organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,2,3,4-Tetra­hydro-9H-carbazol-1-yl­­idene)propane­di­nitrile

aPost Graduate and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020, India, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 18 September 2010; accepted 20 October 2010; online 30 October 2010)

In the title compound, C15H11N3, the cyclo­hexene ring adopts a sofa conformation. An intra­molecular N—H⋯N hydrogen bond generates an S(7) ring motif. In the crystal, mol­ecules are linked by inter­molecular N—H⋯N, C—H⋯N and C—H⋯π inter­actions into a three-dimensional network.

Related literature

For the biological activity of carbazole derivatives, see: Shufen et al. (1995[Shufen, Z., Danhong, Z. & Jinzong, Y. (1995). Dyes Pigm. 27, 287-296.]); Magnus et al. (1992[Magnus, P., Sear, N. L., Kim, C. S. & Vicker, N. (1992). J. Org. Chem. 57, 70-78.]); Abraham (1975[Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Farnsworth, ch. 7 and 8. New York: Marcel Decker.]); Saxton (1983[Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.]); Phillipson & Zenk (1980[Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.]); Bergman & Pelcman (1990[Bergman, J. & Pelcman, B. (1990). Pure Appl. Chem. 62, 1967-1976.]); Kirtikar & Basu (1933[Kirtikar, K. R. & Basu, B. D. (1933). Indian Med. Plants, 2nd ed., p. 274. Allahabad: L. M. Basu.]); Chakraborty et al. (1973[Chakraborty, D. P., Das, K. C., Das, B. P. & Chowdhury, B. K. (1973). Trans. Bose Res. Inst. 38, 1-10.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11N3

  • Mr = 233.27

  • Triclinic, [P \overline 1]

  • a = 7.7631 (10) Å

  • b = 8.0003 (10) Å

  • c = 9.8933 (13) Å

  • α = 87.461 (8)°

  • β = 82.392 (8)°

  • γ = 75.038 (7)°

  • V = 588.35 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.986

  • 10589 measured reflections

  • 2924 independent reflections

  • 2339 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.130

  • S = 1.06

  • 2924 reflections

  • 168 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N16 0.885 (17) 2.623 (17) 3.3314 (16) 137.8 (13)
N1—H1⋯N16i 0.885 (17) 2.279 (17) 3.0656 (17) 148.1 (14)
C12—H12⋯N16i 0.93 2.62 3.3254 (19) 133
C4—H4BCg3ii 0.97 2.86 3.6950 (15) 145
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Carbazole alkaloids obtained from naturally occurring sources have been the subject of extensive research, mainly because of their widespread application in traditional medicine (Bergman & Pelcman, 1990; Kirtikar & Basu, 1933). Aminocarbazoles are widely used as intermediates for the preparation of carbazole-based synthetic dyes, agrochemicals, pharmaceuticals, light-sensitive materials (Shufen et al., 1995). Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Magnus et al., 1992; Abraham, 1975; Saxton, 1983; Phillipson et al., 1980). These types of compounds possess significant antibiotic, anti-carcinogenic, antiviral and anti-inflammatory properties (Chakraborty et al., 1973). Against this background and to ascertain the molecular structure and conformation, the X-ray structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The cyclohexane ring in the carbazole ring system adopts sofa conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2 =0.378 (1) Å, q3 = -0.274 (1) Å, φ2 = 353.6 (2)° and Δs(C2 & C5)= 6.11 (13)°. The sum of the bond angles around N1 [359.6°] is in accordance with sp2 hybridization. The bond angles of (C14—C15—N16) 178.3 (1)° and (C14—C17—N18) 178.9 (2)° show linear character of the cyano group, a feature observed in carbonitrile compounds.

The crystal packing reveals that symmetry-related molecules are linked through a network by C—H···N, N—H···N, C—H···π and π···π types of intra and intermolecular interactions. The intramolecular N1—H1···N16 hydrogen bond generates a S(7) ring motif. The molecules at (x, y, z) and (-x, -y + 1, -z) are linked by C12—H12···N16 hydrogen bonds into cyclic centrosymmetric R22(18) dimer. The dimers are cross-linked via C—H···π intermolecular interactions.

Related literature top

For the biological activity of carbazole derivatives, see: Shufen et al. (1995); Magnus et al. (1992); Abraham (1975); Saxton (1983); Phillipson et al. (1980); Bergman & Pelcman (1990); Kirtikar & Basu (1933); Chakraborty et al. (1973). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 1-oxo-1,2,3,4-tetrahydrocarbazole (7.5 mmol), and melanonitrile (7.5 mmol), ammonium acetate (0.57 g, 8.125 mmol) and acetic acid (1.5 ml, 24.75 mmol) in 12.5 ml of toluene was stirred at 105°C for five 5 h. On cooling the precipitate that formed was filtered off, washed with hexane (20 ml) and dried at 100°C to give a crude product of 1-(dicyanomethylene) -2,3,4-tetrahydrocarbazole. The crystals of the title compound suitable for single XRD analysis were obtained by the slow evaporation method by using dichloroethane as solvent at room temperature.

Refinement top

N-bound H atom was located in a difference map and refined isotropically. C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for all H atoms. The components of the anisotropic displacement parameters of (C14-C15) and (C14-C17) in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.001.

Structure description top

Carbazole alkaloids obtained from naturally occurring sources have been the subject of extensive research, mainly because of their widespread application in traditional medicine (Bergman & Pelcman, 1990; Kirtikar & Basu, 1933). Aminocarbazoles are widely used as intermediates for the preparation of carbazole-based synthetic dyes, agrochemicals, pharmaceuticals, light-sensitive materials (Shufen et al., 1995). Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Magnus et al., 1992; Abraham, 1975; Saxton, 1983; Phillipson et al., 1980). These types of compounds possess significant antibiotic, anti-carcinogenic, antiviral and anti-inflammatory properties (Chakraborty et al., 1973). Against this background and to ascertain the molecular structure and conformation, the X-ray structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The cyclohexane ring in the carbazole ring system adopts sofa conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2 =0.378 (1) Å, q3 = -0.274 (1) Å, φ2 = 353.6 (2)° and Δs(C2 & C5)= 6.11 (13)°. The sum of the bond angles around N1 [359.6°] is in accordance with sp2 hybridization. The bond angles of (C14—C15—N16) 178.3 (1)° and (C14—C17—N18) 178.9 (2)° show linear character of the cyano group, a feature observed in carbonitrile compounds.

The crystal packing reveals that symmetry-related molecules are linked through a network by C—H···N, N—H···N, C—H···π and π···π types of intra and intermolecular interactions. The intramolecular N1—H1···N16 hydrogen bond generates a S(7) ring motif. The molecules at (x, y, z) and (-x, -y + 1, -z) are linked by C12—H12···N16 hydrogen bonds into cyclic centrosymmetric R22(18) dimer. The dimers are cross-linked via C—H···π intermolecular interactions.

For the biological activity of carbazole derivatives, see: Shufen et al. (1995); Magnus et al. (1992); Abraham (1975); Saxton (1983); Phillipson et al. (1980); Bergman & Pelcman (1990); Kirtikar & Basu (1933); Chakraborty et al. (1973). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
2-(1,2,3,4-Tetrahydro-9H-carbazol-1-ylidene)propanedinitrile top
Crystal data top
C15H11N3Z = 2
Mr = 233.27F(000) = 244
Triclinic, P1Dx = 1.317 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7631 (10) ÅCell parameters from 1654 reflections
b = 8.0003 (10) Åθ = 2.1–28.4°
c = 9.8933 (13) ŵ = 0.08 mm1
α = 87.461 (8)°T = 293 K
β = 82.392 (8)°Block, colorless
γ = 75.038 (7)°0.20 × 0.18 × 0.17 mm
V = 588.35 (13) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2924 independent reflections
Radiation source: fine-focus sealed tube2339 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and φ scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.984, Tmax = 0.986k = 1010
10589 measured reflectionsl = 1213
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0748P)2 + 0.0374P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
2924 reflectionsΔρmax = 0.23 e Å3
168 parametersΔρmin = 0.15 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (8)
Crystal data top
C15H11N3γ = 75.038 (7)°
Mr = 233.27V = 588.35 (13) Å3
Triclinic, P1Z = 2
a = 7.7631 (10) ÅMo Kα radiation
b = 8.0003 (10) ŵ = 0.08 mm1
c = 9.8933 (13) ÅT = 293 K
α = 87.461 (8)°0.20 × 0.18 × 0.17 mm
β = 82.392 (8)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2924 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2339 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.986Rint = 0.039
10589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0412 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.23 e Å3
2924 reflectionsΔρmin = 0.15 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.18203 (13)0.14402 (13)0.01388 (9)0.0404 (2)
H10.118 (2)0.252 (2)0.0038 (17)0.068 (4)*
C20.25866 (13)0.06198 (14)0.12645 (10)0.0375 (2)
C30.26818 (13)0.13570 (14)0.25321 (10)0.0380 (3)
C40.36565 (17)0.01146 (17)0.35406 (13)0.0491 (3)
H4A0.31790.05270.44560.059*
H4B0.49180.01120.33980.059*
C50.35020 (18)0.17242 (16)0.34360 (13)0.0532 (3)
H5A0.22570.17560.36700.064*
H5B0.42040.24610.40780.064*
C60.41700 (17)0.23982 (16)0.20031 (13)0.0518 (3)
H6A0.54640.25820.18300.062*
H6B0.38890.34980.19100.062*
C70.32980 (14)0.11254 (14)0.09931 (11)0.0412 (3)
C80.29475 (14)0.13856 (15)0.03433 (12)0.0430 (3)
C90.32862 (18)0.28496 (18)0.11570 (14)0.0559 (3)
H90.39000.39260.08490.067*
C100.26989 (19)0.2670 (2)0.24143 (15)0.0621 (4)
H100.29160.36360.29630.075*
C110.17753 (18)0.1052 (2)0.28854 (13)0.0561 (3)
H110.13900.09720.37430.067*
C120.14204 (16)0.04168 (17)0.21264 (11)0.0486 (3)
H120.08150.14870.24510.058*
C130.20122 (14)0.02303 (15)0.08386 (11)0.0407 (3)
C140.20193 (15)0.30577 (15)0.28668 (11)0.0436 (3)
C150.11508 (19)0.43809 (15)0.19901 (13)0.0519 (3)
N160.0464 (2)0.54705 (16)0.13082 (13)0.0753 (4)
C170.22133 (19)0.36577 (18)0.41741 (14)0.0575 (3)
N180.2367 (2)0.4156 (2)0.51944 (15)0.0918 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0490 (5)0.0377 (5)0.0343 (5)0.0091 (4)0.0075 (4)0.0041 (4)
C20.0391 (5)0.0380 (5)0.0360 (5)0.0103 (4)0.0051 (4)0.0024 (4)
C30.0375 (5)0.0424 (6)0.0356 (5)0.0120 (4)0.0056 (4)0.0026 (4)
C40.0505 (6)0.0526 (7)0.0441 (6)0.0081 (5)0.0158 (5)0.0000 (5)
C50.0597 (7)0.0476 (7)0.0496 (7)0.0054 (5)0.0160 (5)0.0062 (5)
C60.0517 (6)0.0408 (6)0.0591 (7)0.0023 (5)0.0114 (5)0.0020 (5)
C70.0392 (5)0.0395 (6)0.0435 (6)0.0073 (4)0.0035 (4)0.0055 (4)
C80.0418 (5)0.0427 (6)0.0433 (6)0.0102 (4)0.0009 (4)0.0103 (5)
C90.0591 (7)0.0477 (7)0.0585 (8)0.0100 (5)0.0009 (6)0.0191 (6)
C100.0647 (8)0.0658 (9)0.0577 (8)0.0225 (7)0.0074 (6)0.0300 (7)
C110.0576 (7)0.0769 (9)0.0397 (6)0.0278 (7)0.0000 (5)0.0173 (6)
C120.0521 (6)0.0592 (7)0.0371 (6)0.0183 (5)0.0043 (5)0.0075 (5)
C130.0418 (5)0.0458 (6)0.0357 (5)0.0140 (4)0.0010 (4)0.0075 (4)
C140.0511 (6)0.0433 (6)0.0391 (5)0.0133 (5)0.0107 (4)0.0061 (4)
C150.0725 (8)0.0386 (6)0.0466 (6)0.0132 (5)0.0150 (5)0.0068 (5)
N160.1197 (11)0.0434 (6)0.0624 (8)0.0100 (7)0.0318 (7)0.0008 (6)
C170.0693 (8)0.0528 (7)0.0502 (7)0.0071 (6)0.0194 (6)0.0137 (6)
N180.1192 (12)0.0874 (10)0.0674 (9)0.0048 (9)0.0392 (8)0.0328 (8)
Geometric parameters (Å, º) top
N1—C131.3655 (14)C7—C81.4193 (16)
N1—C21.3906 (14)C8—C91.3991 (16)
N1—H10.885 (17)C8—C131.4114 (17)
C2—C71.3865 (15)C9—C101.370 (2)
C2—C31.4278 (15)C9—H90.9300
C3—C141.3634 (16)C10—C111.401 (2)
C3—C41.5098 (16)C10—H100.9300
C4—C51.5156 (19)C11—C121.3698 (18)
C4—H4A0.9700C11—H110.9300
C4—H4B0.9700C12—C131.3997 (16)
C5—C61.5159 (18)C12—H120.9300
C5—H5A0.9700C14—C151.4257 (17)
C5—H5B0.9700C14—C171.4386 (16)
C6—C71.4921 (16)C15—N161.1413 (17)
C6—H6A0.9700C17—N181.1334 (17)
C6—H6B0.9700
C13—N1—C2108.44 (9)C2—C7—C8106.56 (10)
C13—N1—H1121.1 (11)C2—C7—C6123.35 (10)
C2—N1—H1130.1 (11)C8—C7—C6130.04 (10)
C7—C2—N1109.30 (9)C9—C8—C13119.21 (12)
C7—C2—C3122.29 (10)C9—C8—C7133.37 (12)
N1—C2—C3128.42 (10)C13—C8—C7107.37 (10)
C14—C3—C2125.47 (10)C10—C9—C8118.88 (13)
C14—C3—C4119.15 (10)C10—C9—H9120.6
C2—C3—C4115.36 (10)C8—C9—H9120.6
C3—C4—C5113.84 (10)C9—C10—C11120.89 (12)
C3—C4—H4A108.8C9—C10—H10119.6
C5—C4—H4A108.8C11—C10—H10119.6
C3—C4—H4B108.8C12—C11—C10122.23 (12)
C5—C4—H4B108.8C12—C11—H11118.9
H4A—C4—H4B107.7C10—C11—H11118.9
C4—C5—C6110.58 (11)C11—C12—C13116.83 (13)
C4—C5—H5A109.5C11—C12—H12121.6
C6—C5—H5A109.5C13—C12—H12121.6
C4—C5—H5B109.5N1—C13—C12129.73 (11)
C6—C5—H5B109.5N1—C13—C8108.31 (10)
H5A—C5—H5B108.1C12—C13—C8121.95 (11)
C7—C6—C5109.78 (10)C3—C14—C15125.01 (10)
C7—C6—H6A109.7C3—C14—C17120.54 (11)
C5—C6—H6A109.7C15—C14—C17114.43 (11)
C7—C6—H6B109.7N16—C15—C14178.28 (13)
C5—C6—H6B109.7N18—C17—C14178.87 (17)
H6A—C6—H6B108.2
C13—N1—C2—C70.92 (12)C7—C8—C9—C10177.34 (12)
C13—N1—C2—C3179.03 (10)C8—C9—C10—C110.1 (2)
C7—C2—C3—C14179.75 (10)C9—C10—C11—C120.2 (2)
N1—C2—C3—C140.31 (19)C10—C11—C12—C130.53 (18)
C7—C2—C3—C41.66 (15)C2—N1—C13—C12178.09 (11)
N1—C2—C3—C4178.40 (10)C2—N1—C13—C81.16 (12)
C14—C3—C4—C5150.75 (11)C11—C12—C13—N1178.53 (11)
C2—C3—C4—C531.03 (14)C11—C12—C13—C80.64 (17)
C3—C4—C5—C656.40 (14)C9—C8—C13—N1178.93 (10)
C4—C5—C6—C750.35 (13)C7—C8—C13—N10.97 (12)
N1—C2—C7—C80.30 (12)C9—C8—C13—C120.40 (17)
C3—C2—C7—C8179.65 (9)C7—C8—C13—C12178.35 (10)
N1—C2—C7—C6177.95 (10)C2—C3—C14—C151.19 (19)
C3—C2—C7—C62.00 (17)C4—C3—C14—C15176.84 (11)
C5—C6—C7—C223.15 (15)C2—C3—C14—C17179.26 (11)
C5—C6—C7—C8153.90 (12)C4—C3—C14—C171.23 (17)
C2—C7—C8—C9177.95 (12)C3—C14—C15—N16161 (5)
C6—C7—C8—C90.5 (2)C17—C14—C15—N1617 (5)
C2—C7—C8—C130.40 (12)C3—C14—C17—N18149 (9)
C6—C7—C8—C13177.03 (11)C15—C14—C17—N1830 (9)
C13—C8—C9—C100.02 (18)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N160.885 (17)2.623 (17)3.3314 (16)137.8 (13)
N1—H1···N16i0.885 (17)2.279 (17)3.0656 (17)148.1 (14)
C12—H12···N16i0.932.623.3254 (19)133
C4—H4B···Cg3ii0.972.863.6950 (15)145
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H11N3
Mr233.27
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7631 (10), 8.0003 (10), 9.8933 (13)
α, β, γ (°)87.461 (8), 82.392 (8), 75.038 (7)
V3)588.35 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.984, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
10589, 2924, 2339
Rint0.039
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.130, 1.06
No. of reflections2924
No. of parameters168
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.15

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N160.885 (17)2.623 (17)3.3314 (16)137.8 (13)
N1—H1···N16i0.885 (17)2.279 (17)3.0656 (17)148.1 (14)
C12—H12···N16i0.932.623.3254 (19)132.6
C4—H4B···Cg3ii0.972.863.6950 (15)145
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

The authors thank TBI consultancy, University of Madras, India, for the data collection.

References

First citationAbraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Farnsworth, ch. 7 and 8. New York: Marcel Decker.  Google Scholar
First citationBergman, J. & Pelcman, B. (1990). Pure Appl. Chem. 62, 1967–1976.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, D. P., Das, K. C., Das, B. P. & Chowdhury, B. K. (1973). Trans. Bose Res. Inst. 38, 1–10.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKirtikar, K. R. & Basu, B. D. (1933). Indian Med. Plants, 2nd ed., p. 274. Allahabad: L. M. Basu.  Google Scholar
First citationMagnus, P., Sear, N. L., Kim, C. S. & Vicker, N. (1992). J. Org. Chem. 57, 70–78.  CSD CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPhillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.  Google Scholar
First citationSaxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShufen, Z., Danhong, Z. & Jinzong, Y. (1995). Dyes Pigm. 27, 287–296.  CrossRef Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds