organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acridinium 2-hy­dr­oxy­benzoate

aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
*Correspondence e-mail: heshtiagh@ferdowsi.um.ac.ir

(Received 26 September 2010; accepted 25 October 2010; online 31 October 2010)

In the title compound, C13H10N+·C7H5O3 or (acrH)+(Hsal), the asymmetric unit contains one acridinium cation and one salicylate anion. The acridinium N atom is protonated and the carb­oxy­lic acid group of salicylic acid is deprotonated. Both moieties are planar, with an r.m.s. deviation of 0.0127 Å for the acr cation and 0.0235 ° for the sal anion. They are aligned with a dihedral angle of 71.68 (3)° between them. The crystal structure is stabilized by a network of inter­molecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds. C—H⋯π inter­actions are also present.

Related literature

For work on mol­ecular self-association, see: Moghimi et al. (2005[Moghimi, A., Aghabozorg, H., Sheshmani, S., Kickelbick, G. & Soleimannejad, J. (2005). Anal. Sci. 21, 141-142.]); Eshtiagh-Hosseini, Hassanpoor, Canadillas-Delgado & Mirzaei (2010[Eshtiagh-Hosseini, H., Hassanpoor, A., Canadillas-Delgado, L. & Mirzaei, M. (2010). Acta Cryst. E66, o1368-o1369.]); Eshtiagh-Hosseini, Mahjoobizadeh & Mirzaei (2010[Eshtiagh-Hosseini, H., Mahjoobizadeh, M. & Mirzaei, M. (2010). Acta Cryst. E66, o2210.]). For related structures, see: Gellert & Hsu (1988[Gellert, R. W. & Hsu, I.-N. (1988). Acta Cryst. C44, 311-313.]); Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1418-o1419.]); Muthiah et al. (2006[Muthiah, P. T., Balasubramani, K., Rychlewska, U. & Plutecka, A. (2006). Acta Cryst. C62, o605-o607.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N+·C7H5O3

  • Mr = 317.33

  • Monoclinic, P 21 /c

  • a = 7.128 (3) Å

  • b = 9.472 (3) Å

  • c = 22.637 (9) Å

  • β = 91.449 (10)°

  • V = 1527.9 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.991

  • 10437 measured reflections

  • 4488 independent reflections

  • 3161 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.128

  • S = 1.04

  • 4488 reflections

  • 241 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 benzene ring of Hsal.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 1.05 (2) 2.49 (2) 3.100 (2) 116.4 (15)
N1—H1⋯O2i 1.05 (2) 1.55 (2) 2.5887 (19) 174.8 (18)
O3—H3⋯O1 1.00 (3) 1.58 (2) 2.5141 (19) 153 (2)
C10—H10⋯O1ii 0.93 2.49 3.294 (2) 145
C18—H18⋯O3iii 0.93 2.46 3.135 (2) 129
C14—H14⋯Cg1iv 0.93 2.76 3.644 (2) 159
C17—H17⋯Cg1 0.93 2.91 3.716 (2) 146
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Molecular self-association involves the spontaneous association of molecules into stable aggregates, joined by ion-pairing, hydrogen bonding, ππ stacking and donor–acceptor intractions (Moghimi et al., 2005). Our research group recently focused on the syntheses as suitable ligands in the synthesis of metal–organic framework. For example, ion pairs have been reported between pyrazine-2,3-dicarboxylic acid with 2,4,6-triamino-1,3,5-triazin (Eshtiagh-Hosseini, Hassanpoor et al., 2010) and 4-hydroxy pyridine-2,6-dicarboxylic acid bearing 2-amino pyrimidine (Eshtiagh-Hosseini, Mahjoobizadeh et al., 2010). Salicylic acid is important in biological systems thus there have been several attempts to prepare proton-transfer compounds involving H2sal with various organic bases such as 2-amino pyridine (Gellert & Hsu, 1988), 2-amino-4,6-dimethyl primidine (Muthiah et al., 2006) and 2-amino-5-chloroprimidine (Hemamalini & Fun, 2010). In this work, we reported a new proton-transfer compound obtained from salicylic acid (H2sal) as a proton donor and acridine (acr) as an acceptor in which acridinium N atom is protonated and carboxylic group of salicilic acid is deprotonated. The molecular structure of I, is shown in Fig. 1. The crystal structure is stabilized by a network of intermolecular N—H···O and C—H···O hydrogen bonds with H···A distance ranging from 1.55 (2) to 2.49 (2) Å (Table 1). Furthermore, in the crystalline network there is an intramolecular O—H···O hydrogen bond between phenolic OH and the carboxyl group (Fig. 2). In the crystal structure, C—H···π interactions (Table 1) [Cg1 is the centroid of C2–C7 benzene ring of H2sal] may further stabilize the structure. Above-mentioned van der Waals interactions lead to the formation and then expansion of a proton-transfer ligand.

Related literature top

For work on molecular self-association, see: Moghimi et al. (2005); Eshtiagh-Hosseini, Hassanpoor, Canadillas-Delgado & Mirzaei (2010); Eshtiagh-Hosseini, Mahjoobizadeh & Mirzaei (2010). [Please confirm added text] For related structures, see: Gellert & Hsu (1988); Hemamalini & Fun (2010); Muthiah et al. (2006).

Experimental top

By refluxing 0.14 mmol (0.025 g) H2sal and 0.14 mmol (0.025 g) Acr in 15 ml water for 3 h at 353 K, an orange solution was obtained. This solution gave orange needle-like crystal of the title compound after slow evaporation of the solvent at R.T.

Refinement top

H1 and H3–H7 atoms were positioned from Fourier map and other H atoms were positioned geometrically and allowed to ride during refinement isotropically. C—H distances are 0.93 Å for C(sp2) and and Uiso = p Ueq(parent atom) [p = 1.2 for C(sp2)].

Structure description top

Molecular self-association involves the spontaneous association of molecules into stable aggregates, joined by ion-pairing, hydrogen bonding, ππ stacking and donor–acceptor intractions (Moghimi et al., 2005). Our research group recently focused on the syntheses as suitable ligands in the synthesis of metal–organic framework. For example, ion pairs have been reported between pyrazine-2,3-dicarboxylic acid with 2,4,6-triamino-1,3,5-triazin (Eshtiagh-Hosseini, Hassanpoor et al., 2010) and 4-hydroxy pyridine-2,6-dicarboxylic acid bearing 2-amino pyrimidine (Eshtiagh-Hosseini, Mahjoobizadeh et al., 2010). Salicylic acid is important in biological systems thus there have been several attempts to prepare proton-transfer compounds involving H2sal with various organic bases such as 2-amino pyridine (Gellert & Hsu, 1988), 2-amino-4,6-dimethyl primidine (Muthiah et al., 2006) and 2-amino-5-chloroprimidine (Hemamalini & Fun, 2010). In this work, we reported a new proton-transfer compound obtained from salicylic acid (H2sal) as a proton donor and acridine (acr) as an acceptor in which acridinium N atom is protonated and carboxylic group of salicilic acid is deprotonated. The molecular structure of I, is shown in Fig. 1. The crystal structure is stabilized by a network of intermolecular N—H···O and C—H···O hydrogen bonds with H···A distance ranging from 1.55 (2) to 2.49 (2) Å (Table 1). Furthermore, in the crystalline network there is an intramolecular O—H···O hydrogen bond between phenolic OH and the carboxyl group (Fig. 2). In the crystal structure, C—H···π interactions (Table 1) [Cg1 is the centroid of C2–C7 benzene ring of H2sal] may further stabilize the structure. Above-mentioned van der Waals interactions lead to the formation and then expansion of a proton-transfer ligand.

For work on molecular self-association, see: Moghimi et al. (2005); Eshtiagh-Hosseini, Hassanpoor, Canadillas-Delgado & Mirzaei (2010); Eshtiagh-Hosseini, Mahjoobizadeh & Mirzaei (2010). [Please confirm added text] For related structures, see: Gellert & Hsu (1988); Hemamalini & Fun (2010); Muthiah et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Schematic representation of asymmetric units of the title compound.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
Acridinium 2-hydroxybenzoate top
Crystal data top
C13H10N+·C7H5O3F(000) = 664
Mr = 317.33Dx = 1.379 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 1285 reflections
a = 7.128 (3) Åθ = 2–25°
b = 9.472 (3) ŵ = 0.09 mm1
c = 22.637 (9) ÅT = 100 K
β = 91.449 (10)°Prism, light-orange
V = 1527.9 (10) Å30.30 × 0.25 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4488 independent reflections
Radiation source: fine-focus sealed tube3161 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 30.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 108
Tmin = 0.973, Tmax = 0.991k = 1213
10437 measured reflectionsl = 3225
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.2765P]
where P = (Fo2 + 2Fc2)/3
4488 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H10N+·C7H5O3V = 1527.9 (10) Å3
Mr = 317.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.128 (3) ŵ = 0.09 mm1
b = 9.472 (3) ÅT = 100 K
c = 22.637 (9) Å0.30 × 0.25 × 0.10 mm
β = 91.449 (10)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4488 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3161 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.991Rint = 0.035
10437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.37 e Å3
4488 reflectionsΔρmin = 0.24 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.74651 (19)0.32545 (14)0.35776 (6)0.0186 (3)
C20.73287 (18)0.43221 (14)0.30953 (6)0.0163 (3)
C30.89699 (18)0.48889 (14)0.28532 (6)0.0183 (3)
C40.8833 (2)0.59342 (15)0.24213 (7)0.0218 (3)
C50.7091 (2)0.63934 (16)0.22190 (7)0.0228 (3)
C60.5458 (2)0.58278 (16)0.24467 (6)0.0212 (3)
C70.5587 (2)0.47998 (15)0.28815 (6)0.0186 (3)
C80.70546 (18)0.32647 (15)0.01980 (6)0.0169 (3)
C90.76980 (18)0.40801 (15)0.06919 (6)0.0171 (3)
C100.81472 (18)0.54997 (15)0.06022 (6)0.0181 (3)
H100.85880.60410.09190.022*
C110.79458 (18)0.61143 (15)0.00465 (6)0.0173 (3)
C120.72746 (17)0.52574 (15)0.04321 (6)0.0171 (3)
C130.70495 (19)0.58406 (16)0.10047 (6)0.0203 (3)
H130.66040.52860.13170.024*
C140.74913 (19)0.72240 (16)0.10951 (7)0.0236 (3)
H140.73410.76080.14710.028*
C150.8176 (2)0.80885 (16)0.06248 (7)0.0237 (3)
H150.84730.90280.06970.028*
C160.84006 (19)0.75551 (15)0.00700 (7)0.0207 (3)
H160.88520.81300.02350.025*
C170.78718 (19)0.34000 (16)0.12514 (6)0.0210 (3)
H170.82860.39090.15810.025*
C180.74345 (19)0.20068 (16)0.13068 (7)0.0228 (3)
H180.75440.15760.16750.027*
C190.6817 (2)0.12079 (16)0.08115 (7)0.0236 (3)
H190.65350.02560.08580.028*
C200.66274 (19)0.18115 (15)0.02653 (6)0.0203 (3)
H200.62240.12770.00580.024*
N10.68547 (15)0.38796 (13)0.03385 (5)0.0176 (2)
O10.90825 (14)0.28524 (12)0.37528 (5)0.0275 (3)
O20.59605 (14)0.28037 (11)0.37986 (4)0.0220 (2)
O31.06952 (14)0.44374 (11)0.30336 (5)0.0261 (3)
H10.647 (3)0.324 (2)0.0700 (10)0.053 (6)*
H31.044 (3)0.376 (3)0.3363 (11)0.072 (8)*
H40.994 (3)0.634 (2)0.2274 (8)0.034 (5)*
H50.699 (2)0.7128 (19)0.1916 (8)0.029 (5)*
H60.421 (2)0.6185 (18)0.2298 (8)0.028 (5)*
H70.447 (2)0.4414 (16)0.3052 (7)0.018 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0232 (7)0.0150 (6)0.0173 (6)0.0020 (5)0.0033 (5)0.0012 (5)
C20.0197 (7)0.0127 (6)0.0163 (6)0.0005 (5)0.0011 (5)0.0011 (5)
C30.0179 (6)0.0156 (6)0.0214 (7)0.0018 (5)0.0011 (5)0.0039 (5)
C40.0241 (7)0.0174 (7)0.0241 (8)0.0019 (5)0.0046 (6)0.0002 (6)
C50.0320 (8)0.0176 (7)0.0189 (7)0.0014 (6)0.0013 (6)0.0006 (6)
C60.0240 (7)0.0203 (7)0.0191 (7)0.0041 (6)0.0035 (5)0.0001 (5)
C70.0194 (7)0.0177 (7)0.0185 (7)0.0007 (5)0.0010 (5)0.0008 (5)
C80.0128 (6)0.0197 (7)0.0182 (7)0.0010 (5)0.0010 (5)0.0011 (5)
C90.0135 (6)0.0209 (7)0.0168 (7)0.0014 (5)0.0004 (5)0.0025 (5)
C100.0150 (6)0.0202 (7)0.0189 (7)0.0011 (5)0.0016 (5)0.0043 (5)
C110.0132 (6)0.0185 (7)0.0202 (7)0.0017 (5)0.0000 (5)0.0019 (5)
C120.0125 (6)0.0196 (7)0.0193 (7)0.0021 (5)0.0007 (5)0.0009 (5)
C130.0179 (7)0.0253 (7)0.0177 (7)0.0016 (5)0.0006 (5)0.0011 (6)
C140.0196 (7)0.0282 (8)0.0229 (7)0.0042 (6)0.0001 (5)0.0055 (6)
C150.0206 (7)0.0188 (7)0.0315 (8)0.0017 (5)0.0001 (6)0.0028 (6)
C160.0177 (7)0.0183 (7)0.0262 (8)0.0008 (5)0.0010 (5)0.0027 (6)
C170.0191 (7)0.0257 (8)0.0181 (7)0.0014 (5)0.0007 (5)0.0019 (6)
C180.0211 (7)0.0268 (8)0.0206 (7)0.0012 (6)0.0006 (5)0.0039 (6)
C190.0217 (7)0.0210 (7)0.0282 (8)0.0005 (5)0.0016 (6)0.0013 (6)
C200.0183 (7)0.0203 (7)0.0225 (7)0.0019 (5)0.0003 (5)0.0033 (5)
N10.0158 (5)0.0195 (6)0.0176 (6)0.0008 (4)0.0000 (4)0.0032 (5)
O10.0222 (5)0.0288 (6)0.0311 (6)0.0049 (4)0.0045 (4)0.0095 (5)
O20.0231 (5)0.0232 (5)0.0197 (5)0.0012 (4)0.0018 (4)0.0050 (4)
O30.0178 (5)0.0223 (6)0.0381 (7)0.0019 (4)0.0009 (4)0.0022 (5)
Geometric parameters (Å, º) top
C1—O11.2681 (17)C11—C121.4268 (19)
C1—O21.2688 (17)C11—C161.429 (2)
C1—C21.4895 (19)C12—N11.3568 (19)
C2—C71.3966 (19)C12—C131.414 (2)
C2—C31.4105 (19)C13—C141.364 (2)
C3—O31.3551 (17)C13—H130.9300
C3—C41.393 (2)C14—C151.420 (2)
C4—C51.382 (2)C14—H140.9300
C4—H40.943 (18)C15—C161.359 (2)
C5—C61.392 (2)C15—H150.9300
C5—H50.979 (18)C16—H160.9300
C6—C71.386 (2)C17—C181.362 (2)
C6—H61.002 (17)C17—H170.9300
C7—H70.966 (16)C18—C191.414 (2)
C8—N11.3511 (18)C18—H180.9300
C8—C201.419 (2)C19—C201.366 (2)
C8—C91.4252 (19)C19—H190.9300
C9—C101.398 (2)C20—H200.9300
C9—C171.424 (2)N1—H11.05 (2)
C10—C111.3901 (19)O3—H31.01 (3)
C10—H100.9300
O1—C1—O2123.12 (13)C12—C11—C16118.46 (13)
O1—C1—C2118.37 (12)N1—C12—C13119.90 (13)
O2—C1—C2118.51 (12)N1—C12—C11119.98 (12)
C7—C2—C3118.74 (13)C13—C12—C11120.12 (13)
C7—C2—C1121.00 (12)C14—C13—C12119.43 (13)
C3—C2—C1120.25 (12)C14—C13—H13120.3
O3—C3—C4118.87 (13)C12—C13—H13120.3
O3—C3—C2121.19 (13)C13—C14—C15121.19 (14)
C4—C3—C2119.94 (13)C13—C14—H14119.4
C5—C4—C3120.18 (13)C15—C14—H14119.4
C5—C4—H4120.2 (11)C16—C15—C14120.57 (14)
C3—C4—H4119.6 (11)C16—C15—H15119.7
C4—C5—C6120.56 (14)C14—C15—H15119.7
C4—C5—H5120.5 (10)C15—C16—C11120.24 (14)
C6—C5—H5119.0 (10)C15—C16—H16119.9
C7—C6—C5119.50 (14)C11—C16—H16119.9
C7—C6—H6121.3 (10)C18—C17—C9120.34 (13)
C5—C6—H6119.2 (10)C18—C17—H17119.8
C6—C7—C2121.07 (13)C9—C17—H17119.8
C6—C7—H7120.7 (9)C17—C18—C19120.86 (14)
C2—C7—H7118.2 (9)C17—C18—H18119.6
N1—C8—C20119.78 (12)C19—C18—H18119.6
N1—C8—C9119.74 (13)C20—C19—C18121.03 (14)
C20—C8—C9120.47 (13)C20—C19—H19119.5
C10—C9—C17123.32 (13)C18—C19—H19119.5
C10—C9—C8118.52 (13)C19—C20—C8119.13 (13)
C17—C9—C8118.15 (13)C19—C20—H20120.4
C11—C10—C9121.02 (13)C8—C20—H20120.4
C11—C10—H10119.5C8—N1—C12122.44 (12)
C9—C10—H10119.5C8—N1—H1118.3 (12)
C10—C11—C12118.28 (13)C12—N1—H1119.1 (12)
C10—C11—C16123.25 (13)C3—O3—H3104.2 (14)
O1—C1—C2—C7179.63 (13)C10—C11—C12—N10.11 (18)
O2—C1—C2—C71.2 (2)C16—C11—C12—N1179.08 (12)
O1—C1—C2—C31.5 (2)C10—C11—C12—C13179.99 (12)
O2—C1—C2—C3177.62 (12)C16—C11—C12—C130.79 (18)
C7—C2—C3—O3178.30 (12)N1—C12—C13—C14179.43 (12)
C1—C2—C3—O32.8 (2)C11—C12—C13—C140.44 (19)
C7—C2—C3—C41.8 (2)C12—C13—C14—C150.1 (2)
C1—C2—C3—C4177.04 (13)C13—C14—C15—C160.3 (2)
O3—C3—C4—C5178.54 (13)C14—C15—C16—C110.1 (2)
C2—C3—C4—C51.6 (2)C10—C11—C16—C15179.77 (13)
C3—C4—C5—C60.5 (2)C12—C11—C16—C150.62 (19)
C4—C5—C6—C70.2 (2)C10—C9—C17—C18179.08 (13)
C5—C6—C7—C20.0 (2)C8—C9—C17—C180.14 (19)
C3—C2—C7—C61.1 (2)C9—C17—C18—C190.5 (2)
C1—C2—C7—C6177.80 (13)C17—C18—C19—C200.5 (2)
N1—C8—C9—C101.41 (18)C18—C19—C20—C80.2 (2)
C20—C8—C9—C10178.42 (12)N1—C8—C20—C19179.31 (12)
N1—C8—C9—C17179.33 (12)C9—C8—C20—C190.86 (19)
C20—C8—C9—C170.84 (18)C20—C8—N1—C12178.74 (12)
C17—C9—C10—C11179.78 (12)C9—C8—N1—C121.09 (19)
C8—C9—C10—C111.00 (19)C13—C12—N1—C8179.55 (12)
C9—C10—C11—C120.26 (19)C11—C12—N1—C80.32 (19)
C9—C10—C11—C16179.41 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i1.05 (2)2.49 (2)3.100 (2)116.4 (15)
N1—H1···O2i1.05 (2)1.55 (2)2.5887 (19)174.8 (18)
O3—H3···O11.00 (3)1.58 (2)2.5141 (19)153 (2)
C10—H10···O1ii0.932.493.294 (2)145
C18—H18···O3iii0.932.463.135 (2)129
C14—H14···Cg1iv0.932.763.644 (2)159
C17—H17···Cg10.932.913.716 (2)146
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H10N+·C7H5O3
Mr317.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.128 (3), 9.472 (3), 22.637 (9)
β (°) 91.449 (10)
V3)1527.9 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
10437, 4488, 3161
Rint0.035
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.128, 1.04
No. of reflections4488
No. of parameters241
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i1.05 (2)2.49 (2)3.100 (2)116.4 (15)
N1—H1···O2i1.05 (2)1.55 (2)2.5887 (19)174.8 (18)
O3—H3···O11.00 (3)1.58 (2)2.5141 (19)153 (2)
C10—H10···O1ii0.93002.49003.294 (2)145.00
C18—H18···O3iii0.93002.46003.135 (2)129.00
C14—H14···Cg1iv0.93002.76003.644 (2)159.00
C17—H17···Cg10.93002.91003.716 (2)146.00
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x, y+3/2, z1/2.
 

Acknowledgements

The Ferdowsi University of Mashhad is gratefully acknowledged for financial support.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEshtiagh-Hosseini, H., Hassanpoor, A., Canadillas-Delgado, L. & Mirzaei, M. (2010). Acta Cryst. E66, o1368–o1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Mahjoobizadeh, M. & Mirzaei, M. (2010). Acta Cryst. E66, o2210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGellert, R. W. & Hsu, I.-N. (1988). Acta Cryst. C44, 311–313.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1418–o1419.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoghimi, A., Aghabozorg, H., Sheshmani, S., Kickelbick, G. & Soleimannejad, J. (2005). Anal. Sci. 21, 141–142.  Google Scholar
First citationMuthiah, P. T., Balasubramani, K., Rychlewska, U. & Plutecka, A. (2006). Acta Cryst. C62, o605–o607.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds