organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(E)-(2,6-Di­chloro­benzyl­­idene)amino]-2-hy­dr­oxy­benzoic acid

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, Govt. M. D. College, Toba Tek Singh, Punjab, Pakistan, cApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and dDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 10 October 2010; accepted 14 October 2010; online 23 October 2010)

There are two geometrically different mol­ecules in the asymmetric unit of the title compound, C14H9Cl2NO3. The 5-amino-2-hy­droxy­benzoic acid units [r.m.s. deviations of 0.0323 and 0.0414 Å] and 2,6-dichloro­benzaldehyde groups [r.m.s. deviations of 0.0285 and 0.0226 Å] are roughly planar and oriented at dihedral angles of 11.69 (13) and 83.12 (6)° in the two mol­ecules. An intra­molecular O—H⋯O hydrogen bond completes an S(6) ring motif in each mol­ecule. The two mol­ecules form dimers with each other through inter­molecular O—H⋯N and C—H⋯O hydrogen bonds, completing an R22(8) ring motif. The dimers are inter­linked via inter­molecular O—H⋯N and C—H⋯O hydrogen bonds, forming polymeric sheets.

Related literature

For a related structure, see: Tahir et al. (2010[Tahir, M. N., Tariq, M. I., Ahmad, S. & Sarfraz, M. (2010). Acta Cryst. E66, o2553-o2554.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9Cl2NO3

  • Mr = 310.12

  • Monoclinic, P c

  • a = 10.4966 (10) Å

  • b = 4.8677 (4) Å

  • c = 26.300 (2) Å

  • β = 94.941 (4)°

  • V = 1338.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 296 K

  • 0.28 × 0.18 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.902, Tmax = 0.928

  • 21331 measured reflections

  • 6487 independent reflections

  • 3439 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.146

  • S = 1.02

  • 6487 reflections

  • 365 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983), 3138 Friedel pairs

  • Flack parameter: 0.17 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.82 2.00 2.794 (5) 162
O3—H3⋯O2 0.82 1.87 2.585 (6) 146
O4—H4A⋯N1i 0.82 2.06 2.811 (5) 152
O6—H6⋯O5 0.82 1.87 2.586 (6) 145
C5—H5⋯O5ii 0.93 2.32 3.228 (6) 166
C26—H26⋯O2iii 0.93 2.45 3.267 (8) 147
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) is being reported as a part of our on going project related to synthesize various Schiff bases of 5-amino-2-hydroxybenzoic acid and 2,6-dichlorobenzaldehyde with different aldehydes and anilines, respectively. In this context, we have recently reported the synthesis and crystal structure of 2-hydroxy-5-{[(E)-4-methoxybenzylidene]azaniumyl} benzoate (Tahir et al., 2010).

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. In one molecule, the 5-amino-2-hydroxybenzoic acid moiety A (C1—C7/N1/O1—O3) and group B (C8—C14/CL1/CL2) of 2,6-dichlorobenzaldehyde are planar with r. m. s deviation of 0.0414 and 0.0226 Å, respectively. The dihedral angle between A/B is 83.12 (6)°. In second molecule, the 5-amino-2-hydroxybenzoic acid moiety C (C15—C21/N2/O4—O6) and group D (C22—C28/CL3/CL4) of 2,6-dichlorobenzaldehyde are also planar with r. m. s deviation of 0.0323 and 0.0285 Å, respectively. The dihedral angle between C/D is 11.69 (13)°. In each molecule there exist an S(6) ring motif (Bernstein et al., 1995) due to intramolecular H-bonding of O—H···O type (Table 1, Fig 1). The molecules are stabilized in the form of dimers due to O—H···N and C—H···O types of intermolecular H-bondings with R22(8) ring motifs (Table 1, Fig. 2). The dimers are interlinked due to O—H···N and C—H···O type of intermolecular H-bondings to form polymeric sheets (Table 1, Fig. 2).

Related literature top

For a related structure, see: Tahir et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Equimolar quantities of 5-amino-2-hydroxybenzoic acid and 2,6-dichlorobenzaldehyde were refluxed in methanol for 30 min resulting in orange yellow solution. The solution was kept at room temperature which afforded colorless prisms after a week.

Refinement top

The H-atoms were positioned geometrically (O–H = 0.82, C–H = 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C, O), where x = 1.2 for all H-atoms.

Structure description top

The title compound (I, Fig. 1) is being reported as a part of our on going project related to synthesize various Schiff bases of 5-amino-2-hydroxybenzoic acid and 2,6-dichlorobenzaldehyde with different aldehydes and anilines, respectively. In this context, we have recently reported the synthesis and crystal structure of 2-hydroxy-5-{[(E)-4-methoxybenzylidene]azaniumyl} benzoate (Tahir et al., 2010).

The title compound consists of two molecules in the crystallographic asymmetric unit which differ from each other geometrically. In one molecule, the 5-amino-2-hydroxybenzoic acid moiety A (C1—C7/N1/O1—O3) and group B (C8—C14/CL1/CL2) of 2,6-dichlorobenzaldehyde are planar with r. m. s deviation of 0.0414 and 0.0226 Å, respectively. The dihedral angle between A/B is 83.12 (6)°. In second molecule, the 5-amino-2-hydroxybenzoic acid moiety C (C15—C21/N2/O4—O6) and group D (C22—C28/CL3/CL4) of 2,6-dichlorobenzaldehyde are also planar with r. m. s deviation of 0.0323 and 0.0285 Å, respectively. The dihedral angle between C/D is 11.69 (13)°. In each molecule there exist an S(6) ring motif (Bernstein et al., 1995) due to intramolecular H-bonding of O—H···O type (Table 1, Fig 1). The molecules are stabilized in the form of dimers due to O—H···N and C—H···O types of intermolecular H-bondings with R22(8) ring motifs (Table 1, Fig. 2). The dimers are interlinked due to O—H···N and C—H···O type of intermolecular H-bondings to form polymeric sheets (Table 1, Fig. 2).

For a related structure, see: Tahir et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. The dotted lines represent the inter and intramolecular H-bondings.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form dimers which are interlinked and form polymeric sheets.
5-[(E)-(2,6-Dichlorobenzylidene)amino]-2-hydroxybenzoic acid top
Crystal data top
C14H9Cl2NO3F(000) = 632
Mr = 310.12Dx = 1.539 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 3439 reflections
a = 10.4966 (10) Åθ = 1.6–28.3°
b = 4.8677 (4) ŵ = 0.49 mm1
c = 26.300 (2) ÅT = 296 K
β = 94.941 (4)°Prism, colorless
V = 1338.8 (2) Å30.28 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6487 independent reflections
Radiation source: fine-focus sealed tube3439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 7.50 pixels mm-1θmax = 28.3°, θmin = 1.6°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 56
Tmin = 0.902, Tmax = 0.928l = 3535
21331 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0569P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
6487 reflectionsΔρmax = 0.34 e Å3
365 parametersΔρmin = 0.30 e Å3
2 restraintsAbsolute structure: Flack (1983), 3138 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.17 (7)
Crystal data top
C14H9Cl2NO3V = 1338.8 (2) Å3
Mr = 310.12Z = 4
Monoclinic, PcMo Kα radiation
a = 10.4966 (10) ŵ = 0.49 mm1
b = 4.8677 (4) ÅT = 296 K
c = 26.300 (2) Å0.28 × 0.18 × 0.15 mm
β = 94.941 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6487 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3439 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.928Rint = 0.068
21331 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.146Δρmax = 0.34 e Å3
S = 1.02Δρmin = 0.30 e Å3
6487 reflectionsAbsolute structure: Flack (1983), 3138 Friedel pairs
365 parametersAbsolute structure parameter: 0.17 (7)
2 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01640 (13)0.2386 (3)0.50290 (5)0.0558 (5)
Cl20.11347 (14)0.4868 (3)0.35136 (6)0.0612 (5)
O10.1945 (3)0.6393 (7)0.27742 (13)0.0492 (12)
O20.3893 (4)0.6063 (10)0.25333 (16)0.0790 (18)
O30.5582 (3)0.3127 (9)0.30599 (17)0.0702 (16)
N10.1729 (3)0.0404 (8)0.42295 (14)0.0379 (12)
C10.3099 (5)0.5406 (10)0.28246 (19)0.0411 (17)
C20.3380 (4)0.3473 (9)0.32461 (17)0.0347 (17)
C30.4612 (4)0.2384 (10)0.33363 (18)0.0415 (17)
C40.4876 (5)0.0445 (11)0.3719 (2)0.0521 (19)
C50.3935 (5)0.0406 (11)0.40083 (19)0.0467 (17)
C60.2681 (4)0.0599 (10)0.39217 (17)0.0374 (17)
C70.2438 (4)0.2548 (9)0.35459 (17)0.0360 (17)
C80.0585 (4)0.0667 (9)0.40207 (18)0.0383 (17)
C90.0529 (4)0.1379 (9)0.42924 (18)0.0339 (16)
C100.0825 (5)0.0117 (10)0.47478 (18)0.0378 (17)
C110.1935 (5)0.0696 (11)0.4974 (2)0.052 (2)
C120.2784 (5)0.2615 (12)0.4752 (2)0.056 (2)
C130.2541 (5)0.3906 (11)0.4302 (2)0.0523 (19)
C140.1424 (4)0.3278 (10)0.40825 (17)0.0400 (17)
Cl30.00607 (11)1.1937 (3)0.24864 (5)0.0512 (5)
Cl40.18665 (17)0.4321 (3)0.11234 (6)0.0776 (7)
O40.2281 (3)0.3028 (7)0.01751 (13)0.0463 (12)
O50.4067 (4)0.4878 (8)0.00825 (15)0.0631 (17)
O60.5271 (4)0.8590 (10)0.04744 (16)0.0689 (17)
N20.1341 (4)0.8088 (8)0.17673 (14)0.0382 (12)
C150.3276 (5)0.4741 (10)0.0230 (2)0.0451 (19)
C160.3311 (4)0.6457 (9)0.06853 (17)0.0370 (17)
C170.4292 (5)0.8315 (10)0.0784 (2)0.0444 (17)
C180.4326 (5)1.0003 (10)0.12045 (19)0.0458 (17)
C190.3375 (5)0.9882 (10)0.1538 (2)0.0475 (17)
C200.2365 (5)0.8112 (10)0.14381 (18)0.0402 (17)
C210.2333 (5)0.6344 (10)0.10117 (18)0.0390 (17)
C220.0207 (5)0.8039 (10)0.15470 (18)0.0390 (17)
C230.0965 (5)0.8056 (10)0.18221 (18)0.0382 (16)
C240.1139 (4)0.9731 (10)0.22433 (18)0.0390 (17)
C250.2274 (5)0.9847 (11)0.2464 (2)0.0475 (19)
C260.3300 (6)0.8264 (12)0.2267 (2)0.063 (2)
C270.3158 (6)0.6557 (12)0.1858 (2)0.064 (2)
C280.1997 (5)0.6470 (10)0.1647 (2)0.0489 (19)
H10.183230.721560.250200.0590*
H30.532400.425740.284390.0842*
H40.569650.027280.377790.0623*
H50.412600.167630.426780.0556*
H70.161740.326910.349080.0432*
H80.045320.038430.367040.0458*
H110.211030.019500.527290.0619*
H120.352300.303850.490650.0671*
H130.311730.517320.414950.0627*
H4A0.235810.200590.006820.0555*
H60.513010.761410.022160.0830*
H180.499641.124140.126580.0550*
H190.341991.099000.182680.0571*
H210.166270.510770.094870.0465*
H220.011270.799000.119220.0470*
H250.235621.098130.274360.0572*
H260.407780.835270.241110.0755*
H270.383700.547480.172420.0765*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0538 (9)0.0637 (9)0.0493 (8)0.0071 (7)0.0009 (7)0.0136 (6)
Cl20.0558 (9)0.0692 (9)0.0576 (10)0.0025 (7)0.0003 (7)0.0188 (7)
O10.053 (2)0.053 (2)0.041 (2)0.0001 (17)0.0012 (17)0.0127 (16)
O20.043 (2)0.118 (4)0.078 (3)0.002 (2)0.017 (2)0.059 (3)
O30.035 (2)0.102 (3)0.077 (3)0.011 (2)0.024 (2)0.037 (2)
N10.033 (2)0.053 (2)0.028 (2)0.0026 (18)0.0037 (19)0.0082 (18)
C10.028 (3)0.061 (3)0.033 (3)0.004 (2)0.005 (2)0.011 (2)
C20.029 (3)0.037 (3)0.038 (3)0.0014 (19)0.003 (2)0.004 (2)
C30.030 (3)0.053 (3)0.042 (3)0.005 (2)0.006 (2)0.008 (2)
C40.029 (3)0.063 (3)0.065 (4)0.009 (2)0.008 (3)0.021 (3)
C50.043 (3)0.059 (3)0.038 (3)0.004 (2)0.003 (3)0.018 (2)
C60.033 (3)0.045 (3)0.034 (3)0.005 (2)0.002 (2)0.002 (2)
C70.030 (3)0.045 (3)0.033 (3)0.004 (2)0.003 (2)0.003 (2)
C80.041 (3)0.043 (3)0.031 (3)0.006 (2)0.004 (2)0.001 (2)
C90.027 (3)0.041 (2)0.033 (3)0.002 (2)0.001 (2)0.007 (2)
C100.033 (3)0.046 (3)0.034 (3)0.002 (2)0.001 (2)0.010 (2)
C110.051 (4)0.057 (3)0.049 (4)0.007 (3)0.018 (3)0.008 (3)
C120.031 (3)0.074 (4)0.066 (4)0.001 (3)0.015 (3)0.015 (3)
C130.030 (3)0.055 (3)0.072 (4)0.007 (2)0.005 (3)0.009 (3)
C140.041 (3)0.047 (3)0.032 (3)0.002 (2)0.003 (2)0.002 (2)
Cl30.0422 (8)0.0615 (8)0.0498 (8)0.0071 (6)0.0038 (6)0.0177 (7)
Cl40.0938 (13)0.0711 (10)0.0639 (11)0.0065 (9)0.0170 (9)0.0238 (9)
O40.047 (2)0.051 (2)0.041 (2)0.0006 (17)0.0052 (17)0.0137 (16)
O50.062 (3)0.077 (3)0.054 (3)0.009 (2)0.026 (2)0.022 (2)
O60.063 (3)0.082 (3)0.066 (3)0.019 (2)0.030 (2)0.016 (2)
N20.031 (2)0.049 (2)0.034 (2)0.0057 (18)0.001 (2)0.0005 (18)
C150.049 (4)0.037 (3)0.051 (3)0.005 (2)0.015 (3)0.006 (2)
C160.039 (3)0.036 (3)0.036 (3)0.008 (2)0.004 (2)0.001 (2)
C170.042 (3)0.043 (3)0.050 (3)0.006 (2)0.014 (3)0.002 (2)
C180.043 (3)0.052 (3)0.042 (3)0.009 (2)0.001 (3)0.007 (2)
C190.045 (3)0.051 (3)0.044 (3)0.003 (2)0.010 (3)0.008 (2)
C200.041 (3)0.047 (3)0.033 (3)0.007 (2)0.005 (2)0.000 (2)
C210.041 (3)0.040 (3)0.035 (3)0.005 (2)0.002 (2)0.006 (2)
C220.048 (3)0.044 (3)0.026 (3)0.004 (2)0.009 (2)0.002 (2)
C230.045 (3)0.037 (2)0.032 (3)0.005 (2)0.000 (2)0.000 (2)
C240.030 (3)0.047 (3)0.039 (3)0.006 (2)0.003 (2)0.003 (2)
C250.038 (3)0.057 (3)0.048 (4)0.001 (2)0.007 (3)0.006 (2)
C260.057 (4)0.067 (4)0.064 (4)0.005 (3)0.005 (3)0.015 (3)
C270.063 (4)0.059 (4)0.069 (4)0.026 (3)0.006 (3)0.003 (3)
C280.045 (3)0.045 (3)0.055 (4)0.004 (2)0.006 (3)0.006 (2)
Geometric parameters (Å, º) top
Cl1—C101.725 (5)C12—C131.383 (8)
Cl2—C141.734 (5)C13—C141.385 (7)
Cl3—C241.735 (5)C4—H40.9300
Cl4—C281.744 (5)C5—H50.9300
O1—C11.299 (6)C7—H70.9300
O2—C11.222 (7)C8—H80.9300
O3—C31.350 (6)C11—H110.9300
O1—H10.8200C12—H120.9300
O3—H30.8200C13—H130.9300
O4—C151.335 (6)C15—C161.458 (7)
O5—C151.219 (7)C16—C211.395 (7)
O6—C171.372 (7)C16—C171.378 (7)
O4—H4A0.8200C17—C181.376 (7)
O6—H60.8200C18—C191.386 (7)
N1—C61.425 (6)C19—C201.374 (7)
N1—C81.283 (5)C20—C211.412 (7)
N2—C221.278 (7)C22—C231.480 (7)
N2—C201.437 (6)C23—C281.377 (7)
C1—C21.465 (7)C23—C241.400 (7)
C2—C71.392 (6)C24—C251.371 (7)
C2—C31.399 (6)C25—C261.388 (8)
C3—C41.390 (7)C26—C271.377 (8)
C4—C51.362 (7)C27—C281.383 (8)
C5—C61.404 (7)C18—H180.9300
C6—C71.378 (6)C19—H190.9300
C8—C91.464 (6)C21—H210.9300
C9—C141.397 (6)C22—H220.9300
C9—C101.405 (7)C25—H250.9300
C10—C111.382 (7)C26—H260.9300
C11—C121.385 (8)C27—H270.9300
Cl1···N13.092 (4)C16···C18iv3.552 (7)
Cl1···C9i3.640 (5)C16···Cl1x3.637 (4)
Cl1···C14i3.566 (5)C17···C15i3.575 (7)
Cl1···O4ii3.447 (4)C18···C27viii3.458 (8)
Cl1···O4iii3.150 (4)C18···C15i3.552 (7)
Cl1···C15iii3.551 (5)C18···C16i3.552 (7)
Cl1···C16iii3.637 (5)C19···C21i3.570 (7)
Cl1···C21iii3.351 (5)C19···O23.218 (7)
Cl2···C8iv3.548 (5)C20···O23.327 (6)
Cl2···Cl3v3.446 (2)C21···C19iv3.570 (7)
Cl3···O13.393 (4)C21···Cl1x3.351 (5)
Cl3···C23i3.572 (5)C23···Cl3iv3.572 (5)
Cl3···C7i3.589 (5)C23···Cl4i3.643 (5)
Cl3···O1i2.989 (4)C25···O3xiii3.268 (7)
Cl3···N23.055 (4)C26···O2xiv3.267 (8)
Cl3···Cl2vi3.446 (2)C27···C18xiv3.458 (8)
Cl4···C11vii3.496 (5)C1···H32.4000
Cl4···C23iv3.643 (5)C6···H4Aii2.9900
Cl1···H22iii3.0700C7···H82.5700
Cl1···H21iii3.0300C8···H72.6500
Cl2···H82.7600C8···H4Aii2.9800
Cl2···H25v3.0600C13···H4xiv2.8300
Cl2···H7iv3.0300C15···H62.4000
Cl3···H12.9500C20···H12.9300
Cl3···H7i3.0500C21···H222.5500
Cl4···H222.7300C22···H212.6900
Cl4···H11vii3.1300C22···H12.9400
O1···Cl33.393 (4)C26···H3xiv2.9300
O1···N22.794 (5)H1···Cl32.9500
O1···Cl3iv2.989 (4)H1···N22.0000
O2···C26viii3.267 (8)H1···C202.9300
O2···O32.585 (6)H1···C222.9400
O2···C193.218 (7)H3···H26viii2.4100
O2···C203.327 (6)H3···C26viii2.9300
O3···C25ix3.268 (7)H3···O21.8700
O3···O22.585 (6)H3···C12.4000
O4···Cl1vii3.447 (4)H4···C13viii2.8300
O4···N1vii2.811 (5)H4A···C8vii2.9800
O4···Cl1x3.150 (4)H4A···N1vii2.0600
O5···O62.586 (6)H4A···C6vii2.9900
O5···C5vii3.228 (6)H5···O5ii2.3200
O6···O52.586 (6)H6···C152.4000
O1···H72.4700H6···O51.8700
O2···H31.8700H7···Cl2i3.0300
O2···H26viii2.4500H7···H82.2300
O3···H25ix2.6000H7···C82.6500
O4···H212.4100H7···O12.4700
O5···H61.8700H7···Cl3iv3.0500
O5···H5vii2.3200H8···H72.2300
O5···H12xi2.6900H8···C72.5700
O6···H11xii2.9000H8···Cl22.7600
N1···Cl13.092 (4)H11···Cl4ii3.1300
N1···O4ii2.811 (5)H11···O6xv2.9000
N2···Cl33.055 (4)H12···O5xvi2.6900
N2···O12.794 (5)H21···O42.4100
N1···H4Aii2.0600H21···C222.6900
N2···H12.0000H21···H222.2800
C5···O5ii3.228 (6)H21···Cl1x3.0300
C7···Cl3iv3.589 (5)H22···Cl42.7300
C8···Cl2i3.548 (5)H22···C212.5500
C9···Cl1iv3.640 (5)H22···H212.2800
C11···Cl4ii3.496 (6)H22···Cl1x3.0700
C14···Cl1iv3.566 (5)H25···Cl2vi3.0600
C15···Cl1x3.551 (5)H25···O3xiii2.6000
C15···C18iv3.552 (7)H26···O2xiv2.4500
C15···C17iv3.575 (7)H26···H3xiv2.4100
C1—O1—H1109.00C13—C12—H12120.00
C3—O3—H3109.00C14—C13—H13121.00
C15—O4—H4A110.00C12—C13—H13121.00
C17—O6—H6109.00O4—C15—C16114.3 (4)
C6—N1—C8117.9 (4)O5—C15—C16123.5 (5)
C20—N2—C22116.3 (4)O4—C15—O5122.2 (5)
O2—C1—C2122.6 (5)C17—C16—C21119.2 (4)
O1—C1—O2121.3 (5)C15—C16—C17119.8 (4)
O1—C1—C2116.1 (4)C15—C16—C21121.0 (4)
C3—C2—C7118.2 (4)C16—C17—C18120.7 (5)
C1—C2—C3119.7 (4)O6—C17—C16122.6 (5)
C1—C2—C7122.0 (4)O6—C17—C18116.8 (5)
O3—C3—C4117.3 (4)C17—C18—C19120.9 (5)
O3—C3—C2122.4 (4)C18—C19—C20119.5 (5)
C2—C3—C4120.3 (4)N2—C20—C21120.4 (4)
C3—C4—C5120.1 (5)N2—C20—C19119.7 (4)
C4—C5—C6121.2 (5)C19—C20—C21120.0 (5)
N1—C6—C5118.8 (4)C16—C21—C20119.8 (5)
N1—C6—C7123.2 (4)N2—C22—C23124.0 (4)
C5—C6—C7118.0 (4)C22—C23—C28119.8 (4)
C2—C7—C6122.2 (4)C22—C23—C24124.1 (4)
N1—C8—C9124.9 (4)C24—C23—C28116.0 (5)
C10—C9—C14115.8 (4)Cl3—C24—C25116.6 (4)
C8—C9—C14120.1 (4)Cl3—C24—C23120.8 (4)
C8—C9—C10123.9 (4)C23—C24—C25122.4 (4)
Cl1—C10—C9120.4 (4)C24—C25—C26119.6 (5)
Cl1—C10—C11117.3 (4)C25—C26—C27119.6 (6)
C9—C10—C11122.3 (5)C26—C27—C28119.4 (5)
C10—C11—C12119.5 (5)C23—C28—C27123.0 (5)
C11—C12—C13120.5 (5)Cl4—C28—C23119.2 (4)
C12—C13—C14118.8 (5)Cl4—C28—C27117.9 (4)
Cl2—C14—C9118.3 (3)C17—C18—H18120.00
Cl2—C14—C13118.6 (4)C19—C18—H18120.00
C9—C14—C13123.1 (4)C18—C19—H19120.00
C5—C4—H4120.00C20—C19—H19120.00
C3—C4—H4120.00C16—C21—H21120.00
C4—C5—H5119.00C20—C21—H21120.00
C6—C5—H5119.00N2—C22—H22118.00
C2—C7—H7119.00C23—C22—H22118.00
C6—C7—H7119.00C24—C25—H25120.00
C9—C8—H8118.00C26—C25—H25120.00
N1—C8—H8118.00C25—C26—H26120.00
C10—C11—H11120.00C27—C26—H26120.00
C12—C11—H11120.00C26—C27—H27120.00
C11—C12—H12120.00C28—C27—H27120.00
C8—N1—C6—C5145.6 (5)C11—C12—C13—C141.1 (8)
C8—N1—C6—C735.4 (7)C12—C13—C14—C90.5 (8)
C6—N1—C8—C9173.1 (4)C12—C13—C14—Cl2179.1 (4)
C20—N2—C22—C23178.9 (4)O5—C15—C16—C171.4 (8)
C22—N2—C20—C2144.4 (6)O5—C15—C16—C21175.6 (5)
C22—N2—C20—C19135.2 (5)O4—C15—C16—C17179.9 (4)
O2—C1—C2—C7174.0 (5)O4—C15—C16—C213.0 (7)
O1—C1—C2—C75.8 (7)C21—C16—C17—C181.4 (7)
O1—C1—C2—C3178.0 (4)C15—C16—C17—C18178.3 (5)
O2—C1—C2—C32.3 (7)C21—C16—C17—O6178.5 (5)
C7—C2—C3—C40.5 (7)C17—C16—C21—C200.4 (7)
C7—C2—C3—O3179.0 (4)C15—C16—C17—O61.5 (7)
C1—C2—C3—O32.6 (7)C15—C16—C21—C20177.3 (4)
C3—C2—C7—C60.5 (7)C16—C17—C18—C190.2 (8)
C1—C2—C7—C6175.8 (4)O6—C17—C18—C19179.7 (5)
C1—C2—C3—C4176.8 (5)C17—C18—C19—C202.0 (8)
C2—C3—C4—C50.0 (8)C18—C19—C20—C213.0 (7)
O3—C3—C4—C5179.5 (5)C18—C19—C20—N2176.6 (4)
C3—C4—C5—C61.3 (8)N2—C20—C21—C16177.8 (4)
C4—C5—C6—C72.2 (7)C19—C20—C21—C161.8 (7)
C4—C5—C6—N1178.8 (5)N2—C22—C23—C2442.9 (7)
C5—C6—C7—C21.8 (7)N2—C22—C23—C28141.0 (5)
N1—C6—C7—C2179.2 (4)C22—C23—C24—Cl31.1 (7)
N1—C8—C9—C14137.2 (5)C22—C23—C24—C25174.8 (5)
N1—C8—C9—C1047.5 (7)C28—C23—C24—Cl3177.4 (4)
C14—C9—C10—C110.4 (7)C28—C23—C24—C251.4 (7)
C8—C9—C10—C11175.1 (5)C22—C23—C28—Cl43.6 (7)
C8—C9—C14—C13175.5 (5)C22—C23—C28—C27174.4 (5)
C10—C9—C14—Cl2178.8 (4)C24—C23—C28—Cl4180.0 (4)
C8—C9—C14—Cl23.1 (6)C24—C23—C28—C272.0 (8)
C8—C9—C10—Cl11.4 (7)Cl3—C24—C25—C26176.0 (4)
C14—C9—C10—Cl1176.9 (4)C23—C24—C25—C260.2 (8)
C10—C9—C14—C130.1 (7)C24—C25—C26—C271.2 (8)
C9—C10—C11—C121.0 (8)C25—C26—C27—C280.6 (8)
Cl1—C10—C11—C12177.6 (4)C26—C27—C28—Cl4179.0 (4)
C10—C11—C12—C131.3 (8)C26—C27—C28—C231.0 (8)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1/2; (iii) x, y+1, z+1/2; (iv) x, y1, z; (v) x, y2, z; (vi) x, y+2, z; (vii) x, y, z1/2; (viii) x+1, y, z; (ix) x+1, y1, z; (x) x, y+1, z1/2; (xi) x+1, y, z1/2; (xii) x+1, y+1, z1/2; (xiii) x1, y+1, z; (xiv) x1, y, z; (xv) x1, y+1, z+1/2; (xvi) x1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.822.002.794 (5)162
O3—H3···O20.821.872.585 (6)146
O4—H4A···N1vii0.822.062.811 (5)152
O6—H6···O50.821.872.586 (6)145
C5—H5···O5ii0.932.323.228 (6)166
C26—H26···O2xiv0.932.453.267 (8)147
Symmetry codes: (ii) x, y, z+1/2; (vii) x, y, z1/2; (xiv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H9Cl2NO3
Mr310.12
Crystal system, space groupMonoclinic, Pc
Temperature (K)296
a, b, c (Å)10.4966 (10), 4.8677 (4), 26.300 (2)
β (°) 94.941 (4)
V3)1338.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.28 × 0.18 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.902, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
21331, 6487, 3439
Rint0.068
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.146, 1.02
No. of reflections6487
No. of parameters365
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.30
Absolute structureFlack (1983), 3138 Friedel pairs
Absolute structure parameter0.17 (7)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.822.002.794 (5)162
O3—H3···O20.821.872.585 (6)146
O4—H4A···N1i0.822.062.811 (5)152
O6—H6···O50.821.872.586 (6)145
C5—H5···O5ii0.932.323.228 (6)166
C26—H26···O2iii0.932.453.267 (8)147
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2; (iii) x1, y, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Ahmad, S. & Sarfraz, M. (2010). Acta Cryst. E66, o2553–o2554.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds