organic compounds
Acridinium 2-hydroxybenzoate
aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
*Correspondence e-mail: heshtiagh@ferdowsi.um.ac.ir
In the title compound, C13H10N+·C7H5O3− or (acrH)+(Hsal)−, the contains one acridinium cation and one salicylate anion. The acridinium N atom is protonated and the carboxylic acid group of salicylic acid is deprotonated. Both moieties are planar, with an r.m.s. deviation of 0.0127 Å for the acr cation and 0.0235 ° for the sal anion. They are aligned with a dihedral angle of 71.68 (3)° between them. The is stabilized by a network of intermolecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds. C—H⋯π interactions are also present.
Related literature
For work on molecular self-association, see: Moghimi et al. (2005); Eshtiagh-Hosseini, Hassanpoor, Canadillas-Delgado & Mirzaei (2010); Eshtiagh-Hosseini, Mahjoobizadeh & Mirzaei (2010). For related structures, see: Gellert & Hsu (1988); Hemamalini & Fun (2010); Muthiah et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S160053681004345X/bq2237sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681004345X/bq2237Isup2.hkl
By refluxing 0.14 mmol (0.025 g) H2sal and 0.14 mmol (0.025 g) Acr in 15 ml water for 3 h at 353 K, an orange solution was obtained. This solution gave orange needle-like crystal of the title compound after slow evaporation of the solvent at R.T.
H1 and H3–H7 atoms were positioned from Fourier map and other H atoms were positioned geometrically and allowed to ride during
isotropically. C—H distances are 0.93 Å for C(sp2) and and Uiso = p Ueq(parent atom) [p = 1.2 for C(sp2)].Molecular self-association involves the spontaneous association of molecules into stable aggregates, joined by ion-pairing, hydrogen bonding, π–π stacking and donor–acceptor intractions (Moghimi et al., 2005). Our research group recently focused on the syntheses as suitable ligands in the synthesis of metal–organic framework. For example, ion pairs have been reported between pyrazine-2,3-dicarboxylic acid with 2,4,6-triamino-1,3,5-triazin (Eshtiagh-Hosseini, Hassanpoor et al., 2010) and 4-hydroxy pyridine-2,6-dicarboxylic acid bearing 2-amino pyrimidine (Eshtiagh-Hosseini, Mahjoobizadeh et al., 2010). Salicylic acid is important in biological systems thus there have been several attempts to prepare proton-transfer compounds involving H2sal with various organic bases such as 2-amino pyridine (Gellert & Hsu, 1988), 2-amino-4,6-dimethyl primidine (Muthiah et al., 2006) and 2-amino-5-chloroprimidine (Hemamalini & Fun, 2010). In this work, we reported a new proton-transfer compound obtained from salicylic acid (H2sal) as a proton donor and acridine (acr) as an acceptor in which acridinium N atom is protonated and carboxylic group of salicilic acid is deprotonated. The molecular structure of I, is shown in Fig. 1. The is stabilized by a network of intermolecular N—H···O and C—H···O hydrogen bonds with H···A distance ranging from 1.55 (2) to 2.49 (2) Å (Table 1). Furthermore, in the crystalline network there is an intramolecular O—H···O hydrogen bond between phenolic OH and the carboxyl group (Fig. 2). In the C—H···π interactions (Table 1) [Cg1 is the centroid of C2–C7 benzene ring of H2sal] may further stabilize the structure. Above-mentioned van der Waals interactions lead to the formation and then expansion of a proton-transfer ligand.
For work on molecular self-association, see: Moghimi et al. (2005); Eshtiagh-Hosseini, Hassanpoor, Canadillas-Delgado & Mirzaei (2010); Eshtiagh-Hosseini, Mahjoobizadeh & Mirzaei (2010). [Please confirm added text] For related structures, see: Gellert & Hsu (1988); Hemamalini & Fun (2010); Muthiah et al. (2006).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Schematic representation of asymmetric units of the title compound. | |
Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines. |
C13H10N+·C7H5O3− | F(000) = 664 |
Mr = 317.33 | Dx = 1.379 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P2ybc | Cell parameters from 1285 reflections |
a = 7.128 (3) Å | θ = 2–25° |
b = 9.472 (3) Å | µ = 0.09 mm−1 |
c = 22.637 (9) Å | T = 100 K |
β = 91.449 (10)° | Prism, light-orange |
V = 1527.9 (10) Å3 | 0.30 × 0.25 × 0.10 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 4488 independent reflections |
Radiation source: fine-focus sealed tube | 3161 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
φ and ω scans | θmax = 30.2°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −10→8 |
Tmin = 0.973, Tmax = 0.991 | k = −12→13 |
10437 measured reflections | l = −32→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.128 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0581P)2 + 0.2765P] where P = (Fo2 + 2Fc2)/3 |
4488 reflections | (Δ/σ)max < 0.001 |
241 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C13H10N+·C7H5O3− | V = 1527.9 (10) Å3 |
Mr = 317.33 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.128 (3) Å | µ = 0.09 mm−1 |
b = 9.472 (3) Å | T = 100 K |
c = 22.637 (9) Å | 0.30 × 0.25 × 0.10 mm |
β = 91.449 (10)° |
Bruker SMART APEXII CCD area-detector diffractometer | 4488 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 3161 reflections with I > 2σ(I) |
Tmin = 0.973, Tmax = 0.991 | Rint = 0.035 |
10437 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.128 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.37 e Å−3 |
4488 reflections | Δρmin = −0.24 e Å−3 |
241 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.74651 (19) | 0.32545 (14) | 0.35776 (6) | 0.0186 (3) | |
C2 | 0.73287 (18) | 0.43221 (14) | 0.30953 (6) | 0.0163 (3) | |
C3 | 0.89699 (18) | 0.48889 (14) | 0.28532 (6) | 0.0183 (3) | |
C4 | 0.8833 (2) | 0.59342 (15) | 0.24213 (7) | 0.0218 (3) | |
C5 | 0.7091 (2) | 0.63934 (16) | 0.22190 (7) | 0.0228 (3) | |
C6 | 0.5458 (2) | 0.58278 (16) | 0.24467 (6) | 0.0212 (3) | |
C7 | 0.5587 (2) | 0.47998 (15) | 0.28815 (6) | 0.0186 (3) | |
C8 | 0.70546 (18) | 0.32647 (15) | 0.01980 (6) | 0.0169 (3) | |
C9 | 0.76980 (18) | 0.40801 (15) | 0.06919 (6) | 0.0171 (3) | |
C10 | 0.81472 (18) | 0.54997 (15) | 0.06022 (6) | 0.0181 (3) | |
H10 | 0.8588 | 0.6041 | 0.0919 | 0.022* | |
C11 | 0.79458 (18) | 0.61143 (15) | 0.00465 (6) | 0.0173 (3) | |
C12 | 0.72746 (17) | 0.52574 (15) | −0.04321 (6) | 0.0171 (3) | |
C13 | 0.70495 (19) | 0.58406 (16) | −0.10047 (6) | 0.0203 (3) | |
H13 | 0.6604 | 0.5286 | −0.1317 | 0.024* | |
C14 | 0.74913 (19) | 0.72240 (16) | −0.10951 (7) | 0.0236 (3) | |
H14 | 0.7341 | 0.7608 | −0.1471 | 0.028* | |
C15 | 0.8176 (2) | 0.80885 (16) | −0.06248 (7) | 0.0237 (3) | |
H15 | 0.8473 | 0.9028 | −0.0697 | 0.028* | |
C16 | 0.84006 (19) | 0.75551 (15) | −0.00700 (7) | 0.0207 (3) | |
H16 | 0.8852 | 0.8130 | 0.0235 | 0.025* | |
C17 | 0.78718 (19) | 0.34000 (16) | 0.12514 (6) | 0.0210 (3) | |
H17 | 0.8286 | 0.3909 | 0.1581 | 0.025* | |
C18 | 0.74345 (19) | 0.20068 (16) | 0.13068 (7) | 0.0228 (3) | |
H18 | 0.7544 | 0.1576 | 0.1675 | 0.027* | |
C19 | 0.6817 (2) | 0.12079 (16) | 0.08115 (7) | 0.0236 (3) | |
H19 | 0.6535 | 0.0256 | 0.0858 | 0.028* | |
C20 | 0.66274 (19) | 0.18115 (15) | 0.02653 (6) | 0.0203 (3) | |
H20 | 0.6224 | 0.1277 | −0.0058 | 0.024* | |
N1 | 0.68547 (15) | 0.38796 (13) | −0.03385 (5) | 0.0176 (2) | |
O1 | 0.90825 (14) | 0.28524 (12) | 0.37528 (5) | 0.0275 (3) | |
O2 | 0.59605 (14) | 0.28037 (11) | 0.37986 (4) | 0.0220 (2) | |
O3 | 1.06952 (14) | 0.44374 (11) | 0.30336 (5) | 0.0261 (3) | |
H1 | 0.647 (3) | 0.324 (2) | −0.0700 (10) | 0.053 (6)* | |
H3 | 1.044 (3) | 0.376 (3) | 0.3363 (11) | 0.072 (8)* | |
H4 | 0.994 (3) | 0.634 (2) | 0.2274 (8) | 0.034 (5)* | |
H5 | 0.699 (2) | 0.7128 (19) | 0.1916 (8) | 0.029 (5)* | |
H6 | 0.421 (2) | 0.6185 (18) | 0.2298 (8) | 0.028 (5)* | |
H7 | 0.447 (2) | 0.4414 (16) | 0.3052 (7) | 0.018 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0232 (7) | 0.0150 (6) | 0.0173 (6) | 0.0020 (5) | −0.0033 (5) | −0.0012 (5) |
C2 | 0.0197 (7) | 0.0127 (6) | 0.0163 (6) | 0.0005 (5) | −0.0011 (5) | −0.0011 (5) |
C3 | 0.0179 (6) | 0.0156 (6) | 0.0214 (7) | 0.0018 (5) | −0.0011 (5) | −0.0039 (5) |
C4 | 0.0241 (7) | 0.0174 (7) | 0.0241 (8) | −0.0019 (5) | 0.0046 (6) | −0.0002 (6) |
C5 | 0.0320 (8) | 0.0176 (7) | 0.0189 (7) | 0.0014 (6) | 0.0013 (6) | 0.0006 (6) |
C6 | 0.0240 (7) | 0.0203 (7) | 0.0191 (7) | 0.0041 (6) | −0.0035 (5) | 0.0001 (5) |
C7 | 0.0194 (7) | 0.0177 (7) | 0.0185 (7) | 0.0007 (5) | −0.0010 (5) | −0.0008 (5) |
C8 | 0.0128 (6) | 0.0197 (7) | 0.0182 (7) | 0.0010 (5) | 0.0010 (5) | −0.0011 (5) |
C9 | 0.0135 (6) | 0.0209 (7) | 0.0168 (7) | 0.0014 (5) | −0.0004 (5) | −0.0025 (5) |
C10 | 0.0150 (6) | 0.0202 (7) | 0.0189 (7) | 0.0011 (5) | −0.0016 (5) | −0.0043 (5) |
C11 | 0.0132 (6) | 0.0185 (7) | 0.0202 (7) | 0.0017 (5) | 0.0000 (5) | −0.0019 (5) |
C12 | 0.0125 (6) | 0.0196 (7) | 0.0193 (7) | 0.0021 (5) | 0.0007 (5) | −0.0009 (5) |
C13 | 0.0179 (7) | 0.0253 (7) | 0.0177 (7) | 0.0016 (5) | −0.0006 (5) | −0.0011 (6) |
C14 | 0.0196 (7) | 0.0282 (8) | 0.0229 (7) | 0.0042 (6) | 0.0001 (5) | 0.0055 (6) |
C15 | 0.0206 (7) | 0.0188 (7) | 0.0315 (8) | 0.0017 (5) | −0.0001 (6) | 0.0028 (6) |
C16 | 0.0177 (7) | 0.0183 (7) | 0.0262 (8) | 0.0008 (5) | −0.0010 (5) | −0.0027 (6) |
C17 | 0.0191 (7) | 0.0257 (8) | 0.0181 (7) | 0.0014 (5) | −0.0007 (5) | −0.0019 (6) |
