organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4′-[4-(Pyridin-2-yl)phen­yl]-2,2′:6′,2′′-terpyridine

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zhuchaoyun120@163.com

(Received 17 September 2010; accepted 1 October 2010; online 9 October 2010)

In the title compound, C26H18N4, each ring is almost planar with maximum deviation of 0.012 (5) Å. In the crystal, mol­ecules are stacked by weak C—H⋯π inter­actions, forming a three-dimensional framework.

Related literature

For the uses and the synthesis of the title compound, see: Arm et al. (2006[Arm, K. J., Leslie, W. & Williams, J. A. G. (2006). Inorg. Chim. Acta, 359, 1222-1232.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H18N4

  • Mr = 386.44

  • Monoclinic, P 21 /c

  • a = 11.056 (2) Å

  • b = 16.113 (3) Å

  • c = 11.748 (2) Å

  • β = 109.05 (3)°

  • V = 1978.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.977, Tmax = 0.996

  • 3778 measured reflections

  • 3585 independent reflections

  • 1576 reflections with I > 2σ(I)

  • Rint = 0.100

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.217

  • S = 0.88

  • 3585 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N2/C12–C16 and N3/C17–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7ACg1i 0.93 2.97 3.675 (5) 134
C25—H25ACg2ii 0.93 3.19 3.989 (5) 146
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4'-(4-(Pyridin-2-yl)phenyl)-2,2':6',2''-terpyridine, (I), is an important intermediate used to synthesize luminescent transition metal complexes, which are potentially interesting components of new molecular sensors for detection of molecules or ions in aqueous solution (Arm et al., 2006). We report here the crystal structure of the title compound (Fig. 1).

Bond lengths (Allen et al., 1987) and angles of (I) are within normal ranges. In (I), each ring is planar with the max. deviation 0.012 (5) Å. The dihedral angles of the rings A (C1—C5/N1), B(C6—C11), C(C12—C16/N2), D(C17—C21/N3), E(C22—C26/N4) are: A/B = 159.6 (2)°, C/B = 158.5 (2)°, D/A = 4.8 (1)°, E/A = 170.6 (3)°.

In the crystal structure, no obvious hydrogen bond was observed, and molecules were stacked to form a three-dimensional framework by two C—H···π weak interactions, which may be effective for the stabilization of the crystal (Table 1, Fig 2).

Related literature top

For the uses and the synthesis of the title compound, see: Arm et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound (I) was prepared by the method reported in literature (Arm et al., 2006). Single crystals were obtained by dissolving the title compound (0.5 g, 1.3 mmol) in ethanol (100 ml) and evaporating the solvent slowly at room temperature for about 20 d.

Refinement top

After checking their presence in the difference map, all the H atoms were positioned geometrically [C—H = 0.93 Å] and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Structure description top

4'-(4-(Pyridin-2-yl)phenyl)-2,2':6',2''-terpyridine, (I), is an important intermediate used to synthesize luminescent transition metal complexes, which are potentially interesting components of new molecular sensors for detection of molecules or ions in aqueous solution (Arm et al., 2006). We report here the crystal structure of the title compound (Fig. 1).

Bond lengths (Allen et al., 1987) and angles of (I) are within normal ranges. In (I), each ring is planar with the max. deviation 0.012 (5) Å. The dihedral angles of the rings A (C1—C5/N1), B(C6—C11), C(C12—C16/N2), D(C17—C21/N3), E(C22—C26/N4) are: A/B = 159.6 (2)°, C/B = 158.5 (2)°, D/A = 4.8 (1)°, E/A = 170.6 (3)°.

In the crystal structure, no obvious hydrogen bond was observed, and molecules were stacked to form a three-dimensional framework by two C—H···π weak interactions, which may be effective for the stabilization of the crystal (Table 1, Fig 2).

For the uses and the synthesis of the title compound, see: Arm et al. (2006). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound.
4'-[4-(Pyridin-2-yl)phenyl]-2,2':6',2''-terpyridine top
Crystal data top
C26H18N4F(000) = 808
Mr = 386.44Dx = 1.298 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.056 (2) Åθ = 9–12°
b = 16.113 (3) ŵ = 0.08 mm1
c = 11.748 (2) ÅT = 298 K
β = 109.05 (3)°Block, colorless
V = 1978.2 (7) Å30.30 × 0.20 × 0.05 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1576 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.100
Graphite monochromatorθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 019
Tmin = 0.977, Tmax = 0.996l = 1413
3778 measured reflections3 standard reflections every 200 reflections
3585 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3585 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C26H18N4V = 1978.2 (7) Å3
Mr = 386.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.056 (2) ŵ = 0.08 mm1
b = 16.113 (3) ÅT = 298 K
c = 11.748 (2) Å0.30 × 0.20 × 0.05 mm
β = 109.05 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1576 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.100
Tmin = 0.977, Tmax = 0.9963 standard reflections every 200 reflections
3778 measured reflections intensity decay: 1%
3585 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.217H-atom parameters constrained
S = 0.88Δρmax = 0.16 e Å3
3585 reflectionsΔρmin = 0.16 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0183 (4)0.5691 (3)0.2077 (3)0.0771 (12)
C10.1554 (4)0.6611 (3)0.2631 (4)0.0634 (12)
H1B0.22550.69670.24010.076*
N20.5599 (3)0.65373 (19)0.5784 (3)0.0471 (8)
C20.0865 (5)0.6503 (3)0.3842 (4)0.0801 (15)
H2B0.11140.67690.44330.096*
N30.7514 (3)0.7844 (2)0.4578 (3)0.0615 (10)
C30.0173 (5)0.6003 (4)0.4147 (4)0.0881 (16)
H3B0.06710.59330.49490.106*
N40.3280 (3)0.5058 (2)0.6038 (3)0.0554 (9)
C40.0471 (5)0.5607 (4)0.3254 (4)0.102 (2)
H4B0.11750.52540.34720.122*
C50.1198 (4)0.6189 (3)0.1773 (3)0.0527 (11)
C60.1957 (4)0.6248 (2)0.0466 (3)0.0482 (10)
C70.2778 (4)0.6900 (3)0.0008 (3)0.0631 (12)
H7A0.28540.73210.05210.076*
C80.3490 (4)0.6939 (3)0.1201 (3)0.0627 (12)
H8A0.40350.73880.14790.075*
C90.3417 (4)0.6330 (2)0.2014 (3)0.0458 (10)
C100.2592 (4)0.5674 (2)0.1543 (3)0.0516 (10)
H10A0.25240.52470.20510.062*
C110.1874 (4)0.5641 (2)0.0346 (3)0.0540 (11)
H11A0.13160.51980.00690.065*
C120.4183 (4)0.6392 (2)0.3317 (3)0.0451 (10)
C130.5279 (4)0.6881 (2)0.3720 (3)0.0504 (10)
H13A0.55610.71650.31650.060*
C140.5960 (4)0.6950 (2)0.4949 (3)0.0464 (10)
C150.4563 (4)0.6052 (2)0.5413 (3)0.0433 (9)
C160.3837 (4)0.5966 (2)0.4191 (3)0.0483 (10)
H16A0.31210.56230.39670.058*
C170.7120 (4)0.7465 (2)0.5409 (3)0.0459 (9)
C180.8562 (4)0.8311 (3)0.4969 (4)0.0724 (14)
H18A0.88510.85720.43990.087*
C190.9243 (4)0.8431 (3)0.6170 (4)0.0694 (13)
H19A0.99670.87670.64030.083*
C200.8825 (4)0.8045 (3)0.7007 (4)0.0650 (12)
H20A0.92640.81130.78240.078*
C210.7747 (4)0.7551 (3)0.6631 (3)0.0571 (11)
H21A0.74480.72830.71880.069*
C220.4209 (4)0.5621 (2)0.6383 (3)0.0459 (10)
C230.4842 (4)0.5816 (3)0.7587 (3)0.0534 (11)
H23A0.54900.62120.77960.064*
C240.4488 (4)0.5412 (3)0.8459 (3)0.0636 (12)
H24A0.48790.55430.92670.076*
C250.3555 (4)0.4814 (3)0.8129 (3)0.0638 (12)
H25A0.33150.45220.87040.077*
C260.2982 (4)0.4660 (3)0.6910 (4)0.0626 (12)
H26A0.23510.42540.66850.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.071 (3)0.105 (3)0.053 (2)0.025 (2)0.017 (2)0.008 (2)
C10.070 (3)0.073 (3)0.044 (2)0.002 (3)0.014 (2)0.000 (2)
N20.056 (2)0.050 (2)0.0383 (17)0.0039 (17)0.0195 (16)0.0027 (15)
C20.094 (4)0.102 (4)0.044 (3)0.004 (3)0.021 (3)0.009 (3)
N30.065 (2)0.075 (3)0.048 (2)0.011 (2)0.0235 (19)0.0061 (18)
C30.093 (4)0.115 (5)0.047 (3)0.009 (4)0.010 (3)0.008 (3)
N40.066 (2)0.065 (2)0.0406 (19)0.010 (2)0.0247 (17)0.0004 (17)
C40.091 (4)0.144 (6)0.062 (3)0.045 (4)0.013 (3)0.020 (3)
C50.055 (3)0.065 (3)0.040 (2)0.003 (2)0.018 (2)0.003 (2)
C60.053 (2)0.054 (3)0.041 (2)0.002 (2)0.0200 (19)0.0002 (19)
C70.082 (3)0.068 (3)0.037 (2)0.020 (3)0.016 (2)0.006 (2)
C80.088 (3)0.057 (3)0.042 (2)0.024 (3)0.020 (2)0.000 (2)
C90.050 (2)0.051 (2)0.039 (2)0.003 (2)0.0194 (19)0.0030 (19)
C100.061 (3)0.055 (3)0.039 (2)0.010 (2)0.017 (2)0.0022 (19)
C110.059 (3)0.058 (3)0.050 (2)0.011 (2)0.025 (2)0.003 (2)
C120.057 (3)0.049 (2)0.034 (2)0.006 (2)0.0220 (19)0.0035 (18)
C130.057 (3)0.051 (2)0.047 (2)0.001 (2)0.023 (2)0.0008 (19)
C140.058 (2)0.046 (2)0.041 (2)0.002 (2)0.0233 (19)0.0005 (18)
C150.051 (2)0.044 (2)0.039 (2)0.003 (2)0.0202 (19)0.0022 (17)
C160.058 (3)0.053 (2)0.037 (2)0.005 (2)0.0208 (19)0.0054 (18)
C170.056 (2)0.047 (2)0.037 (2)0.001 (2)0.0191 (18)0.0026 (18)
C180.078 (3)0.084 (4)0.059 (3)0.021 (3)0.027 (3)0.003 (3)
C190.069 (3)0.072 (3)0.071 (3)0.014 (3)0.027 (3)0.002 (3)
C200.067 (3)0.074 (3)0.049 (3)0.008 (3)0.014 (2)0.013 (2)
C210.063 (3)0.070 (3)0.040 (2)0.007 (2)0.020 (2)0.003 (2)
C220.058 (3)0.041 (2)0.044 (2)0.006 (2)0.023 (2)0.0038 (18)
C230.062 (3)0.057 (3)0.041 (2)0.002 (2)0.017 (2)0.0040 (19)
C240.079 (3)0.075 (3)0.033 (2)0.001 (3)0.014 (2)0.013 (2)
C250.076 (3)0.076 (3)0.044 (3)0.002 (3)0.025 (2)0.017 (2)
C260.067 (3)0.072 (3)0.050 (3)0.015 (2)0.021 (2)0.008 (2)
Geometric parameters (Å, º) top
N1—C51.330 (5)C10—H10A0.9300
N1—C41.342 (5)C11—H11A0.9300
C1—C51.376 (5)C12—C161.389 (5)
C1—C21.388 (5)C12—C131.392 (5)
C1—H1B0.9300C13—C141.398 (5)
N2—C151.338 (4)C13—H13A0.9300
N2—C141.348 (4)C14—C171.474 (5)
C2—C31.351 (7)C15—C161.404 (5)
C2—H2B0.9300C15—C221.491 (5)
N3—C181.332 (5)C16—H16A0.9300
N3—C171.339 (4)C17—C211.382 (5)
C3—C41.358 (7)C18—C191.379 (5)
C3—H3B0.9300C18—H18A0.9300
N4—C221.331 (5)C19—C201.366 (5)
N4—C261.339 (4)C19—H19A0.9300
C4—H4B0.9300C20—C211.380 (5)
C5—C61.493 (5)C20—H20A0.9300
C6—C71.378 (5)C21—H21A0.9300
C6—C111.390 (5)C22—C231.394 (5)
C7—C81.382 (5)C23—C241.374 (5)
C7—H7A0.9300C23—H23A0.9300
C8—C91.390 (5)C24—C251.372 (6)
C8—H8A0.9300C24—H24A0.9300
C9—C101.387 (5)C25—C261.386 (5)
C9—C121.492 (5)C25—H25A0.9300
C10—C111.372 (5)C26—H26A0.9300
C5—N1—C4117.5 (4)C12—C13—H13A119.6
C5—C1—C2119.8 (4)C14—C13—H13A119.6
C5—C1—H1B120.1N2—C14—C13121.6 (4)
C2—C1—H1B120.1N2—C14—C17116.1 (3)
C15—N2—C14118.5 (3)C13—C14—C17122.3 (3)
C3—C2—C1118.8 (5)N2—C15—C16122.3 (3)
C3—C2—H2B120.6N2—C15—C22115.7 (3)
C1—C2—H2B120.6C16—C15—C22122.0 (4)
C18—N3—C17117.4 (4)C12—C16—C15120.2 (4)
C2—C3—C4118.4 (5)C12—C16—H16A119.9
C2—C3—H3B120.8C15—C16—H16A119.9
C4—C3—H3B120.8N3—C17—C21122.6 (4)
C22—N4—C26116.9 (3)N3—C17—C14116.2 (3)
N1—C4—C3124.3 (5)C21—C17—C14121.3 (3)
N1—C4—H4B117.9N3—C18—C19123.7 (4)
C3—C4—H4B117.9N3—C18—H18A118.2
N1—C5—C1121.3 (4)C19—C18—H18A118.2
N1—C5—C6117.1 (4)C20—C19—C18118.2 (4)
C1—C5—C6121.5 (4)C20—C19—H19A120.9
C7—C6—C11116.8 (4)C18—C19—H19A120.9
C7—C6—C5121.9 (4)C19—C20—C21119.5 (4)
C11—C6—C5121.4 (4)C19—C20—H20A120.3
C6—C7—C8121.2 (4)C21—C20—H20A120.3
C6—C7—H7A119.4C20—C21—C17118.6 (4)
C8—C7—H7A119.4C20—C21—H21A120.7
C7—C8—C9122.2 (4)C17—C21—H21A120.7
C7—C8—H8A118.9N4—C22—C23123.0 (3)
C9—C8—H8A118.9N4—C22—C15116.9 (3)
C10—C9—C8116.2 (3)C23—C22—C15120.1 (4)
C10—C9—C12122.6 (3)C24—C23—C22118.6 (4)
C8—C9—C12121.2 (4)C24—C23—H23A120.7
C11—C10—C9121.6 (4)C22—C23—H23A120.7
C11—C10—H10A119.2C25—C24—C23119.6 (4)
C9—C10—H10A119.2C25—C24—H24A120.2
C10—C11—C6122.0 (4)C23—C24—H24A120.2
C10—C11—H11A119.0C24—C25—C26117.7 (4)
C6—C11—H11A119.0C24—C25—H25A121.1
C16—C12—C13116.6 (3)C26—C25—H25A121.1
C16—C12—C9121.7 (4)N4—C26—C25124.2 (4)
C13—C12—C9121.7 (3)N4—C26—H26A117.9
C12—C13—C14120.8 (3)C25—C26—H26A117.9
C5—C1—C2—C32.2 (7)C12—C13—C14—C17179.8 (3)
C1—C2—C3—C42.1 (8)C14—N2—C15—C160.6 (5)
C5—N1—C4—C30.8 (8)C14—N2—C15—C22179.3 (3)
C2—C3—C4—N11.5 (10)C13—C12—C16—C151.2 (5)
C4—N1—C5—C10.8 (7)C9—C12—C16—C15178.6 (3)
C4—N1—C5—C6177.2 (4)N2—C15—C16—C120.0 (6)
C2—C1—C5—N11.6 (7)C22—C15—C16—C12178.6 (3)
C2—C1—C5—C6176.3 (4)C18—N3—C17—C210.8 (6)
N1—C5—C6—C7161.0 (4)C18—N3—C17—C14179.9 (4)
C1—C5—C6—C721.0 (6)N2—C14—C17—N3176.9 (3)
N1—C5—C6—C1119.6 (6)C13—C14—C17—N32.1 (5)
C1—C5—C6—C11158.4 (4)N2—C14—C17—C213.7 (5)
C11—C6—C7—C80.5 (6)C13—C14—C17—C21177.2 (4)
C5—C6—C7—C8178.9 (4)C17—N3—C18—C190.8 (7)
C6—C7—C8—C90.1 (7)N3—C18—C19—C200.5 (7)
C7—C8—C9—C100.4 (6)C18—C19—C20—C210.0 (7)
C7—C8—C9—C12179.2 (4)C19—C20—C21—C170.0 (6)
C8—C9—C10—C111.1 (6)N3—C17—C21—C200.4 (6)
C12—C9—C10—C11178.4 (4)C14—C17—C21—C20179.6 (4)
C9—C10—C11—C61.7 (6)C26—N4—C22—C231.4 (6)
C7—C6—C11—C101.3 (6)C26—N4—C22—C15178.7 (3)
C5—C6—C11—C10178.1 (4)N2—C15—C22—N4172.0 (3)
C10—C9—C12—C1621.2 (6)C16—C15—C22—N49.3 (5)
C8—C9—C12—C16158.4 (4)N2—C15—C22—C238.0 (5)
C10—C9—C12—C13159.0 (4)C16—C15—C22—C23170.6 (3)
C8—C9—C12—C1321.4 (6)N4—C22—C23—C240.3 (6)
C16—C12—C13—C141.8 (5)C15—C22—C23—C24179.6 (4)
C9—C12—C13—C14178.0 (3)C22—C23—C24—C251.9 (6)
C15—N2—C14—C130.0 (5)C23—C24—C25—C261.6 (6)
C15—N2—C14—C17179.0 (3)C22—N4—C26—C251.7 (6)
C12—C13—C14—N21.3 (6)C24—C25—C26—N40.2 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N2/C12–C16 and N3/C17–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg1i0.932.973.675 (5)134
C25—H25A···Cg2ii0.933.193.989 (5)146
Symmetry codes: (i) x, y+1/2, z3/2; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC26H18N4
Mr386.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.056 (2), 16.113 (3), 11.748 (2)
β (°) 109.05 (3)
V3)1978.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.977, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
3778, 3585, 1576
Rint0.100
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.217, 0.88
No. of reflections3585
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N2/C12–C16 and N3/C17–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg1i0.932.97283.675 (5)133.55
C25—H25A···Cg2ii0.933.18703.989 (5)145.56
Symmetry codes: (i) x, y+1/2, z3/2; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArm, K. J., Leslie, W. & Williams, J. A. G. (2006). Inorg. Chim. Acta, 359, 1222–1232.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds