2; (iii) −x+3/2, y−1/2, −z+3/2. |
Footnotes
‡Alternative affiliation: MVJ College of Engineering, Bangalore 560 067, India.
Acknowledgements
RG thanks the MVJ College of Engineering, Bangalore-67 (VTU Research Center) for providing research facilities. The authors also thank the SAIF, IIT-Madras, Channai, for the data collection.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2004). Curr. Pharm. Des. 10, 3813–3833. Web of Science CrossRef PubMed CAS Google Scholar
Gaultier, J. & Hauw, C. (1965). Acta Cryst. 19, 927–933. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Gavuzzo, E., Mazza, F. & Giglio, E. (1974). Acta Cryst. B30, 1351–1357. CSD CrossRef IUCr Journals Web of Science Google Scholar
Gnanaguru, K., Ramasubbu, N., Venkatesan, K. & Ramamurthy, V. (1985). J. Org. Chem. 50, 2337–2346. CSD CrossRef CAS Web of Science Google Scholar
Katerinopoulos, H. E. (2004). Curr. Pharm. Des. 10, 3835–3852. Web of Science CrossRef PubMed CAS Google Scholar
Kempen, I., Papapostolou, D., Thierry, N., Pochet, L., Counerotte, S., Masereel, B., Foidart, J.-M., Reboud-Ravaux, M., Noel, A. & Pirotte, B. (2003). Br. J. Cancer, 88, 1111–1118. Web of Science CrossRef PubMed CAS Google Scholar
Kokila, M. K., Puttaraja,, Kulkarni, M. V. & Shivaprakash, N. C. (1996). Acta Cryst. C52, 2078–2081. Google Scholar
Kulkarni, M. V., Kulkarni, G. M., Lin, C.-H. & Sun, C.-M. (2006). Curr. Med. Chem. 13, 2795–2818. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Moorthy, J. N., Venkatakrishnan, P. & Singh, A. (2003). CrystEngComm, 5, 507–513. Web of Science CSD CrossRef CAS Google Scholar
Munshi, P. & Guru Row, T. N. (2005). J. Phys. Chem. A, 109, 659–672. Web of Science CSD CrossRef PubMed CAS Google Scholar
Neyts, J., De Clercq, E., Singha, R., Chang, Y. H., Das, A. R., Chakraborty, S. K., Hong, S. C., Tsay, S.-C., Hsu, M.-H. & Hwu, J. R. (2009). J. Med. Chem. 52, 1486–1490. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vasudevan, K. T., Puttaraja, & Kulkarni, M. V. (1991). Acta Cryst. C47, 775–777. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coumarins are a class of naturally occurring oxygen heterocycles which have been found to exhibit wide ranging biological activities (Kulkarni et al., 2006; Fylaktakidou et al., 2004; Neyts et al., 2009) through its innumerable derivatives. Structural studies on coumarins have been focused on their solid state photochemical dimerization (Gnanaguru et al., 1985), hydrogen bonding (Munshi et al., 2005), mode of packing (Gavuzzo et al., 1974), molecular self assembling (Moorthy et al., 2003) and photophysical properties (Katerinopoulos et al., 2004). Introduction of bromine has resulted in formation of hydrates, intermolecular hydrogen bonds, and eclipsed conformation, as observed in 3-bromocoumarin (Gaultier et al., 1965), 6-bromo-3-acetylcoumarin (Kokila et al., 1996), and 3-bromoacetylcoumarin (Vasudevan et al., 1991), respectively. 3-Bromophenyl-6-acetoxymethyl-coumarin-3-carboxylates have been found to exhibit potential anticancer and antitumour activity (Kempen et al., 2003).
The title compound is cyclic, planar and aromatic in nature due to the continuous delocalization of electrons over the coumarin rings system. There is a significant deviation from trigonality in bond angle at O1—C1—C2 [117.0 (3)°], due to the electronic repulsion of atom O2 which is bonded to C1. This is also reflected at C9—C4—C5 [117.9 (3)°] and C9—C4—C3 [117.6 (3)°] but these are due to fused benzene and α pyrone rings. Another significant deviation in bond angle is observed at C6—O3—C11 [118.0 (3)°] due to the repulsion between lone pair electrons of atom O3 with valence electrons of C6—O3 and O3—C11 bonds.