organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-amino-5-chloro­benzoate

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Food Science and Light Industry, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 12 October 2010; accepted 20 October 2010; online 31 October 2010)

The title compound, C8H8ClNO2, is almost planar, with an r.m.s. deviation of 0.0410 Å from the plane through the non-hydrogen atoms. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains along the b axis. An intra­molecular N—H⋯O hydrogen bond results in the formation of a six-membered ring.

Related literature

The title compound is a useful pharmaceutical inter­mediate, see: Dong & Xu (2009[Dong, W. L. & Xu, J. Y. (2009). Chin. J. Chem. 27, 579-586.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8ClNO2

  • Mr = 185.60

  • Monoclinic, P 21

  • a = 3.9480 (8) Å

  • b = 9.0230 (18) Å

  • c = 12.018 (2) Å

  • β = 94.10 (3)°

  • V = 427.02 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.889, Tmax = 0.980

  • 1911 measured reflections

  • 1663 independent reflections

  • 1437 reflections with I > 2σ(I)

  • Rint = 0.035

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.160

  • S = 1.01

  • 1663 reflections

  • 110 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 777 Friedel pairs

  • Flack parameter: 0.30 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O2i 0.86 2.31 3.066 (5) 147
N—H0B⋯O2 0.86 2.08 2.713 (5) 129
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+2].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinazolinones play an important role in the fields of natural products and medicinal chemistry. The title compound, methyl 2-amino-5-chlorobenzoate, (I), is a useful pharmaceutical intermediate (Dong et al. 2009). The molecule of (I) (Figure 1.) is almost planar (except the methyl hydrogens) with r. m. s. deviation of 0.0410 Å and the bond lengths (Allen et al., 1987) and angles are within normal ranges. The intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a six-membered ring (C1/C6/C7/O2/H0B/N). In the crystal structure, intermolecular N-H0A···O2 hydrogen bonds link the molecules to form a stable structure (Table 1. and Figure 2.).

Related literature top

The title compund is a useful pharmaceutical intermediate, see: Dong & Xu (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, methyl 2-amino-5-chlorobenzoate was prepared by the literature method (Dong et al., 2009). To a solution of 2-aminobenzoic acid (10 g, 66 mmol) in DMF (40 mL) was added N-halosuccinimide (66 mmol) and the reaction mixture was heated at 100 °C for 40 min, cooled to room temperature, left stand overnight, and then slowly poured into ice-water (150 mL) to precipitate a white solid. The solid was filtered, washed with water (50 mL * 3), then taken up in ethyl acetate (600 mL). The ethyl acetate solution was dried over magnesium sulfate, evaporated under reduced pressure and the residual solid was washed with ether (30 mL * 3) to afford intermediate 2-amino-5-chlorobenzoic acid. To an alcohol solution (60 mL) containing 2-amino-5-chlorobenzoic acid (20 mmol) was added thionyl chloride (60 mmol), and the resulting suspension was refluxed overnight. The solvent was evaporated followed by addition of EtOAc, washed with 10% NaOH solution, dried, filtered, and evaporated to afford the desired anthranilic acid esters methyl 2-amino-5-chlorobenzoate. Crystals suitable for X-ray analysis were obtained by slow evaporation of an methanol solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93, 0.98 and 0.96 Å for aromatic, methine and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Structure description top

Quinazolinones play an important role in the fields of natural products and medicinal chemistry. The title compound, methyl 2-amino-5-chlorobenzoate, (I), is a useful pharmaceutical intermediate (Dong et al. 2009). The molecule of (I) (Figure 1.) is almost planar (except the methyl hydrogens) with r. m. s. deviation of 0.0410 Å and the bond lengths (Allen et al., 1987) and angles are within normal ranges. The intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a six-membered ring (C1/C6/C7/O2/H0B/N). In the crystal structure, intermolecular N-H0A···O2 hydrogen bonds link the molecules to form a stable structure (Table 1. and Figure 2.).

The title compund is a useful pharmaceutical intermediate, see: Dong & Xu (2009). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bond is shown as dashed line.
Methyl 2-amino-5-chlorobenzoate top
Crystal data top
C8H8ClNO2F(000) = 192
Mr = 185.60Dx = 1.444 Mg m3
Monoclinic, P21Melting point: 343 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 3.9480 (8) ÅCell parameters from 25 reflections
b = 9.0230 (18) Åθ = 10–14°
c = 12.018 (2) ŵ = 0.40 mm1
β = 94.10 (3)°T = 293 K
V = 427.02 (15) Å3Block, colourless
Z = 20.30 × 0.30 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1437 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
ω/2θ scansh = 04
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.889, Tmax = 0.980l = 1414
1911 measured reflections3 standard reflections every 200 reflections
1663 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.1P)2 + 0.190P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.160(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.27 e Å3
1663 reflectionsΔρmin = 0.19 e Å3
110 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.103 (19)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 777 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.30 (14)
Crystal data top
C8H8ClNO2V = 427.02 (15) Å3
Mr = 185.60Z = 2
Monoclinic, P21Mo Kα radiation
a = 3.9480 (8) ŵ = 0.40 mm1
b = 9.0230 (18) ÅT = 293 K
c = 12.018 (2) Å0.30 × 0.30 × 0.05 mm
β = 94.10 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1437 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.035
Tmin = 0.889, Tmax = 0.9803 standard reflections every 200 reflections
1911 measured reflections intensity decay: 1%
1663 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.160Δρmax = 0.27 e Å3
S = 1.01Δρmin = 0.19 e Å3
1663 reflectionsAbsolute structure: Flack (1983), 777 Friedel pairs
110 parametersAbsolute structure parameter: 0.30 (14)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.5983 (3)0.76879 (13)0.57288 (9)0.0669 (4)
N0.1559 (10)0.5027 (4)0.9873 (3)0.0566 (10)
H0A0.17910.55451.04740.068*
H0B0.07000.41520.98880.068*
O10.1109 (8)0.2663 (4)0.6830 (2)0.0570 (7)
C10.2559 (10)0.5595 (4)0.8894 (3)0.0416 (8)
O20.0279 (9)0.2648 (4)0.8588 (2)0.0664 (8)
C20.3960 (10)0.7029 (4)0.8887 (4)0.0471 (9)
H2A0.41900.75670.95480.057*
C30.4982 (9)0.7643 (5)0.7937 (3)0.0484 (8)
H3A0.58840.85950.79540.058*
C40.4699 (10)0.6870 (4)0.6945 (3)0.0459 (9)
C50.3416 (10)0.5457 (4)0.6914 (3)0.0437 (9)
H5A0.32660.49320.62460.052*
C60.2327 (9)0.4797 (4)0.7884 (3)0.0410 (8)
C70.0929 (10)0.3288 (4)0.7827 (3)0.0425 (8)
C80.0251 (14)0.1186 (5)0.6689 (4)0.0650 (13)
H8A0.00200.08530.59410.097*
H8B0.26190.11920.68220.097*
H8C0.09420.05280.72080.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0859 (8)0.0590 (6)0.0578 (6)0.0183 (6)0.0195 (5)0.0133 (5)
N0.082 (3)0.049 (2)0.0405 (18)0.0089 (18)0.0160 (17)0.0031 (16)
O10.0802 (18)0.0415 (13)0.0503 (14)0.0169 (17)0.0130 (13)0.0067 (15)
C10.048 (2)0.0374 (18)0.0394 (19)0.0079 (16)0.0049 (16)0.0026 (15)
O20.099 (2)0.0470 (16)0.0564 (16)0.009 (2)0.0251 (15)0.0092 (17)
C20.052 (2)0.042 (2)0.048 (2)0.0045 (17)0.0046 (16)0.0069 (17)
C30.050 (2)0.0359 (17)0.059 (2)0.002 (2)0.0056 (16)0.002 (2)
C40.048 (2)0.043 (2)0.048 (2)0.0020 (18)0.0067 (16)0.0090 (17)
C50.050 (2)0.041 (2)0.041 (2)0.0016 (16)0.0110 (16)0.0016 (16)
C60.0412 (19)0.0360 (18)0.046 (2)0.0028 (15)0.0068 (15)0.0057 (15)
C70.048 (2)0.0347 (17)0.045 (2)0.0013 (16)0.0053 (16)0.0034 (15)
C80.080 (3)0.042 (2)0.073 (3)0.018 (2)0.007 (3)0.008 (2)
Geometric parameters (Å, º) top
Cl—C41.744 (4)C2—H2A0.9300
N—C11.367 (5)C3—C41.379 (6)
N—H0A0.8600C3—H3A0.9300
N—H0B0.8600C4—C51.372 (5)
O1—C71.330 (5)C5—C61.403 (5)
O1—C81.443 (5)C5—H5A0.9300
C1—C21.408 (6)C6—C71.469 (5)
C1—C61.409 (5)C8—H8A0.9600
O2—C71.208 (5)C8—H8B0.9600
C2—C31.357 (6)C8—H8C0.9600
C1—N—H0A120.0C4—C5—C6120.4 (4)
C1—N—H0B120.0C4—C5—H5A119.8
H0A—N—H0B120.0C6—C5—H5A119.8
C7—O1—C8117.0 (3)C5—C6—C1119.6 (3)
N—C1—C2119.1 (4)C5—C6—C7119.4 (4)
N—C1—C6123.1 (4)C1—C6—C7121.0 (3)
C2—C1—C6117.8 (3)O2—C7—O1121.9 (4)
C3—C2—C1121.4 (4)O2—C7—C6125.1 (4)
C3—C2—H2A119.3O1—C7—C6113.0 (3)
C1—C2—H2A119.3O1—C8—H8A109.5
C2—C3—C4120.7 (4)O1—C8—H8B109.5
C2—C3—H3A119.6H8A—C8—H8B109.5
C4—C3—H3A119.6O1—C8—H8C109.5
C5—C4—C3120.0 (4)H8A—C8—H8C109.5
C5—C4—Cl120.0 (3)H8B—C8—H8C109.5
C3—C4—Cl120.0 (3)
N—C1—C2—C3179.8 (4)C2—C1—C6—C51.3 (5)
C6—C1—C2—C31.6 (6)N—C1—C6—C70.8 (5)
C1—C2—C3—C40.5 (6)C2—C1—C6—C7179.3 (4)
C2—C3—C4—C50.9 (6)C8—O1—C7—O20.9 (6)
C2—C3—C4—Cl179.3 (3)C8—O1—C7—C6179.1 (4)
C3—C4—C5—C61.2 (6)C5—C6—C7—O2175.1 (4)
Cl—C4—C5—C6179.0 (3)C1—C6—C7—O24.3 (6)
C4—C5—C6—C10.0 (6)C5—C6—C7—O14.9 (5)
C4—C5—C6—C7179.3 (3)C1—C6—C7—O1175.7 (3)
N—C1—C6—C5179.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.862.313.066 (5)147
N—H0B···O20.862.082.713 (5)129
Symmetry code: (i) x, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC8H8ClNO2
Mr185.60
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)3.9480 (8), 9.0230 (18), 12.018 (2)
β (°) 94.10 (3)
V3)427.02 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.30 × 0.30 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.889, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
1911, 1663, 1437
Rint0.035
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.160, 1.01
No. of reflections1663
No. of parameters110
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.19
Absolute structureFlack (1983), 777 Friedel pairs
Absolute structure parameter0.30 (14)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.862.313.066 (5)147
N—H0B···O20.862.082.713 (5)129
Symmetry code: (i) x, y+1/2, z+2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationDong, W. L. & Xu, J. Y. (2009). Chin. J. Chem. 27, 579–586.  CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds