organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-({4-[(1H-Imidazol-2-ylsulfanyl)methyl]-2,5-di­methylbenzyl}sulfanyl)-1H-imidazole

aDepartment of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
*Correspondence e-mail: malcolma@sun.ac.za

(Received 8 September 2010; accepted 4 October 2010; online 9 October 2010)

The title compound, C16H18N4S2, was prepared by the substitution reaction of two equivalents of 2-mercaptoimidazole for every bromine substituent of 1,4-bis­(bromo­meth­yl)-2,5-dimethyl­benzene. The mol­ecule is located on a crystallographic centre of inversion and therefore adopts a trans configuration with regards to the orientation of the two sulfur atoms. An inter­molecular N—H⋯N hydrogen bond forms layers of mol­ecules parallel to ([\overline{1}]03). The dihedral angle between the central and terminal rings is 174.8 (2)°.

Related literature

For related structures, see: Fan et al. (2003[Fan, C., Ma, C., Chen, C., Chen, F. & Liu, Q. (2003). Inorg. Chem. Commun. 6, 491-494]); Voo et al. (2003[Voo, J. K., Lam, K. C., Rheingold, A. L. & Riordan, C. G. (2003). J. Chem. Soc. Dalton Trans. pp. 1803-1805.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18N4S2

  • Mr = 330.46

  • Monoclinic, P 21 /n

  • a = 6.169 (3) Å

  • b = 9.491 (5) Å

  • c = 13.722 (8) Å

  • β = 95.392 (8)°

  • V = 799.8 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100 K

  • 0.2 × 0.14 × 0.07 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.977

  • 4896 measured reflections

  • 1875 independent reflections

  • 1154 reflections with I > 2sσ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.149

  • S = 1.01

  • 1875 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4i 0.88 1.93 2.791 (4) 165
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

The molecule adopts a trans configuration with regards to the orientation of the two sulfur atoms.

Related literature top

For related structures, see: Fan et al. (2003); Voo et al. (2003).

Experimental top

2-Mercaptoimidazole (1.60 g, 16 mmol) was added to 1,4-bis(bromomethyl)-2,5-dimethylbenzene (1.30 g, 4 mmol) in 200 mL of MeOH. The resulting solution was refluxed for 24 h.

The solvent was then removed in vacuo and K2CO3 (6.91 g, 50 mmol) in 100 mL of H2O was added. The solution was stirred until the product precipitated. The white solid was then filtered, washed with 100 mL of H2O and left to air dry.

Refinement top

All hydrogen atoms were refined in calculated positions, using a riding model (C–Har = 0.95 Å; C—H = 0.99 Å; N–H = 0.88 Å) with U(H) set to 1.2Ueq of the parent atom (1.5 for methyl H atoms).

Structure description top

The molecule adopts a trans configuration with regards to the orientation of the two sulfur atoms.

For related structures, see: Fan et al. (2003); Voo et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound which has 50% probability ellipsoids. The trans relationship between the sulfur atoms can clearly be seen.
[Figure 2] Fig. 2. The crystal packing viewed down the c axis shows N—H···N hydrogen bonding occurring to form chains throughout a layer of the crystal structure.
2-({4-[(1H-Imidazol-2-ylsulfanyl)methyl]-2,5- dimethylbenzyl}sulfanyl)-1H-imidazole top
Crystal data top
C16H18N4S2F(000) = 348
Mr = 330.46Dx = 1.372 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 394 reflections
a = 6.169 (3) Åθ = 2.6–28.2°
b = 9.491 (5) ŵ = 0.33 mm1
c = 13.722 (8) ÅT = 100 K
β = 95.392 (8)°Shard, colourless
V = 799.8 (8) Å30.2 × 0.14 × 0.07 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
1875 independent reflections
Radiation source: fine-focus sealed tube1154 reflections with I > 2sσ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 28.2°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 87
Tmin = 0.945, Tmax = 0.977k = 126
4896 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0617P)2]
where P = (Fo2 + 2Fc2)/3
1875 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C16H18N4S2V = 799.8 (8) Å3
Mr = 330.46Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.169 (3) ŵ = 0.33 mm1
b = 9.491 (5) ÅT = 100 K
c = 13.722 (8) Å0.2 × 0.14 × 0.07 mm
β = 95.392 (8)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
1875 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1154 reflections with I > 2sσ(I)
Tmin = 0.945, Tmax = 0.977Rint = 0.075
4896 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.01Δρmax = 0.67 e Å3
1875 reflectionsΔρmin = 0.39 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7634 (4)0.7794 (3)0.28821 (19)0.0230 (7)
H10.71600.69490.27050.028*
C20.8959 (5)0.8119 (4)0.3693 (2)0.0249 (8)
H20.95480.74820.41820.030*
C30.9285 (5)0.9529 (4)0.3674 (2)0.0257 (8)
H31.01581.00500.41540.031*
N40.8168 (4)1.0086 (3)0.28587 (18)0.0250 (7)
C50.7181 (5)0.8997 (4)0.2400 (2)0.0205 (7)
S60.55288 (13)0.91254 (10)0.12971 (6)0.0241 (3)
C70.2861 (5)0.9423 (4)0.1750 (2)0.0275 (8)
H7A0.24030.85860.21090.033*
H7B0.29141.02460.21950.033*
C80.1309 (5)0.9690 (4)0.0855 (2)0.0233 (8)
C90.0933 (5)1.1077 (4)0.0551 (2)0.0243 (8)
H90.15871.18190.09390.029*
C100.0364 (5)0.8586 (4)0.0300 (2)0.0242 (8)
C110.0624 (6)0.7085 (4)0.0609 (3)0.0320 (9)
H11A0.02690.69000.11490.048*
H11B0.21560.68980.08250.048*
H11C0.01540.64690.00550.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0274 (15)0.0207 (16)0.0199 (14)0.0032 (13)0.0031 (11)0.0010 (12)
C20.0244 (19)0.030 (2)0.0189 (17)0.0024 (15)0.0067 (14)0.0045 (15)
C30.0272 (19)0.032 (2)0.0163 (16)0.0024 (16)0.0055 (13)0.0015 (15)
N40.0290 (16)0.0248 (16)0.0201 (14)0.0021 (13)0.0035 (12)0.0009 (13)
C50.0209 (17)0.0212 (18)0.0190 (16)0.0042 (15)0.0002 (13)0.0013 (14)
S60.0221 (5)0.0314 (5)0.0177 (4)0.0031 (4)0.0038 (3)0.0002 (4)
C70.0235 (18)0.039 (2)0.0194 (16)0.0085 (16)0.0035 (13)0.0023 (16)
C80.0189 (17)0.032 (2)0.0185 (16)0.0028 (15)0.0004 (13)0.0008 (15)
C90.0182 (17)0.029 (2)0.0249 (17)0.0009 (15)0.0002 (13)0.0051 (15)
C100.0229 (18)0.0268 (19)0.0230 (17)0.0031 (15)0.0017 (14)0.0031 (15)
C110.034 (2)0.027 (2)0.036 (2)0.0035 (17)0.0045 (16)0.0035 (17)
Geometric parameters (Å, º) top
N1—C51.336 (4)C7—H7A0.9900
N1—C21.354 (4)C7—H7B0.9900
N1—H10.8800C8—C101.391 (5)
C2—C31.353 (5)C8—C91.394 (5)
C2—H20.9500C9—C10i1.389 (4)
C3—N41.364 (4)C9—H90.9500
C3—H30.9500C10—C9i1.389 (4)
N4—C51.327 (4)C10—C111.491 (5)
C5—S61.748 (3)C11—H11A0.9800
S6—C71.835 (3)C11—H11B0.9800
C7—C81.506 (4)C11—H11C0.9800
C5—N1—C2107.1 (3)S6—C7—H7B110.6
C5—N1—H1126.5H7A—C7—H7B108.7
C2—N1—H1126.5C10—C8—C9119.8 (3)
C3—C2—N1106.8 (3)C10—C8—C7121.4 (3)
C3—C2—H2126.6C9—C8—C7118.6 (3)
N1—C2—H2126.6C10i—C9—C8122.4 (3)
C2—C3—N4109.6 (3)C10i—C9—H9118.8
C2—C3—H3125.2C8—C9—H9118.8
N4—C3—H3125.2C9i—C10—C8117.8 (3)
C5—N4—C3105.1 (3)C9i—C10—C11119.8 (3)
N4—C5—N1111.5 (3)C8—C10—C11122.4 (3)
N4—C5—S6124.1 (3)C10—C11—H11A109.5
N1—C5—S6124.5 (3)C10—C11—H11B109.5
C5—S6—C7100.70 (15)H11A—C11—H11B109.5
C8—C7—S6105.7 (2)C10—C11—H11C109.5
C8—C7—H7A110.6H11A—C11—H11C109.5
S6—C7—H7A110.6H11B—C11—H11C109.5
C8—C7—H7B110.6
C5—N1—C2—C30.4 (4)C5—S6—C7—C8174.8 (2)
N1—C2—C3—N40.2 (4)S6—C7—C8—C1083.0 (3)
C2—C3—N4—C50.1 (4)S6—C7—C8—C993.0 (3)
C3—N4—C5—N10.4 (4)C10—C8—C9—C10i0.2 (5)
C3—N4—C5—S6179.6 (2)C7—C8—C9—C10i175.9 (3)
C2—N1—C5—N40.5 (4)C9—C8—C10—C9i0.2 (5)
C2—N1—C5—S6179.7 (2)C7—C8—C10—C9i175.8 (3)
N4—C5—S6—C790.1 (3)C9—C8—C10—C11177.2 (3)
N1—C5—S6—C790.8 (3)C7—C8—C10—C116.9 (5)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4ii0.881.932.791 (4)165
Symmetry code: (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H18N4S2
Mr330.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)6.169 (3), 9.491 (5), 13.722 (8)
β (°) 95.392 (8)
V3)799.8 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.2 × 0.14 × 0.07
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.945, 0.977
No. of measured, independent and
observed [I > 2sσ(I)] reflections
4896, 1875, 1154
Rint0.075
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.149, 1.01
No. of reflections1875
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.881.932.791 (4)164.5
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors would like to thank the Central Analytical Facility (CAF) at the University of Stellenbosch (US) for the use of their diffractometer as well as the US and NRF for funding.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, C., Ma, C., Chen, C., Chen, F. & Liu, Q. (2003). Inorg. Chem. Commun. 6, 491–494  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVoo, J. K., Lam, K. C., Rheingold, A. L. & Riordan, C. G. (2003). J. Chem. Soc. Dalton Trans. pp. 1803–1805.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds