metal-organic compounds
mer-[3-Phenyl-5-(2-pyridyl-κN)-1,2,4-triazol-1-ido-κN1]bis(2-quinolylphenyl-κ2C1,N)iridium(III) deuterochloroform disolvate
aInstitut für Anorganische und Analytische Chemie, Technical University of Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and bLabor für Elektrooptik am Institut für Hochfrequenztechnik, Technical University of Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de
In the title compound, [Ir(C13H9N4)(C15H10N)2]·2CDCl3, the coordination at iridium is octahedral, but with narrow ligand bite angles ranging from 74.85 (8) to 83.99 (8)°. The bond lengths at iridium show the expected trans influence, with Ir—N trans to C being appreciably longer than trans to N. The chelate rings are mutually perpendicular to a reasonable approximation [interplanar angles ranging from 77.79 (6) to 83.93 (7)°]. All ligands are approximately planar; the maximum interplanar angles within ligands are ca 12°. One CDCl3 solvent molecule is severly disordered and was excluded from the refinement.
Related literature
For the preparation of iridium complexes, see: Lamansky et al. (2001); Coppo et al. (2004). For the photoluminescent properties and color tuning of cyclometalated iridium complexes, see: Grushin et al. (2001); You & Park (2005); Stagni et al. (2008). For general background to organic light-emitting diodes (OLEDs), see: Hertel et al. (2005); Holder et al. (2005). For two recent related publications from our groups, see: Jones et al. (2010a,b).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810038596/bt5363sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810038596/bt5363Isup2.hkl
A mixture of bis(2-phenylquinoline)-iridium(III)-µ-chloro bridged dimer complex (230 mg, 180 µmol), 3-phenyl-5-(2-pyridyl)-1,2,4-triazole (100 mg, 450 µmol) and potassium tert-butoxide (50 mg, 450 µmol) in dry dichloromethane (10 ml) and dry ethanol (3 ml) was stirred overnight at room temperature under nitrogen atmosphere. The solvent was removed under reduced pressure and the residue was purified via flash
on silica gel (eluent: dichloromethane/acetone = 20:1, Rf = 0.31) to yield a red solid (115 mg, 39%). m.p. 326 °C.1H NMR (CDCl3, 600 MHz): δ 8.13 (d, J = 9.0 Hz, 1H), 8.04–8.00 (m, 3H), 7.93–7.86 (m, 6H), 7.77 (d, J = 7.7 Hz, 1H), 7.52–7.47 (m, 3H), 7.29 (d, J = 8.9 Hz, 1H), 7.23 (dd, J = 7.6, 7.6 Hz, 2H), 7.18–7.14 (m, 2H), 7.11 (ddd, J = 7.9, 6.9, 1.0 Hz, 1H), 7.07–7.03 (m, 2H), 7.01 (dd, J = 7.3, 7.3 Hz, 1H), 6.95 (ddd, J = 7.2, 5.7, 1.3 Hz, 1H), 6.78–6.74 (m, 3H), 6.67 (dd, J = 7.0, 7.0 Hz, 1H), 6.46 (d, J = 7.5 Hz, 1H) p.p.m..
13C NMR (CDCl3, 150 MHz): δ 170.95, 170.01, 164.55, 162.54, 156.82, 151.88, 149.90, 148.24, 147.54, 146.98, 146.73, 146.61, 138.78, 138.31, 137.61, 136.01, 134.22, 133.17, 131.33, 130.06, 129.57, 129.47, 128.48, 128.14, 127.87, 127.49, 127.46, 127.26, 127.14, 126.53, 126.21, 126.05, 125.98, 125.54, 125.48, 123.23, 121.76, 121.65, 120.71, 116.99, 116.54 p.p.m..
EI—MS: m/z (%) = 822 (28) [M]+., 601 (46) [M–C13H9N4]+., 470 (4), 205 (100).
IR: = 3045 (w), 1604 (s), 1579 (m), 1544 (m), 1513 (m), 1460 (m), 1447 (m), 1421 (m), 1335 (m), 1288 (m), 1275 (m), 1242 (w), 1146 (m), 1070 (w), 1026 (m), 828 (m), 789 (m), 760 (versus), 724 (s), 695 (s), 640 (w), 569 (w), 539 (w) cm-1.
UV/Vis (CH2Cl2): λ (ε) = 446 (br. 4500), 337 (23600), 269 (58500), 227 (40300) nm.
Single crystals were obtained by evaporation from CDCl3 in an NMR tube.
Hydrogen atoms were included at calculated positions using a riding model with aromatic C—H 0.95, sp3-C—H 1.00 Å. The U(H) values were fixed at 1.2 × Ueq(C) of the parent C atom. Anisotropic displacement parameters of the N and C atoms were restrained to have approximately equal components along mutual bonds (command DELU).
One deuterochloroform molecule is well ordered. However, a region of significant residual electron density could not be successfully interpreted in terms of the only possible solvent (CDCl3). The program SQUEEZE (as implemented in the PLATON system; Spek, 2009) was therefore used to remove mathematically the effects of this solvent. Values for the formula mass etc. are based on an assumed solvent content per
of one ordered and one squeezed CDCl3.There are several peaks of 0.7–1.1 e Å-3 either ca 1 Å from the Ir atom, which may reasonably be attributed to residual absorption errors, or in the solvent region, corresponding to slight extra disorder or irregular displacement features.
Electrophosphorescent materials based on iridium(III) have been one of the most important developments in the field of organic light-emitting diodes (OLEDs) because both singlet and triplet excitons can be harvested for light emission, giving OLEDs with theoretically 100% internal quantum efficiencies. Furthermore, iridium(III) complexes possess relatively short
lifetimes, high quantum efficiencies and remarkable colour tuning by modification of the ligand structures. The simple method of tuning the emission colour is to vary the combination of cyclometallating and ancillary ligands (e.g. acetylacetonate, picolinate or triazolate derivatives) coordinated to the iridium core. These heteroleptic complexes are particularly interesting as emitters for OLED applications. Quinoline-based iridium(III) complexes have proved to be especially efficient materials for red OLEDs. In this regard, we have synthesized and characterized the title compound, a new iridium(III) complex with 2-phenylquinoline as chromophoric ligands and 3-phenyl-5-(2-pyridyl)-1,2,4-triazole as ancillary ligand, and report here its crystal structure.The structure of the title complex is shown in Fig. 1. It crystallizes with two molecules of deuterochloroform, one of which is severely disordered (see
details). The general features of the complex are similar to those of our other recent related structures (Jones et al., 2010a,b). The coordination at iridium is octahedral, whereby the major deviations in angles arise from the restricted bite of the chelating ligands: N1—Ir—C12 79.82 (10), N17—Ir—C28 79.82 (12), N33—Ir—N39 74.85 (8)°. The bond lengths at iridium show the expected trans influence, with Ir—N33 and Ir—N39, 2.129 (2) and 2.196 (2) Å respectively, trans to C being appreciably longer than the mutually trans Ir—N1 2.084 (2) and Ir—N17 2.093 (2) Å. The interplanar angles between the chelate rings amount to 78.8 (1)° from the IrN2C2 ring to both IrNC3 rings, and 83.9 (1)° between the latter. Within the ligands, the interplanar angles between phenyl and quinoline are 11.8 (1) and 12.3 (1)°, whereas in the triazole ligand the pyridyl and phenyl rings subtend angles of 1.8 (1) and 11.0 (1)° respectively to the triazole ring.For the preparation of iridium complexes, see: Lamansky et al. (2001); Coppo et al. (2004). For the photoluminescent properties and color tuning of cyclometalated iridium complexes, see: Grushin et al. (2001); You & Park (2005); Stagni et al. (2008). For general background to organic light-emitting diodes (OLEDs), see: Hertel et al. (2005); Holder et al. (2005). For two recent related publications from our groups, see: Jones et al. (2010a,b).
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. Structure of the title compound in the crystal. Ellipsoids represent 50% probability levels. Solvent molecules and hydrogen atoms are omitted for clarity. |
[Ir(C13H9N4)(C15H10N)2]·2CDCl3 | Z = 2 |
Mr = 1062.67 | F(000) = 1044 |
Triclinic, P1 | Dx = 1.798 Mg m−3 |
a = 9.1399 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.4430 (5) Å | Cell parameters from 26610 reflections |
c = 17.6762 (6) Å | θ = 2.2–30.8° |
α = 81.493 (4)° | µ = 3.86 mm−1 |
β = 81.509 (4)° | T = 100 K |
γ = 85.193 (4)° | Tablet, orange |
V = 1962.41 (12) Å3 | 0.25 × 0.20 × 0.05 mm |
Oxford Diffraction Xcalibur Eos diffractometer | 9739 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 8125 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.062 |
Detector resolution: 16.1419 pixels mm-1 | θmax = 28.3°, θmin = 2.2° |
ω–scan | h = −12→12 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −16→16 |
Tmin = 0.739, Tmax = 1.000 | l = −23→23 |
78670 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.048 | H-atom parameters constrained |
S = 0.93 | w = 1/[σ2(Fo2) + (0.019P)2] where P = (Fo2 + 2Fc2)/3 |
9739 reflections | (Δ/σ)max = 0.003 |
487 parameters | Δρmax = 1.03 e Å−3 |
134 restraints | Δρmin = −1.08 e Å−3 |
[Ir(C13H9N4)(C15H10N)2]·2CDCl3 | γ = 85.193 (4)° |
Mr = 1062.67 | V = 1962.41 (12) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.1399 (3) Å | Mo Kα radiation |
b = 12.4430 (5) Å | µ = 3.86 mm−1 |
c = 17.6762 (6) Å | T = 100 K |
α = 81.493 (4)° | 0.25 × 0.20 × 0.05 mm |
β = 81.509 (4)° |
Oxford Diffraction Xcalibur Eos diffractometer | 9739 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 8125 reflections with I > 2σ(I) |
Tmin = 0.739, Tmax = 1.000 | Rint = 0.062 |
78670 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 134 restraints |
wR(F2) = 0.048 | H-atom parameters constrained |
S = 0.93 | Δρmax = 1.03 e Å−3 |
9739 reflections | Δρmin = −1.08 e Å−3 |
487 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 8.0107 (0.0039) x - 5.0559 (0.0100) y + 1.0694 (0.0169) z = 0.3793 (0.0119) * 0.0612 (0.0010) Ir * -0.0747 (0.0014) N1 * 0.0495 (0.0016) C2 * 0.0270 (0.0017) C11 * -0.0630 (0.0014) C12 Rms deviation of fitted atoms = 0.0574 3.5166 (0.0086) x + 11.8000 (0.0045) y + 4.6463 (0.0182) z = 11.4217 (0.0048) Angle to previous plane (with approximate e.s.d.) = 83.93 (0.07) * -0.0639 (0.0011) Ir * 0.0668 (0.0016) C28 * -0.0280 (0.0019) C27 * -0.0526 (0.0019) C18 * 0.0777 (0.0015) N17 Rms deviation of fitted atoms = 0.0602 2.1808 (0.0086) x + 0.5392 (0.0092) y + 17.4903 (0.0021) z = 5.6802 (0.0088) Angle to previous plane (with approximate e.s.d.) = 78.84 (0.08) * -0.0035 (0.0009) Ir * 0.0040 (0.0013) N33 * -0.0019 (0.0016) C37 * -0.0031 (0.0016) C38 * 0.0045 (0.0014) N39 Rms deviation of fitted atoms = 0.0035 8.0107 (0.0039) x - 5.0559 (0.0100) y + 1.0694 (0.0169) z = 0.3793 (0.0119) Angle to previous plane (with approximate e.s.d.) = 78.79 (0.08) * 0.0612 (0.0010) Ir * -0.0747 (0.0014) N1 * 0.0495 (0.0016) C2 * 0.0270 (0.0017) C11 * -0.0630 (0.0014) C12 Rms deviation of fitted atoms = 0.0574 8.1366 (0.0044) x - 4.6169 (0.0120) y + 2.7467 (0.0185) z = 1.1577 (0.0155) Angle to previous plane (with approximate e.s.d.) = 5.58 (0.11) * -0.0062 (0.0018) C11 * 0.0042 (0.0018) C12 * 0.0004 (0.0019) C13 * -0.0031 (0.0020) C14 * 0.0011 (0.0020) C15 * 0.0036 (0.0019) C16 Rms deviation of fitted atoms = 0.0036 - 7.1556 (0.0029) x + 6.8670 (0.0050) y - 1.5139 (0.0120) z = 1.5526 (0.0051) Angle to previous plane (with approximate e.s.d.) = 11.79 (0.10) * -0.0880 (0.0018) N1 * 0.0273 (0.0020) C2 * 0.0689 (0.0021) C3 * 0.0094 (0.0021) C4 * -0.0354 (0.0024) C5 * -0.0377 (0.0021) C6 * -0.0110 (0.0022) C7 * 0.0624 (0.0021) C8 * 0.0474 (0.0020) C9 * -0.0432 (0.0022) C10 Rms deviation of fitted atoms = 0.0491 3.8481 (0.0098) x + 11.4658 (0.0058) y + 6.3281 (0.0208) z = 11.7536 (0.0044) Angle to previous plane (with approximate e.s.d.) = 77.79 (0.06) * -0.0067 (0.0020) C28 * 0.0001 (0.0020) C29 * 0.0072 (0.0023) C30 * -0.0080 (0.0025) C31 * 0.0013 (0.0023) C32 * 0.0060 (0.0021) C27 Rms deviation of fitted atoms = 0.0058 2.0501 (0.0054) x + 12.1910 (0.0019) y + 5.3371 (0.0154) z = 11.4565 (0.0058) Angle to previous plane (with approximate e.s.d.) = 12.28 (0.08) * -0.0704 (0.0021) N17 * 0.0393 (0.0024) C18 * 0.0498 (0.0028) C19 * -0.0036 (0.0029) C20 * -0.0280 (0.0030) C21 * -0.0253 (0.0030) C22 * 0.0012 (0.0029) C23 * 0.0474 (0.0026) C24 * 0.0300 (0.0024) C25 * -0.0404 (0.0026) C26 Rms deviation of fitted atoms = 0.0390 2.0139 (0.0103) x + 0.5046 (0.0150) y + 17.5147 (0.0030) z = 5.5443 (0.0128) Angle to previous plane (with approximate e.s.d.) = 78.01 (0.09) * 0.0047 (0.0018) C38 * 0.0079 (0.0017) N39 * -0.0141 (0.0019) C40 * 0.0073 (0.0022) C41 * 0.0051 (0.0023) C42 * -0.0109 (0.0020) C43 Rms deviation of fitted atoms = 0.0090 2.2942 (0.0112) x + 0.5668 (0.0154) y + 17.4708 (0.0033) z = 5.7456 (0.0097) Angle to previous plane (with approximate e.s.d.) = 1.81 (0.06) * -0.0023 (0.0014) N33 * 0.0007 (0.0014) N34 * 0.0010 (0.0015) C35 * -0.0024 (0.0015) N36 * 0.0029 (0.0015) C37 Rms deviation of fitted atoms = 0.0020 3.5283 (0.0116) x - 0.8562 (0.0173) y + 16.6404 (0.0084) z = 5.4129 (0.0060) Angle to previous plane (with approximate e.s.d.) = 11.00 (0.10) * -0.0031 (0.0021) C44 * 0.0013 (0.0022) C45 * -0.0006 (0.0025) C46 * 0.0019 (0.0027) C47 * -0.0038 (0.0027) C48 * 0.0044 (0.0024) C49 Rms deviation of fitted atoms = 0.0029 |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ir | 0.479659 (11) | 0.724128 (9) | 0.242431 (7) | 0.01435 (3) | |
N1 | 0.5063 (2) | 0.76795 (18) | 0.12298 (13) | 0.0164 (5) | |
C2 | 0.5821 (3) | 0.8582 (2) | 0.09770 (16) | 0.0183 (6) | |
C3 | 0.6254 (3) | 0.8918 (2) | 0.01826 (17) | 0.0241 (7) | |
H3 | 0.6797 | 0.9550 | 0.0022 | 0.029* | |
C4 | 0.5898 (3) | 0.8342 (2) | −0.03560 (17) | 0.0250 (7) | |
H4 | 0.6227 | 0.8551 | −0.0889 | 0.030* | |
C5 | 0.5035 (3) | 0.7430 (2) | −0.01136 (16) | 0.0224 (6) | |
C6 | 0.4578 (3) | 0.6834 (3) | −0.06484 (17) | 0.0274 (7) | |
H6 | 0.4897 | 0.7018 | −0.1185 | 0.033* | |
C7 | 0.3680 (3) | 0.5992 (3) | −0.03966 (18) | 0.0283 (7) | |
H7 | 0.3403 | 0.5578 | −0.0757 | 0.034* | |
C8 | 0.3166 (3) | 0.5737 (2) | 0.03924 (17) | 0.0253 (7) | |
H8 | 0.2504 | 0.5173 | 0.0559 | 0.030* | |
C9 | 0.3608 (3) | 0.6295 (2) | 0.09300 (16) | 0.0198 (6) | |
H9 | 0.3251 | 0.6114 | 0.1463 | 0.024* | |
C10 | 0.4586 (3) | 0.7129 (2) | 0.06896 (16) | 0.0184 (6) | |
C11 | 0.6096 (3) | 0.9190 (2) | 0.15802 (16) | 0.0189 (6) | |
C12 | 0.5580 (3) | 0.8711 (2) | 0.23424 (17) | 0.0190 (6) | |
C13 | 0.5710 (3) | 0.9308 (2) | 0.29458 (17) | 0.0226 (6) | |
H13 | 0.5371 | 0.9019 | 0.3464 | 0.027* | |
C14 | 0.6325 (3) | 1.0308 (2) | 0.27935 (19) | 0.0284 (7) | |
H14 | 0.6397 | 1.0695 | 0.3210 | 0.034* | |
C15 | 0.6835 (3) | 1.0757 (2) | 0.20527 (19) | 0.0293 (7) | |
H15 | 0.7257 | 1.1444 | 0.1961 | 0.035* | |
C16 | 0.6729 (3) | 1.0201 (2) | 0.14405 (18) | 0.0261 (7) | |
H16 | 0.7085 | 1.0504 | 0.0928 | 0.031* | |
N17 | 0.4354 (3) | 0.70179 (19) | 0.36314 (13) | 0.0239 (6) | |
C18 | 0.2901 (3) | 0.7236 (3) | 0.38966 (19) | 0.0348 (8) | |
C19 | 0.2355 (5) | 0.6990 (3) | 0.4688 (2) | 0.0534 (11) | |
H19 | 0.1330 | 0.7126 | 0.4857 | 0.064* | |
C20 | 0.3248 (5) | 0.6572 (3) | 0.5199 (2) | 0.0562 (11) | |
H20 | 0.2855 | 0.6390 | 0.5727 | 0.067* | |
C21 | 0.4788 (5) | 0.6398 (3) | 0.49591 (18) | 0.0439 (9) | |
C22 | 0.5786 (5) | 0.6009 (3) | 0.5471 (2) | 0.0589 (11) | |
H22 | 0.5423 | 0.5823 | 0.6002 | 0.071* | |
C23 | 0.7259 (5) | 0.5885 (3) | 0.5236 (2) | 0.0557 (11) | |
H23 | 0.7916 | 0.5607 | 0.5598 | 0.067* | |
C24 | 0.7820 (4) | 0.6177 (3) | 0.4441 (2) | 0.0431 (9) | |
H24 | 0.8857 | 0.6111 | 0.4275 | 0.052* | |
C25 | 0.6862 (3) | 0.6555 (2) | 0.39132 (17) | 0.0298 (7) | |
H25 | 0.7237 | 0.6753 | 0.3385 | 0.036* | |
C26 | 0.5336 (4) | 0.6647 (2) | 0.41575 (17) | 0.0290 (7) | |
C27 | 0.1995 (3) | 0.7753 (3) | 0.3323 (2) | 0.0338 (8) | |
C28 | 0.2731 (3) | 0.7910 (2) | 0.25696 (19) | 0.0266 (7) | |
C29 | 0.1941 (3) | 0.8497 (2) | 0.1998 (2) | 0.0354 (8) | |
H29 | 0.2412 | 0.8625 | 0.1480 | 0.043* | |
C30 | 0.0488 (4) | 0.8890 (3) | 0.2181 (3) | 0.0552 (12) | |
H30 | −0.0021 | 0.9291 | 0.1788 | 0.066* | |
C31 | −0.0228 (4) | 0.8707 (3) | 0.2923 (3) | 0.0645 (14) | |
H31 | −0.1232 | 0.8965 | 0.3039 | 0.077* | |
C32 | 0.0508 (4) | 0.8153 (3) | 0.3494 (3) | 0.0541 (11) | |
H32 | 0.0019 | 0.8036 | 0.4010 | 0.065* | |
N33 | 0.4299 (2) | 0.55788 (18) | 0.25419 (12) | 0.0145 (5) | |
N34 | 0.3042 (2) | 0.50125 (18) | 0.27271 (13) | 0.0185 (5) | |
C35 | 0.3547 (3) | 0.3969 (2) | 0.26948 (14) | 0.0169 (6) | |
N36 | 0.5032 (2) | 0.38198 (18) | 0.25027 (12) | 0.0169 (5) | |
C37 | 0.5433 (3) | 0.4844 (2) | 0.24198 (14) | 0.0148 (5) | |
C38 | 0.6914 (3) | 0.5248 (2) | 0.22220 (15) | 0.0167 (6) | |
N39 | 0.6947 (2) | 0.63400 (18) | 0.21885 (12) | 0.0153 (5) | |
C40 | 0.8272 (3) | 0.6779 (2) | 0.20110 (16) | 0.0205 (6) | |
H40 | 0.8300 | 0.7547 | 0.1968 | 0.025* | |
C41 | 0.9589 (3) | 0.6165 (3) | 0.18894 (19) | 0.0317 (8) | |
H41 | 1.0507 | 0.6500 | 0.1783 | 0.038* | |
C42 | 0.9549 (3) | 0.5056 (3) | 0.19247 (19) | 0.0334 (8) | |
H42 | 1.0443 | 0.4616 | 0.1840 | 0.040* | |
C43 | 0.8196 (3) | 0.4583 (2) | 0.20849 (17) | 0.0254 (7) | |
H43 | 0.8147 | 0.3820 | 0.2100 | 0.030* | |
C44 | 0.2545 (3) | 0.3068 (2) | 0.28691 (16) | 0.0215 (6) | |
C45 | 0.3072 (3) | 0.2027 (2) | 0.27066 (17) | 0.0258 (7) | |
H45 | 0.4076 | 0.1904 | 0.2490 | 0.031* | |
C46 | 0.2140 (4) | 0.1174 (3) | 0.2859 (2) | 0.0387 (8) | |
H46 | 0.2504 | 0.0470 | 0.2744 | 0.046* | |
C47 | 0.0680 (4) | 0.1350 (3) | 0.3179 (2) | 0.0477 (10) | |
H47 | 0.0040 | 0.0767 | 0.3288 | 0.057* | |
C48 | 0.0154 (4) | 0.2382 (3) | 0.3340 (2) | 0.0472 (10) | |
H48 | −0.0852 | 0.2503 | 0.3554 | 0.057* | |
C49 | 0.1075 (3) | 0.3236 (3) | 0.31940 (18) | 0.0330 (8) | |
H49 | 0.0706 | 0.3936 | 0.3315 | 0.040* | |
C98 | 0.9808 (4) | 1.2544 (3) | 0.0450 (2) | 0.0480 (10) | |
H98 | 0.8770 | 1.2866 | 0.0552 | 0.058* | |
Cl1 | 1.03734 (9) | 1.19846 (8) | 0.13387 (6) | 0.0509 (2) | |
Cl2 | 0.98185 (9) | 1.15510 (8) | −0.01637 (6) | 0.0519 (3) | |
Cl3 | 1.09404 (12) | 1.35913 (7) | 0.00000 (6) | 0.0619 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ir | 0.01027 (5) | 0.01557 (6) | 0.01753 (5) | −0.00124 (4) | 0.00080 (4) | −0.00580 (4) |
N1 | 0.0137 (11) | 0.0170 (12) | 0.0190 (12) | 0.0011 (9) | −0.0057 (9) | −0.0016 (10) |
C2 | 0.0145 (14) | 0.0177 (15) | 0.0219 (15) | 0.0030 (11) | −0.0063 (11) | 0.0011 (12) |
C3 | 0.0183 (15) | 0.0236 (17) | 0.0286 (17) | 0.0005 (12) | −0.0045 (12) | 0.0029 (13) |
C4 | 0.0206 (15) | 0.0322 (18) | 0.0177 (15) | 0.0092 (13) | −0.0024 (12) | 0.0046 (13) |
C5 | 0.0157 (14) | 0.0289 (17) | 0.0224 (15) | 0.0077 (12) | −0.0059 (12) | −0.0047 (13) |
C6 | 0.0237 (16) | 0.0372 (19) | 0.0218 (16) | 0.0120 (14) | −0.0072 (12) | −0.0090 (14) |
C7 | 0.0260 (16) | 0.0340 (19) | 0.0292 (17) | 0.0109 (14) | −0.0132 (13) | −0.0161 (15) |
C8 | 0.0193 (15) | 0.0284 (17) | 0.0321 (17) | 0.0038 (13) | −0.0108 (13) | −0.0130 (14) |
C9 | 0.0155 (14) | 0.0219 (16) | 0.0228 (15) | 0.0031 (11) | −0.0061 (11) | −0.0044 (12) |
C10 | 0.0130 (13) | 0.0232 (16) | 0.0199 (15) | 0.0075 (11) | −0.0074 (11) | −0.0057 (12) |
C11 | 0.0114 (13) | 0.0179 (15) | 0.0274 (16) | 0.0023 (11) | −0.0055 (11) | −0.0018 (12) |
C12 | 0.0089 (13) | 0.0183 (15) | 0.0309 (17) | 0.0003 (11) | −0.0028 (11) | −0.0075 (13) |
C13 | 0.0194 (15) | 0.0226 (16) | 0.0266 (16) | −0.0023 (12) | −0.0029 (12) | −0.0053 (13) |
C14 | 0.0262 (16) | 0.0241 (17) | 0.0389 (19) | −0.0049 (13) | −0.0101 (14) | −0.0099 (15) |
C15 | 0.0266 (16) | 0.0153 (16) | 0.048 (2) | −0.0090 (13) | −0.0103 (15) | −0.0008 (14) |
C16 | 0.0210 (15) | 0.0228 (16) | 0.0330 (18) | −0.0039 (13) | −0.0059 (13) | 0.0048 (13) |
N17 | 0.0315 (14) | 0.0215 (14) | 0.0196 (13) | −0.0124 (11) | 0.0068 (10) | −0.0094 (11) |
C18 | 0.0363 (18) | 0.0285 (19) | 0.0391 (19) | −0.0156 (14) | 0.0231 (15) | −0.0230 (15) |
C19 | 0.065 (3) | 0.047 (2) | 0.046 (2) | −0.025 (2) | 0.0348 (19) | −0.027 (2) |
C20 | 0.090 (3) | 0.044 (2) | 0.031 (2) | −0.031 (2) | 0.036 (2) | −0.0190 (18) |
C21 | 0.090 (3) | 0.029 (2) | 0.0147 (16) | −0.0232 (19) | 0.0005 (17) | −0.0069 (15) |
C22 | 0.118 (3) | 0.043 (2) | 0.0192 (19) | −0.027 (3) | −0.008 (2) | −0.0038 (17) |
C23 | 0.118 (3) | 0.031 (2) | 0.029 (2) | −0.013 (2) | −0.045 (2) | 0.0019 (17) |
C24 | 0.065 (2) | 0.036 (2) | 0.036 (2) | −0.0128 (18) | −0.0306 (18) | 0.0001 (16) |
C25 | 0.049 (2) | 0.0257 (17) | 0.0184 (16) | −0.0096 (15) | −0.0127 (14) | −0.0035 (13) |
C26 | 0.051 (2) | 0.0201 (17) | 0.0175 (15) | −0.0127 (15) | 0.0003 (14) | −0.0084 (13) |
C27 | 0.0210 (16) | 0.0265 (18) | 0.057 (2) | −0.0097 (13) | 0.0094 (15) | −0.0267 (16) |
C28 | 0.0155 (14) | 0.0172 (16) | 0.051 (2) | −0.0057 (12) | 0.0017 (13) | −0.0216 (15) |
C29 | 0.0188 (15) | 0.0224 (17) | 0.073 (3) | 0.0013 (13) | −0.0158 (16) | −0.0240 (17) |
C30 | 0.0200 (18) | 0.036 (2) | 0.124 (4) | 0.0090 (16) | −0.026 (2) | −0.047 (2) |
C31 | 0.0127 (18) | 0.047 (3) | 0.145 (4) | 0.0018 (16) | −0.002 (2) | −0.062 (3) |
C32 | 0.0250 (18) | 0.042 (2) | 0.099 (3) | −0.0172 (16) | 0.0256 (19) | −0.050 (2) |
N33 | 0.0144 (11) | 0.0160 (12) | 0.0132 (12) | −0.0018 (9) | 0.0017 (9) | −0.0056 (9) |
N34 | 0.0170 (12) | 0.0172 (12) | 0.0210 (13) | −0.0051 (10) | 0.0037 (10) | −0.0062 (10) |
C35 | 0.0227 (14) | 0.0170 (14) | 0.0109 (13) | −0.0033 (11) | 0.0006 (11) | −0.0035 (11) |
N36 | 0.0207 (12) | 0.0162 (12) | 0.0146 (12) | −0.0002 (9) | −0.0048 (9) | −0.0029 (10) |
C37 | 0.0161 (13) | 0.0180 (14) | 0.0109 (13) | 0.0006 (11) | −0.0036 (10) | −0.0029 (11) |
C38 | 0.0171 (13) | 0.0203 (15) | 0.0147 (14) | −0.0013 (11) | −0.0057 (11) | −0.0057 (11) |
N39 | 0.0111 (11) | 0.0204 (13) | 0.0156 (12) | −0.0015 (9) | −0.0023 (9) | −0.0055 (10) |
C40 | 0.0149 (14) | 0.0237 (16) | 0.0245 (16) | −0.0026 (12) | −0.0010 (12) | −0.0093 (13) |
C41 | 0.0124 (14) | 0.0341 (19) | 0.051 (2) | −0.0007 (13) | −0.0025 (14) | −0.0148 (17) |
C42 | 0.0149 (15) | 0.035 (2) | 0.053 (2) | 0.0089 (13) | −0.0069 (14) | −0.0177 (17) |
C43 | 0.0198 (15) | 0.0235 (17) | 0.0356 (18) | 0.0044 (12) | −0.0091 (13) | −0.0111 (14) |
C44 | 0.0268 (15) | 0.0195 (15) | 0.0182 (15) | −0.0054 (12) | −0.0002 (12) | −0.0035 (12) |
C45 | 0.0299 (16) | 0.0197 (16) | 0.0274 (17) | −0.0029 (13) | −0.0007 (13) | −0.0049 (13) |
C46 | 0.048 (2) | 0.0209 (18) | 0.046 (2) | −0.0094 (15) | 0.0068 (17) | −0.0090 (16) |
C47 | 0.052 (2) | 0.029 (2) | 0.060 (3) | −0.0240 (17) | 0.0233 (19) | −0.0152 (18) |
C48 | 0.045 (2) | 0.037 (2) | 0.057 (2) | −0.0215 (17) | 0.0272 (18) | −0.0181 (19) |
C49 | 0.0357 (18) | 0.0235 (17) | 0.038 (2) | −0.0119 (14) | 0.0150 (15) | −0.0113 (15) |
C98 | 0.0281 (19) | 0.041 (2) | 0.079 (3) | 0.0085 (16) | −0.0137 (19) | −0.021 (2) |
Cl1 | 0.0316 (5) | 0.0592 (6) | 0.0578 (6) | −0.0033 (4) | 0.0045 (4) | −0.0049 (5) |
Cl2 | 0.0398 (5) | 0.0402 (6) | 0.0808 (8) | −0.0097 (4) | −0.0109 (5) | −0.0188 (5) |
Cl3 | 0.0956 (8) | 0.0249 (5) | 0.0750 (8) | −0.0077 (5) | −0.0487 (6) | 0.0000 (5) |
Ir—C28 | 1.995 (3) | N36—C37 | 1.336 (3) |
Ir—C12 | 1.997 (3) | C37—C38 | 1.460 (3) |
Ir—N1 | 2.084 (2) | C38—N39 | 1.354 (3) |
Ir—N17 | 2.093 (2) | C38—C43 | 1.389 (4) |
Ir—N33 | 2.129 (2) | N39—C40 | 1.346 (3) |
Ir—N39 | 2.196 (2) | C40—C41 | 1.378 (4) |
N1—C2 | 1.353 (3) | C41—C42 | 1.375 (4) |
N1—C10 | 1.392 (3) | C42—C43 | 1.388 (4) |
C2—C3 | 1.412 (4) | C44—C49 | 1.393 (4) |
C2—C11 | 1.457 (4) | C44—C45 | 1.398 (4) |
C3—C4 | 1.363 (4) | C45—C46 | 1.387 (4) |
C4—C5 | 1.414 (4) | C46—C47 | 1.384 (4) |
C5—C6 | 1.413 (4) | C47—C48 | 1.387 (4) |
C5—C10 | 1.421 (4) | C48—C49 | 1.381 (4) |
C6—C7 | 1.367 (4) | C98—Cl1 | 1.753 (4) |
C7—C8 | 1.403 (4) | C98—Cl3 | 1.755 (4) |
C8—C9 | 1.380 (4) | C98—Cl2 | 1.760 (3) |
C9—C10 | 1.403 (4) | C3—H3 | 0.9500 |
C11—C16 | 1.402 (4) | C4—H4 | 0.9500 |
C11—C12 | 1.419 (4) | C6—H6 | 0.9500 |
C12—C13 | 1.411 (4) | C7—H7 | 0.9500 |
C13—C14 | 1.382 (4) | C8—H8 | 0.9500 |
C14—C15 | 1.375 (4) | C9—H9 | 0.9500 |
C15—C16 | 1.387 (4) | C13—H13 | 0.9500 |
N17—C18 | 1.361 (4) | C14—H14 | 0.9500 |
N17—C26 | 1.391 (4) | C15—H15 | 0.9500 |
C18—C19 | 1.411 (5) | C16—H16 | 0.9500 |
C18—C27 | 1.447 (5) | C19—H19 | 0.9500 |
C19—C20 | 1.328 (5) | C20—H20 | 0.9500 |
C20—C21 | 1.417 (5) | C22—H22 | 0.9500 |
C21—C22 | 1.387 (5) | C23—H23 | 0.9500 |
C21—C26 | 1.429 (4) | C24—H24 | 0.9500 |
C22—C23 | 1.352 (5) | C25—H25 | 0.9500 |
C23—C24 | 1.428 (5) | C29—H29 | 0.9500 |
C24—C25 | 1.379 (4) | C30—H30 | 0.9500 |
C25—C26 | 1.398 (4) | C31—H31 | 0.9500 |
C27—C28 | 1.394 (4) | C32—H32 | 0.9500 |
C27—C32 | 1.413 (4) | C40—H40 | 0.9500 |
C28—C29 | 1.408 (4) | C41—H41 | 0.9500 |
C29—C30 | 1.386 (4) | C42—H42 | 0.9500 |
C30—C31 | 1.372 (6) | C43—H43 | 0.9500 |
C31—C32 | 1.365 (6) | C45—H45 | 0.9500 |
N33—C37 | 1.339 (3) | C46—H46 | 0.9500 |
N33—N34 | 1.371 (3) | C47—H47 | 0.9500 |
N34—C35 | 1.347 (3) | C48—H48 | 0.9500 |
C35—N36 | 1.354 (3) | C49—H49 | 0.9500 |
C35—C44 | 1.476 (4) | C98—H98 | 1.0000 |
C28—Ir—C12 | 89.81 (10) | N39—C38—C43 | 122.0 (2) |
C28—Ir—N1 | 93.57 (11) | N39—C38—C37 | 114.3 (2) |
C12—Ir—N1 | 79.82 (10) | C43—C38—C37 | 123.7 (3) |
C28—Ir—N17 | 79.82 (12) | C40—N39—C38 | 118.0 (2) |
C12—Ir—N17 | 95.05 (10) | C40—N39—Ir | 125.77 (18) |
N1—Ir—N17 | 171.70 (9) | C38—N39—Ir | 116.20 (16) |
C28—Ir—N33 | 98.69 (10) | N39—C40—C41 | 123.0 (3) |
C12—Ir—N33 | 171.11 (9) | C42—C41—C40 | 118.7 (3) |
N1—Ir—N33 | 102.08 (8) | C41—C42—C43 | 119.6 (3) |
N17—Ir—N33 | 83.99 (8) | C42—C43—C38 | 118.6 (3) |
C28—Ir—N39 | 172.20 (9) | C49—C44—C45 | 119.2 (3) |
C12—Ir—N39 | 96.86 (9) | C49—C44—C35 | 121.0 (3) |
N1—Ir—N39 | 83.69 (8) | C45—C44—C35 | 119.9 (3) |
N17—Ir—N39 | 103.50 (9) | C46—C45—C44 | 120.6 (3) |
N33—Ir—N39 | 74.85 (8) | C47—C46—C45 | 119.8 (3) |
C2—N1—C10 | 118.8 (2) | C46—C47—C48 | 119.7 (3) |
C2—N1—Ir | 114.28 (18) | C49—C48—C47 | 120.9 (3) |
C10—N1—Ir | 126.87 (19) | C48—C49—C44 | 119.9 (3) |
N1—C2—C3 | 121.6 (3) | Cl1—C98—Cl3 | 110.20 (18) |
N1—C2—C11 | 115.0 (2) | Cl1—C98—Cl2 | 111.88 (19) |
C3—C2—C11 | 123.3 (3) | Cl3—C98—Cl2 | 110.3 (2) |
C4—C3—C2 | 120.4 (3) | C4—C3—H3 | 119.8 |
C3—C4—C5 | 119.4 (3) | C2—C3—H3 | 119.8 |
C6—C5—C4 | 121.7 (3) | C3—C4—H4 | 120.3 |
C6—C5—C10 | 119.5 (3) | C5—C4—H4 | 120.3 |
C4—C5—C10 | 118.8 (3) | C7—C6—H6 | 119.9 |
C7—C6—C5 | 120.2 (3) | C5—C6—H6 | 119.9 |
C6—C7—C8 | 120.2 (3) | C6—C7—H7 | 119.9 |
C9—C8—C7 | 120.9 (3) | C8—C7—H7 | 119.9 |
C8—C9—C10 | 120.0 (3) | C9—C8—H8 | 119.6 |
N1—C10—C9 | 120.3 (2) | C7—C8—H8 | 119.6 |
N1—C10—C5 | 120.6 (3) | C8—C9—H9 | 120.0 |
C9—C10—C5 | 119.0 (3) | C10—C9—H9 | 120.0 |
C16—C11—C12 | 121.1 (3) | C14—C13—H13 | 119.5 |
C16—C11—C2 | 124.3 (3) | C12—C13—H13 | 119.5 |
C12—C11—C2 | 114.5 (2) | C15—C14—H14 | 119.2 |
C13—C12—C11 | 116.9 (3) | C13—C14—H14 | 119.2 |
C13—C12—Ir | 128.0 (2) | C14—C15—H15 | 120.2 |
C11—C12—Ir | 115.1 (2) | C16—C15—H15 | 120.2 |
C14—C13—C12 | 120.9 (3) | C15—C16—H16 | 120.1 |
C15—C14—C13 | 121.5 (3) | C11—C16—H16 | 120.1 |
C14—C15—C16 | 119.7 (3) | C20—C19—H19 | 119.4 |
C15—C16—C11 | 119.9 (3) | C18—C19—H19 | 119.4 |
C18—N17—C26 | 119.3 (3) | C19—C20—H20 | 120.0 |
C18—N17—Ir | 112.8 (2) | C21—C20—H20 | 120.0 |
C26—N17—Ir | 127.88 (19) | C23—C22—H22 | 119.0 |
N17—C18—C19 | 120.8 (3) | C21—C22—H22 | 119.0 |
N17—C18—C27 | 115.7 (3) | C22—C23—H23 | 120.2 |
C19—C18—C27 | 123.5 (3) | C24—C23—H23 | 120.2 |
C20—C19—C18 | 121.2 (4) | C25—C24—H24 | 119.9 |
C19—C20—C21 | 120.0 (3) | C23—C24—H24 | 119.9 |
C22—C21—C20 | 122.7 (4) | C24—C25—H25 | 120.1 |
C22—C21—C26 | 118.7 (4) | C26—C25—H25 | 120.1 |
C20—C21—C26 | 118.6 (3) | C30—C29—H29 | 119.5 |
C23—C22—C21 | 122.0 (4) | C28—C29—H29 | 119.5 |
C22—C23—C24 | 119.5 (3) | C31—C30—H30 | 119.6 |
C25—C24—C23 | 120.2 (4) | C29—C30—H30 | 119.6 |
C24—C25—C26 | 119.9 (3) | C32—C31—H31 | 120.1 |
N17—C26—C25 | 120.6 (3) | C30—C31—H31 | 120.1 |
N17—C26—C21 | 119.8 (3) | C31—C32—H32 | 119.9 |
C25—C26—C21 | 119.6 (3) | C27—C32—H32 | 119.9 |
C28—C27—C32 | 120.7 (3) | N39—C40—H40 | 118.5 |
C28—C27—C18 | 114.9 (3) | C41—C40—H40 | 118.5 |
C32—C27—C18 | 124.2 (3) | C42—C41—H41 | 120.7 |
C27—C28—C29 | 117.3 (3) | C40—C41—H41 | 120.7 |
C27—C28—Ir | 115.4 (2) | C41—C42—H42 | 120.2 |
C29—C28—Ir | 127.3 (2) | C43—C42—H42 | 120.2 |
C30—C29—C28 | 120.9 (4) | C42—C43—H43 | 120.7 |
C31—C30—C29 | 120.9 (4) | C38—C43—H43 | 120.7 |
C32—C31—C30 | 119.8 (3) | C46—C45—H45 | 119.7 |
C31—C32—C27 | 120.3 (4) | C44—C45—H45 | 119.7 |
C37—N33—N34 | 106.6 (2) | C47—C46—H46 | 120.1 |
C37—N33—Ir | 117.48 (17) | C45—C46—H46 | 120.1 |
N34—N33—Ir | 135.89 (16) | C46—C47—H47 | 120.1 |
C35—N34—N33 | 103.7 (2) | C48—C47—H47 | 120.1 |
N34—C35—N36 | 114.8 (2) | C49—C48—H48 | 119.6 |
N34—C35—C44 | 121.9 (2) | C47—C48—H48 | 119.6 |
N36—C35—C44 | 123.3 (2) | C48—C49—H49 | 120.1 |
C37—N36—C35 | 100.9 (2) | C44—C49—H49 | 120.1 |
N36—C37—N33 | 113.9 (2) | Cl1—C98—H98 | 108.1 |
N36—C37—C38 | 128.8 (2) | Cl3—C98—H98 | 108.1 |
N33—C37—C38 | 117.2 (2) | Cl2—C98—H98 | 108.1 |
Experimental details
Crystal data | |
Chemical formula | [Ir(C13H9N4)(C15H10N)2]·2CDCl3 |
Mr | 1062.67 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 9.1399 (3), 12.4430 (5), 17.6762 (6) |
α, β, γ (°) | 81.493 (4), 81.509 (4), 85.193 (4) |
V (Å3) | 1962.41 (12) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.86 |
Crystal size (mm) | 0.25 × 0.20 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.739, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 78670, 9739, 8125 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.048, 0.93 |
No. of reflections | 9739 |
No. of parameters | 487 |
No. of restraints | 134 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.03, −1.08 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), XP (Siemens, 1994), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Acknowledgements
The authors thank the Bundesministerium für Bildung und Forschung (BMBF 01 BD 0687) for financial support.
References
Coppo, P., Plummer, E. A. & De Cola, L. (2004). Chem. Commun. pp. 1774–1775. Web of Science CrossRef Google Scholar
Grushin, V. V., Herron, N., LeCloux, D. D., Marshall, W. J., Petrov, V. A. & Wang, Y. (2001). Chem. Commun. pp. 1494–1495. Web of Science CSD CrossRef Google Scholar
Hertel, D., Müller, C. D. & Meerholz, K. (2005). Chem. Ztg, 39, 336–347. CAS Google Scholar
Holder, E., Langeveld, B. M. W. & Schubert, U. S. (2005). Adv. Mater. 17, 1109–1121. Web of Science CrossRef CAS Google Scholar
Jones, P. G., Debeaux, M., Weinkauf, A., Hopf, H., Kowalsky, W. & Johannes, H.-H. (2010a). Acta Cryst. E66, m66–m67. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jones, P. G., Freund, A., Weinkauf, A., Kowalsky, W. & Johannes, H.-H. (2010b). Acta Cryst. E66, m1088–m1089. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001). Inorg. Chem. 40, 1704–1711. Web of Science CSD CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Limited, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stagni, S., Colella, S., Palazzi, A., Valenti, G., Zacchini, S., Paolucci, F., Marcaccio, M., Albuquerque, R. Q. & De Cola, L. (2008). Inorg. Chem. 47, 10509–10521. Web of Science CSD CrossRef PubMed CAS Google Scholar
You, Y. & Park, S. Y. (2005). J. Am. Chem. Soc. 127, 12438–12439. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Electrophosphorescent materials based on iridium(III) have been one of the most important developments in the field of organic light-emitting diodes (OLEDs) because both singlet and triplet excitons can be harvested for light emission, giving OLEDs with theoretically 100% internal quantum efficiencies. Furthermore, iridium(III) complexes possess relatively short excited state lifetimes, high quantum efficiencies and remarkable colour tuning by modification of the ligand structures. The simple method of tuning the emission colour is to vary the combination of cyclometallating and ancillary ligands (e.g. acetylacetonate, picolinate or triazolate derivatives) coordinated to the iridium core. These heteroleptic complexes are particularly interesting as emitters for OLED applications. Quinoline-based iridium(III) complexes have proved to be especially efficient materials for red OLEDs. In this regard, we have synthesized and characterized the title compound, a new iridium(III) complex with 2-phenylquinoline as chromophoric ligands and 3-phenyl-5-(2-pyridyl)-1,2,4-triazole as ancillary ligand, and report here its crystal structure.
The structure of the title complex is shown in Fig. 1. It crystallizes with two molecules of deuterochloroform, one of which is severely disordered (see refinement details). The general features of the complex are similar to those of our other recent related structures (Jones et al., 2010a,b). The coordination at iridium is octahedral, whereby the major deviations in angles arise from the restricted bite of the chelating ligands: N1—Ir—C12 79.82 (10), N17—Ir—C28 79.82 (12), N33—Ir—N39 74.85 (8)°. The bond lengths at iridium show the expected trans influence, with Ir—N33 and Ir—N39, 2.129 (2) and 2.196 (2) Å respectively, trans to C being appreciably longer than the mutually trans Ir—N1 2.084 (2) and Ir—N17 2.093 (2) Å. The interplanar angles between the chelate rings amount to 78.8 (1)° from the IrN2C2 ring to both IrNC3 rings, and 83.9 (1)° between the latter. Within the ligands, the interplanar angles between phenyl and quinoline are 11.8 (1) and 12.3 (1)°, whereas in the triazole ligand the pyridyl and phenyl rings subtend angles of 1.8 (1) and 11.0 (1)° respectively to the triazole ring.