C18 | 0.0211 (7) | 0.0268 (8) | 0.0206 (7) | 0.0012 (6) | 0.0006 (5) | 0.0039 (6) |
C19 | 0.0217 (7) | 0.0210 (7) | 0.0282 (8) | −0.0005 (5) | 0.0016 (6) | 0.0013 (6) |
C20 | 0.0183 (7) | 0.0203 (7) | 0.0225 (7) | −0.0019 (5) | 0.0003 (5) | −0.0033 (5) |
N1 | 0.0158 (5) | 0.0195 (6) | 0.0176 (6) | 0.0008 (4) | 0.0000 (4) | −0.0032 (5) |
O1 | 0.0222 (5) | 0.0288 (6) | 0.0311 (6) | 0.0049 (4) | −0.0045 (4) | 0.0095 (5) |
O2 | 0.0231 (5) | 0.0232 (5) | 0.0197 (5) | −0.0012 (4) | −0.0018 (4) | 0.0050 (4) |
O3 | 0.0178 (5) | 0.0223 (6) | 0.0381 (7) | 0.0019 (4) | −0.0009 (4) | 0.0022 (5) |
C1—O1 | 1.2681 (17) | C11—C12 | 1.4268 (19) |
C1—O2 | 1.2688 (17) | C11—C16 | 1.429 (2) |
C1—C2 | 1.4895 (19) | C12—N1 | 1.3568 (19) |
C2—C7 | 1.3966 (19) | C12—C13 | 1.414 (2) |
C2—C3 | 1.4105 (19) | C13—C14 | 1.364 (2) |
C3—O3 | 1.3551 (17) | C13—H13 | 0.9300 |
C3—C4 | 1.393 (2) | C14—C15 | 1.420 (2) |
C4—C5 | 1.382 (2) | C14—H14 | 0.9300 |
C4—H4 | 0.943 (18) | C15—C16 | 1.359 (2) |
C5—C6 | 1.392 (2) | C15—H15 | 0.9300 |
C5—H5 | 0.979 (18) | C16—H16 | 0.9300 |
C6—C7 | 1.386 (2) | C17—C18 | 1.362 (2) |
C6—H6 | 1.002 (17) | C17—H17 | 0.9300 |
C7—H7 | 0.966 (16) | C18—C19 | 1.414 (2) |
C8—N1 | 1.3511 (18) | C18—H18 | 0.9300 |
C8—C20 | 1.419 (2) | C19—C20 | 1.366 (2) |
C8—C9 | 1.4252 (19) | C19—H19 | 0.9300 |
C9—C10 | 1.398 (2) | C20—H20 | 0.9300 |
C9—C17 | 1.424 (2) | N1—H1 | 1.05 (2) |
C10—C11 | 1.3901 (19) | O3—H3 | 1.01 (3) |
C10—H10 | 0.9300 | ||
O1—C1—O2 | 123.12 (13) | C12—C11—C16 | 118.46 (13) |
O1—C1—C2 | 118.37 (12) | N1—C12—C13 | 119.90 (13) |
O2—C1—C2 | 118.51 (12) | N1—C12—C11 | 119.98 (12) |
C7—C2—C3 | 118.74 (13) | C13—C12—C11 | 120.12 (13) |
C7—C2—C1 | 121.00 (12) | C14—C13—C12 | 119.43 (13) |
C3—C2—C1 | 120.25 (12) | C14—C13—H13 | 120.3 |
O3—C3—C4 | 118.87 (13) | C12—C13—H13 | 120.3 |
O3—C3—C2 | 121.19 (13) | C13—C14—C15 | 121.19 (14) |
C4—C3—C2 | 119.94 (13) | C13—C14—H14 | 119.4 |
C5—C4—C3 | 120.18 (13) | C15—C14—H14 | 119.4 |
C5—C4—H4 | 120.2 (11) | C16—C15—C14 | 120.57 (14) |
C3—C4—H4 | 119.6 (11) | C16—C15—H15 | 119.7 |
C4—C5—C6 | 120.56 (14) | C14—C15—H15 | 119.7 |
C4—C5—H5 | 120.5 (10) | C15—C16—C11 | 120.24 (14) |
C6—C5—H5 | 119.0 (10) | C15—C16—H16 | 119.9 |
C7—C6—C5 | 119.50 (14) | C11—C16—H16 | 119.9 |
C7—C6—H6 | 121.3 (10) | C18—C17—C9 | 120.34 (13) |
C5—C6—H6 | 119.2 (10) | C18—C17—H17 | 119.8 |
C6—C7—C2 | 121.07 (13) | C9—C17—H17 | 119.8 |
C6—C7—H7 | 120.7 (9) | C17—C18—C19 | 120.86 (14) |
C2—C7—H7 | 118.2 (9) | C17—C18—H18 | 119.6 |
N1—C8—C20 | 119.78 (12) | C19—C18—H18 | 119.6 |
N1—C8—C9 | 119.74 (13) | C20—C19—C18 | 121.03 (14) |
C20—C8—C9 | 120.47 (13) | C20—C19—H19 | 119.5 |
C10—C9—C17 | 123.32 (13) | C18—C19—H19 | 119.5 |
C10—C9—C8 | 118.52 (13) | C19—C20—C8 | 119.13 (13) |
C17—C9—C8 | 118.15 (13) | C19—C20—H20 | 120.4 |
C11—C10—C9 | 121.02 (13) | C8—C20—H20 | 120.4 |
C11—C10—H10 | 119.5 | C8—N1—C12 | 122.44 (12) |
C9—C10—H10 | 119.5 | C8—N1—H1 | 118.3 (12) |
C10—C11—C12 | 118.28 (13) | C12—N1—H1 | 119.1 (12) |
C10—C11—C16 | 123.25 (13) | C3—O3—H3 | 104.2 (14) |
O1—C1—C2—C7 | 179.63 (13) | C10—C11—C12—N1 | −0.11 (18) |
O2—C1—C2—C7 | −1.2 (2) | C16—C11—C12—N1 | 179.08 (12) |
O1—C1—C2—C3 | −1.5 (2) | C10—C11—C12—C13 | −179.99 (12) |
O2—C1—C2—C3 | 177.62 (12) | C16—C11—C12—C13 | −0.79 (18) |
C7—C2—C3—O3 | −178.30 (12) | N1—C12—C13—C14 | −179.43 (12) |
C1—C2—C3—O3 | 2.8 (2) | C11—C12—C13—C14 | 0.44 (19) |
C7—C2—C3—C4 | 1.8 (2) | C12—C13—C14—C15 | 0.1 (2) |
C1—C2—C3—C4 | −177.04 (13) | C13—C14—C15—C16 | −0.3 (2) |
O3—C3—C4—C5 | 178.54 (13) | C14—C15—C16—C11 | −0.1 (2) |
C2—C3—C4—C5 | −1.6 (2) | C10—C11—C16—C15 | 179.77 (13) |
C3—C4—C5—C6 | 0.5 (2) | C12—C11—C16—C15 | 0.62 (19) |
C4—C5—C6—C7 | 0.2 (2) | C10—C9—C17—C18 | −179.08 (13) |
C5—C6—C7—C2 | 0.0 (2) | C8—C9—C17—C18 | 0.14 (19) |
C3—C2—C7—C6 | −1.1 (2) | C9—C17—C18—C19 | 0.5 (2) |
C1—C2—C7—C6 | 177.80 (13) | C17—C18—C19—C20 | −0.5 (2) |
N1—C8—C9—C10 | −1.41 (18) | C18—C19—C20—C8 | −0.2 (2) |
C20—C8—C9—C10 | 178.42 (12) | N1—C8—C20—C19 | −179.31 (12) |
N1—C8—C9—C17 | 179.33 (12) | C9—C8—C20—C19 | 0.86 (19) |
C20—C8—C9—C17 | −0.84 (18) | C20—C8—N1—C12 | −178.74 (12) |
C17—C9—C10—C11 | −179.78 (12) | C9—C8—N1—C12 | 1.09 (19) |
C8—C9—C10—C11 | 1.00 (19) | C13—C12—N1—C8 | 179.55 (12) |
C9—C10—C11—C12 | −0.26 (19) | C11—C12—N1—C8 | −0.32 (19) |
C9—C10—C11—C16 | −179.41 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 1.05 (2) | 2.49 (2) | 3.100 (2) | 116.4 (15) |
N1—H1···O2i | 1.05 (2) | 1.55 (2) | 2.5887 (19) | 174.8 (18) |
O3—H3···O1 | 1.00 (3) | 1.58 (2) | 2.5141 (19) | 153 (2) |
C10—H10···O1ii | 0.93 | 2.49 | 3.294 (2) | 145 |
C18—H18···O3iii | 0.93 | 2.46 | 3.135 (2) | 129 |
C14—H14···Cg1iv | 0.93 | 2.76 | 3.644 (2) | 159 |
C17—H17···Cg1 | 0.93 | 2.91 | 3.716 (2) | 146 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2; (iv) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C13H10N+·C7H5O3− |
Mr | 317.33 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 7.128 (3), 9.472 (3), 22.637 (9) |
β (°) | 91.449 (10) |
V (Å3) | 1527.9 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.30 × 0.25 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.973, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10437, 4488, 3161 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.707 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.128, 1.04 |
No. of reflections | 4488 |
No. of parameters | 241 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.37, −0.24 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 1.05 (2) | 2.49 (2) | 3.100 (2) | 116.4 (15) |
N1—H1···O2i | 1.05 (2) | 1.55 (2) | 2.5887 (19) | 174.8 (18) |
O3—H3···O1 | 1.00 (3) | 1.58 (2) | 2.5141 (19) | 153 (2) |
C10—H10···O1ii | 0.9300 | 2.4900 | 3.294 (2) | 145.00 |
C18—H18···O3iii | 0.9300 | 2.4600 | 3.135 (2) | 129.00 |
C14—H14···Cg1iv | 0.9300 | 2.7600 | 3.644 (2) | 159.00 |
C17—H17···Cg1 | 0.9300 | 2.9100 | 3.716 (2) | 146.00 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2; (iv) x, −y+3/2, z−1/2. |
Acknowledgements
The Ferdowsi University of Mashhad is gratefully acknowledged for financial support.
References
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Eshtiagh-Hosseini, H., Hassanpoor, A., Canadillas-Delgado, L. & Mirzaei, M. (2010). Acta Cryst. E66, o1368–o1369. Web of Science CSD CrossRef IUCr Journals Google Scholar
Eshtiagh-Hosseini, H., Mahjoobizadeh, M. & Mirzaei, M. (2010). Acta Cryst. E66, o2210. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gellert, R. W. & Hsu, I.-N. (1988). Acta Cryst. C44, 311–313. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1418–o1419. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moghimi, A., Aghabozorg, H., Sheshmani, S., Kickelbick, G. & Soleimannejad, J. (2005). Anal. Sci. 21, 141–142. Google Scholar
Muthiah, P. T., Balasubramani, K., Rychlewska, U. & Plutecka, A. (2006). Acta Cryst. C62, o605–o607. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Molecular self-association involves the spontaneous association of molecules into stable aggregates, joined by ion-pairing, hydrogen bonding, π–π stacking and donor–acceptor intractions (Moghimi et al., 2005). Our research group recently focused on the syntheses as suitable ligands in the synthesis of metal–organic framework. For example, ion pairs have been reported between pyrazine-2,3-dicarboxylic acid with 2,4,6-triamino-1,3,5-triazin (Eshtiagh-Hosseini, Hassanpoor et al., 2010) and 4-hydroxy pyridine-2,6-dicarboxylic acid bearing 2-amino pyrimidine (Eshtiagh-Hosseini, Mahjoobizadeh et al., 2010). Salicylic acid is important in biological systems thus there have been several attempts to prepare proton-transfer compounds involving H2sal with various organic bases such as 2-amino pyridine (Gellert & Hsu, 1988), 2-amino-4,6-dimethyl primidine (Muthiah et al., 2006) and 2-amino-5-chloroprimidine (Hemamalini & Fun, 2010). In this work, we reported a new proton-transfer compound obtained from salicylic acid (H2sal) as a proton donor and acridine (acr) as an acceptor in which acridinium N atom is protonated and carboxylic group of salicilic acid is deprotonated. The molecular structure of I, is shown in Fig. 1. The crystal structure is stabilized by a network of intermolecular N—H···O and C—H···O hydrogen bonds with H···A distance ranging from 1.55 (2) to 2.49 (2) Å (Table 1). Furthermore, in the crystalline network there is an intramolecular O—H···O hydrogen bond between phenolic OH and the carboxyl group (Fig. 2). In the crystal structure, C—H···π interactions (Table 1) [Cg1 is the centroid of C2–C7 benzene ring of H2sal] may further stabilize the structure. Above-mentioned van der Waals interactions lead to the formation and then expansion of a proton-transfer ligand.