metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[{5,5′-dimeth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}manganese(III)]-μ-acetato] methanol monosolvate]

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 27 September 2010; accepted 5 October 2010; online 9 October 2010)

The title MnIII compound, {[Mn(C18H18N2O4)(CH3COO)]·CH3OH}n, was synthesized by a reaction between mangan­ese(II) acetate and ethyl­enebis(4-meth­oxy­salicylaldimine). The structure is made up of bis­(4-meth­oxy­salicyldene)ethyl­enediaminatomanganese(III) units bridged by acetate groups, with Mn—N = 1.9786 (9), Mn—O = 1.8784 (10) and Mn—Oacetate = 2.056 (9) and 2.2571 (9) Å, forming a one dimensional polymer (–Mn–acetate–Mn–acetate–) along [100]. The MnIII atom is in a Jahn–Teller-distorted octa­hedral environment with cis angles ranging from 81.87 (4) to 96.53 (4)° and trans angles ranging from 166.11 (3) to 173.93 (3)°. The methanol solvent mol­ecule is hydrogen bonded to the phenolate O atom. In addition to this classical hydrogen bond, there are weak C—H⋯O inter­actions. The structure was determined from a crystal twinned by pseudo-merohedry.

Related literature

For the biological activity of manganese(III) complexes with tetra­dentate Schiff bases derived from salicyl­aldehyde, see: Watkinson et al. (1999[Watkinson, M., Fondo, M., Bermejo, M. R., Sousa, A., McAuliffe, C. A., Pritchard, R. G., Jaiboon, N., Nadeem, A. & Naeem, M. (1999). J. Chem. Soc. Dalton Trans. pp. 31-41.]); Mandal et al. (2009[Mandal, D., Chatterjee, P. B., Battacharya, S., Choi, K. Y., Clerac, R. & Chaudhury, M. (2009). Inorg. Chem. 48, 1826-1835.]); Hulme et al. (1997[Hulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliffe, C. A., Jaiboon, N., Beagley, B., Sousa, A., Barmejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 31-41.]); Suzuki et al. (1997[Suzuki, M., Ishikawa, T., Harada, A., Ohba, S., Sakamoto, M. & Nishida, Y. (1997). Polyhedron, 16, 2553-2561.]); Thampidas et al. (2008[Thampidas, V. S., Radhakrishnan, T. & Pike, R. D. (2008). Acta Cryst. E64, m150-m151.]). For the oxidation of organic compounds using transition metal catalysts, see: Jang & Jacobsen (1991[Jang, W. & Jacobsen, E. N. (1991). J. Org. Chem. 56, 2296-2298.]); Kochi (1978[Kochi, J. K. (1978). Organometallic mechanism and catalysts. New York: Academic Press.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C18H18N2O4)(C2H3O2)]·CH4O

  • Mr = 472.37

  • Monoclinic, P 21 /a

  • a = 6.6237 (2) Å

  • b = 21.5007 (6) Å

  • c = 14.5544 (4) Å

  • β = 97.539 (3)°

  • V = 2054.84 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 110 K

  • 0.52 × 0.41 × 0.16 mm

Data collection
  • Oxford Diffraction Gemini diffractometer with Ruby detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.914, Tmax = 1.000

  • 27951 measured reflections

  • 27951 independent reflections

  • 23528 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.135

  • S = 1.03

  • 27951 reflections

  • 286 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1S⋯O2 0.84 2.08 2.8484 (15) 153
C8—H8A⋯O11i 0.95 2.51 3.4152 (15) 158
C8—H8A⋯O12i 0.95 2.63 3.4802 (14) 150
C16—H16B⋯O3ii 0.98 2.52 3.0358 (17) 113
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Manganese(III) complexes with tetradentate Schiff base derived from salicylaldehyde are of great importance due to their application in many biological activities (Watkinson et al., 1999). These biological activities involve the multinuclear cluster of manganese ions within the oxygen evolving complex (OEC) of photosystem(II). This cluster is involved in the photolytic oxidation of water to dioxygen within the OEC of the photosystem(II) (Hulme et al., 1997; Mandal et al., 2009). Other biological activities where the role of manganese has played part are in enzymes such as superoxide dismutase, catalase and orginase (Thampidas et al. 2008). The importance of molecular oxygen to all animals on earth including man is for metabolism and to provide energy for life (Suzuki et al., 1997).

Also organic compounds can be oxidized using transition metal catalysts (Kochi, 1978; Jang & Jacobsen, 1991).

In the title compound C21H25MnN2O7 the structure is made up of bis(4-methoxysalicyldene)ethylenediaminatomanganese(III) moieties bridged by acetate groups with Mn—N(1) = 1.9786 (9) Å and Mn—O(1) = 1.878 (10) Å and Mn—Oacetate = 2.056 (9) Å forming a one dimensional polymer (–Mn-acetate-Mn-acetate-). The Mn atom is in a distorted octahedral environment with cis angles ranging from 81.87 (4)° to 96.54 (4)°. Each manganese(III) ion is at the center of nearly square plane with bond lengths Mn—N(1) = 1.9786 (9) Å, Mn—N(2) = 1.9954 (11) Å, Mn—O(1) = 1.8784 (10) Å and Mn—O(2) = 1.9135 (7) Å. An axial elongation of Mn—O(acetate) i.e. Mn—O(II) = 2.2056 (9) Å is an indication of the Jahn Teller distortion which is expected for a high spin manganese(III) ion in six-coordinate environment. The methanol of solvation is hydrogen bonded to the phenolic oxygen. In addition there are weak C—H···O interactions.

The structure is made up of bis(4-methoxysalicyldene)ethylenediaminatomanganese(III) moieties bridged by acetate groups with Mn—N(1) = 1.9786 (9) Å and Mn—O(1) = 1.878 (10) Å and Mn—O\ãcetate\~ = 2.056 (9) Å forming a one dimensional polymer (–Mn-acetate-Mn-acetate-). The Mn atom is in a distorted octahedral environment with cis angles ranging from 81.87 (4)° to 96.54 (4)°. The methanol of solvation is hydrogen bonded to the phenolic oxygen. In addition there are weak C—H···O interactions.

Related literature top

For the biological activity of manganese(III) complexes with tetradentate Schiff bases derived from salicylaldehyde, see: Watkinson et al. (1999); Mandal et al. (2009); Hulme et al. (1997); Suzuki et al. (1997); Thampidas et al. (2008). For the oxidation of organic compounds using transition metal catalysts, see: Jang & Jacobsen (1991); Kochi (1978).

Experimental top

The synthesis of the ligand ethylenebis(4-methoxysalicylaldimine) was achieved by the reaction of a solution of (1 g, 16.6 mmol) ethylenediamine in 20 ml me thanol with a solution of (5.0 g, 33.3 mmol) 2-hydroxy-p-anisaldehyde in 40 ml e thanol. This was added dropwise using glass pipette into a round bottomed flask containing the ethylene diamine. The mixture was refluxed for 24 h. Yellow solids were obtained upon solvent removal by evaporation under reduced pressure and drying.

The synthesis of the complex C21H25MnN2O7 was achieved by adding a solution of (0.33 g, 1 mmol) ethylenebis(4-methoxysalicylaldimine) in 3 ml chloroform drop wise to a solution of Mn(CH3COO)2.4H2O (0.25 g, 1 mmol) in 5 ml me thanol. The mixture was stirred for 1 h and then layered with diethyl ether for slow diffusion crystallization process. Crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.95 and 0.99 Å Uiso(H) = 1.2Ueq(C) and 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)]. The H atoms attached to N were idealized with an N–H distance of 0.91 Å. One atom (C1A) did not behave well when refined anisotropically. This atom was restrained to an isotropic behavior. The crystal was twinned by a 180° rotation about the c-axis, the contribution of the minor twin component refined to 0.3809 (6).

Structure description top

Manganese(III) complexes with tetradentate Schiff base derived from salicylaldehyde are of great importance due to their application in many biological activities (Watkinson et al., 1999). These biological activities involve the multinuclear cluster of manganese ions within the oxygen evolving complex (OEC) of photosystem(II). This cluster is involved in the photolytic oxidation of water to dioxygen within the OEC of the photosystem(II) (Hulme et al., 1997; Mandal et al., 2009). Other biological activities where the role of manganese has played part are in enzymes such as superoxide dismutase, catalase and orginase (Thampidas et al. 2008). The importance of molecular oxygen to all animals on earth including man is for metabolism and to provide energy for life (Suzuki et al., 1997).

Also organic compounds can be oxidized using transition metal catalysts (Kochi, 1978; Jang & Jacobsen, 1991).

In the title compound C21H25MnN2O7 the structure is made up of bis(4-methoxysalicyldene)ethylenediaminatomanganese(III) moieties bridged by acetate groups with Mn—N(1) = 1.9786 (9) Å and Mn—O(1) = 1.878 (10) Å and Mn—Oacetate = 2.056 (9) Å forming a one dimensional polymer (–Mn-acetate-Mn-acetate-). The Mn atom is in a distorted octahedral environment with cis angles ranging from 81.87 (4)° to 96.54 (4)°. Each manganese(III) ion is at the center of nearly square plane with bond lengths Mn—N(1) = 1.9786 (9) Å, Mn—N(2) = 1.9954 (11) Å, Mn—O(1) = 1.8784 (10) Å and Mn—O(2) = 1.9135 (7) Å. An axial elongation of Mn—O(acetate) i.e. Mn—O(II) = 2.2056 (9) Å is an indication of the Jahn Teller distortion which is expected for a high spin manganese(III) ion in six-coordinate environment. The methanol of solvation is hydrogen bonded to the phenolic oxygen. In addition there are weak C—H···O interactions.

The structure is made up of bis(4-methoxysalicyldene)ethylenediaminatomanganese(III) moieties bridged by acetate groups with Mn—N(1) = 1.9786 (9) Å and Mn—O(1) = 1.878 (10) Å and Mn—O\ãcetate\~ = 2.056 (9) Å forming a one dimensional polymer (–Mn-acetate-Mn-acetate-). The Mn atom is in a distorted octahedral environment with cis angles ranging from 81.87 (4)° to 96.54 (4)°. The methanol of solvation is hydrogen bonded to the phenolic oxygen. In addition there are weak C—H···O interactions.

For the biological activity of manganese(III) complexes with tetradentate Schiff bases derived from salicylaldehyde, see: Watkinson et al. (1999); Mandal et al. (2009); Hulme et al. (1997); Suzuki et al. (1997); Thampidas et al. (2008). For the oxidation of organic compounds using transition metal catalysts, see: Jang & Jacobsen (1991); Kochi (1978).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram showing the bis(4-methoxysalicyldene)ethylenediaminatomanganese(III) moieties bridged by acetate groups and methanol solvate hydrogen bonded to the phenolic oxygen atoms (shown by dashed lines).
[Figure 2] Fig. 2. The molecular packing for C36H40ClN6Ni2O9 viewed down the b axis showing the linear chains of bis(4-methoxysalicyldene)ethylenediaminatomanganese(III) moieties bridged by acetate groups and methanol solvate hydrogen bonded to the phenolic oxygen atoms (shown by dashed lines).
catena-Poly[[[{5,5'-dimethoxy-2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}manganese(III)]-µ-acetato] methanol monosolvate] top
Crystal data top
[Mn(C18H18N2O4)(C2H3O2)]·CH4OF(000) = 984
Mr = 472.37Dx = 1.527 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 13341 reflections
a = 6.6237 (2) Åθ = 4.7–32.6°
b = 21.5007 (6) ŵ = 0.69 mm1
c = 14.5544 (4) ÅT = 110 K
β = 97.539 (3)°Plate, light green
V = 2054.84 (10) Å30.52 × 0.41 × 0.16 mm
Z = 4
Data collection top
Oxford Diffraction Gemini
diffractometer with Ruby detector
27951 independent reflections
Radiation source: Enhance (Mo) X-ray Source23528 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 10.5081 pixels mm-1θmax = 32.7°, θmin = 4.7°
ω scansh = 108
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 3131
Tmin = 0.914, Tmax = 1.000l = 2121
27951 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0898P)2]
where P = (Fo2 + 2Fc2)/3
27951 reflections(Δ/σ)max = 0.002
286 parametersΔρmax = 0.85 e Å3
6 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Mn(C18H18N2O4)(C2H3O2)]·CH4OV = 2054.84 (10) Å3
Mr = 472.37Z = 4
Monoclinic, P21/aMo Kα radiation
a = 6.6237 (2) ŵ = 0.69 mm1
b = 21.5007 (6) ÅT = 110 K
c = 14.5544 (4) Å0.52 × 0.41 × 0.16 mm
β = 97.539 (3)°
Data collection top
Oxford Diffraction Gemini
diffractometer with Ruby detector
27951 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
23528 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 1.000Rint = 0.000
27951 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0506 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.03Δρmax = 0.85 e Å3
27951 reflectionsΔρmin = 0.69 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.77366 (3)0.606687 (7)0.227328 (16)0.00949 (5)
O10.80026 (15)0.61005 (4)0.35732 (7)0.01268 (18)
O20.76671 (14)0.51776 (3)0.22257 (7)0.01220 (16)
O30.71680 (16)0.69036 (4)0.65521 (7)0.0195 (2)
O40.79190 (16)0.31182 (4)0.10149 (7)0.0208 (2)
O110.44142 (13)0.62058 (4)0.21616 (7)0.01380 (19)
O1S0.8413 (2)0.44152 (5)0.38349 (9)0.0392 (3)
H1S0.81590.47320.35010.047*
O120.11057 (14)0.61395 (4)0.21865 (8)0.0168 (2)
N10.79273 (15)0.69822 (4)0.21731 (8)0.0113 (2)
N20.74229 (17)0.61290 (4)0.08940 (8)0.0104 (2)
C10.76904 (19)0.65884 (6)0.41014 (10)0.0119 (3)
C20.75241 (19)0.64810 (5)0.50357 (10)0.0134 (2)
H2A0.75500.60670.52640.016*
C30.73217 (19)0.69741 (6)0.56355 (10)0.0146 (3)
C40.7072 (3)0.62795 (6)0.68929 (10)0.0231 (3)
H4A0.58690.60700.65700.035*
H4B0.69820.62890.75600.035*
H4C0.83010.60530.67820.035*
C50.72696 (19)0.75947 (6)0.53186 (11)0.0157 (3)
H5A0.71430.79300.57320.019*
C60.74048 (19)0.77021 (6)0.44040 (11)0.0146 (3)
H6A0.73770.81190.41880.018*
C70.75847 (18)0.72128 (6)0.37643 (10)0.0118 (2)
C80.78234 (19)0.73750 (5)0.28384 (9)0.0121 (2)
H8A0.79140.78050.26970.014*
C90.8389 (2)0.71838 (5)0.12610 (9)0.0136 (2)
H9A0.98680.71470.12290.016*
H9B0.79850.76240.11520.016*
C100.7205 (2)0.67696 (5)0.05339 (9)0.0146 (3)
H10A0.57520.68920.04340.018*
H10B0.77640.68030.00620.018*
C110.74324 (19)0.56693 (5)0.03192 (10)0.0137 (3)
H11A0.73250.57670.03220.016*
C120.75926 (19)0.50231 (5)0.05733 (10)0.0122 (2)
C130.7634 (2)0.45918 (5)0.01514 (10)0.0142 (3)
H13A0.75660.47410.07690.017*
C140.7771 (2)0.39615 (5)0.00064 (9)0.0147 (2)
H14A0.78250.36780.04900.018*
C150.78265 (19)0.37496 (5)0.09200 (10)0.0136 (3)
C160.7857 (2)0.28654 (6)0.19224 (11)0.0216 (3)
H16A0.90720.29980.23340.032*
H16B0.78230.24100.18870.032*
H16C0.66360.30160.21660.032*
C170.77871 (19)0.41586 (5)0.16587 (9)0.0126 (2)
H17A0.78300.40020.22710.015*
C180.76836 (19)0.48048 (5)0.14978 (9)0.0108 (2)
C1A0.2875 (2)0.59357 (5)0.23982 (9)0.0124 (2)
C2A0.3177 (2)0.53384 (6)0.29512 (12)0.0230 (3)
H2AA0.36980.50150.25710.035*
H2AB0.18720.52050.31340.035*
H2AC0.41550.54100.35070.035*
C1S0.7768 (3)0.45186 (7)0.47111 (13)0.0281 (4)
H1S10.85100.42390.51690.042*
H1S20.63040.44370.46720.042*
H1S30.80440.49510.48990.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.01095 (8)0.00751 (7)0.01000 (8)0.00012 (7)0.00128 (8)0.00023 (7)
O10.0164 (4)0.0094 (4)0.0124 (5)0.0016 (3)0.0022 (4)0.0005 (3)
O20.0173 (4)0.0095 (3)0.0100 (4)0.0008 (3)0.0024 (4)0.0002 (4)
O30.0303 (6)0.0154 (4)0.0131 (5)0.0011 (4)0.0040 (4)0.0029 (4)
O40.0377 (6)0.0095 (4)0.0156 (5)0.0000 (4)0.0044 (5)0.0005 (4)
O110.0089 (4)0.0142 (4)0.0187 (5)0.0002 (3)0.0033 (4)0.0013 (4)
O1S0.0710 (9)0.0293 (6)0.0181 (6)0.0173 (6)0.0087 (7)0.0048 (5)
O120.0117 (4)0.0169 (4)0.0222 (6)0.0007 (3)0.0035 (4)0.0014 (4)
N10.0097 (5)0.0112 (4)0.0132 (6)0.0008 (4)0.0025 (4)0.0008 (4)
N20.0103 (5)0.0080 (4)0.0131 (5)0.0009 (4)0.0027 (4)0.0016 (4)
C10.0097 (6)0.0119 (5)0.0133 (7)0.0003 (4)0.0014 (5)0.0021 (5)
C20.0168 (6)0.0088 (5)0.0144 (7)0.0004 (5)0.0015 (5)0.0013 (5)
C30.0143 (6)0.0173 (6)0.0121 (7)0.0002 (5)0.0012 (5)0.0008 (5)
C40.0358 (8)0.0185 (6)0.0150 (7)0.0007 (7)0.0032 (7)0.0001 (5)
C50.0158 (6)0.0138 (6)0.0173 (7)0.0000 (5)0.0011 (5)0.0056 (5)
C60.0135 (6)0.0104 (5)0.0196 (8)0.0001 (5)0.0010 (5)0.0024 (5)
C70.0092 (6)0.0120 (5)0.0139 (7)0.0001 (4)0.0009 (4)0.0012 (5)
C80.0097 (5)0.0098 (5)0.0166 (7)0.0000 (5)0.0013 (5)0.0011 (4)
C90.0150 (6)0.0114 (5)0.0147 (7)0.0022 (5)0.0033 (5)0.0024 (5)
C100.0193 (6)0.0106 (5)0.0140 (6)0.0018 (5)0.0022 (6)0.0048 (5)
C110.0147 (6)0.0151 (5)0.0111 (6)0.0007 (5)0.0013 (5)0.0018 (5)
C120.0138 (6)0.0112 (5)0.0114 (6)0.0004 (5)0.0010 (5)0.0004 (5)
C130.0154 (6)0.0153 (5)0.0117 (6)0.0007 (5)0.0017 (5)0.0000 (5)
C140.0187 (6)0.0142 (5)0.0111 (6)0.0014 (5)0.0019 (5)0.0032 (5)
C150.0162 (6)0.0094 (5)0.0150 (7)0.0000 (4)0.0013 (5)0.0013 (5)
C160.0346 (8)0.0114 (5)0.0191 (7)0.0005 (6)0.0043 (6)0.0020 (5)
C170.0148 (6)0.0110 (5)0.0120 (6)0.0002 (5)0.0014 (5)0.0006 (5)
C180.0093 (5)0.0114 (5)0.0115 (6)0.0015 (5)0.0008 (5)0.0013 (4)
C1A0.0146 (5)0.0116 (5)0.0108 (6)0.0041 (5)0.0005 (5)0.0031 (4)
C2A0.0182 (7)0.0212 (6)0.0308 (9)0.0016 (6)0.0077 (6)0.0135 (6)
C1S0.0338 (9)0.0290 (8)0.0218 (9)0.0001 (7)0.0048 (7)0.0003 (7)
Geometric parameters (Å, º) top
Mn—O11.8784 (10)C6—C71.4202 (19)
Mn—O21.9135 (7)C6—H6A0.9500
Mn—N11.9786 (9)C7—C81.4208 (19)
Mn—N21.9954 (11)C8—H8A0.9500
Mn—O112.2056 (9)C9—C101.5199 (18)
Mn—O12i2.2571 (9)C9—H9A0.9900
O1—C11.3327 (15)C9—H9B0.9900
O2—C181.3297 (15)C10—H10A0.9900
O3—C31.3597 (17)C10—H10B0.9900
O3—C41.4349 (16)C11—C121.4380 (16)
O4—C151.3650 (14)C11—H11A0.9500
O4—C161.4339 (17)C12—C131.4075 (18)
O11—C1A1.2598 (15)C12—C181.4189 (18)
O1S—C1S1.414 (2)C13—C141.3755 (16)
O1S—H1S0.8400C13—H13A0.9500
O12—C1A1.2514 (15)C14—C151.4013 (18)
O12—Mnii2.2571 (9)C14—H14A0.9500
N1—C81.2935 (16)C15—C171.3919 (18)
N1—C91.4663 (17)C16—H16A0.9800
N2—C111.2954 (16)C16—H16B0.9800
N2—C101.4741 (14)C16—H16C0.9800
C1—C21.398 (2)C17—C181.4092 (16)
C1—C71.4279 (17)C17—H17A0.9500
C2—C31.3909 (18)C1A—C2A1.5148 (17)
C2—H2A0.9500C2A—H2AA0.9800
C3—C51.4109 (17)C2A—H2AB0.9800
C4—H4A0.9800C2A—H2AC0.9800
C4—H4B0.9800C1S—H1S10.9800
C4—H4C0.9800C1S—H1S20.9800
C5—C61.365 (2)C1S—H1S30.9800
C5—H5A0.9500
O1—Mn—O294.22 (4)N1—C9—C10107.90 (10)
O1—Mn—N192.15 (4)N1—C9—H9A110.1
O2—Mn—N1173.02 (5)C10—C9—H9A110.1
O1—Mn—N2173.93 (3)N1—C9—H9B110.1
O2—Mn—N291.81 (4)C10—C9—H9B110.1
N1—Mn—N281.87 (4)H9A—C9—H9B108.4
O1—Mn—O1191.71 (4)N2—C10—C9106.41 (10)
O2—Mn—O1196.53 (4)N2—C10—H10A110.4
N1—Mn—O1186.13 (4)C9—C10—H10A110.4
N2—Mn—O1186.88 (4)N2—C10—H10B110.4
O1—Mn—O12i95.22 (4)C9—C10—H10B110.4
O2—Mn—O12i94.96 (4)H10A—C10—H10B108.6
N1—Mn—O12i81.60 (4)N2—C11—C12125.27 (13)
N2—Mn—O12i84.97 (4)N2—C11—H11A117.4
O11—Mn—O12i166.11 (3)C12—C11—H11A117.4
C1—O1—Mn127.60 (8)C13—C12—C18119.34 (11)
C18—O2—Mn128.94 (8)C13—C12—C11116.87 (12)
C3—O3—C4117.12 (10)C18—C12—C11123.78 (12)
C15—O4—C16117.64 (10)C14—C13—C12122.10 (12)
C1A—O11—Mn138.82 (8)C14—C13—H13A118.9
C1S—O1S—H1S109.5C12—C13—H13A118.9
C1A—O12—Mnii149.65 (9)C13—C14—C15118.14 (12)
C8—N1—C9121.50 (10)C13—C14—H14A120.9
C8—N1—Mn125.74 (9)C15—C14—H14A120.9
C9—N1—Mn112.57 (8)O4—C15—C17123.73 (12)
C11—N2—C10119.47 (11)O4—C15—C14114.49 (11)
C11—N2—Mn126.15 (9)C17—C15—C14121.78 (11)
C10—N2—Mn114.36 (8)O4—C16—H16A109.5
O1—C1—C2117.98 (11)O4—C16—H16B109.5
O1—C1—C7123.11 (13)H16A—C16—H16B109.5
C2—C1—C7118.88 (12)O4—C16—H16C109.5
C3—C2—C1120.73 (11)H16A—C16—H16C109.5
C3—C2—H2A119.6H16B—C16—H16C109.5
C1—C2—H2A119.6C15—C17—C18120.00 (12)
O3—C3—C2123.82 (12)C15—C17—H17A120.0
O3—C3—C5115.12 (12)C18—C17—H17A120.0
C2—C3—C5121.06 (14)O2—C18—C17117.86 (11)
O3—C4—H4A109.5O2—C18—C12123.53 (11)
O3—C4—H4B109.5C17—C18—C12118.61 (11)
H4A—C4—H4B109.5O12—C1A—O11122.45 (11)
O3—C4—H4C109.5O12—C1A—C2A118.79 (12)
H4A—C4—H4C109.5O11—C1A—C2A118.76 (11)
H4B—C4—H4C109.5C1A—C2A—H2AA109.5
C6—C5—C3118.47 (12)C1A—C2A—H2AB109.5
C6—C5—H5A120.8H2AA—C2A—H2AB109.5
C3—C5—H5A120.8C1A—C2A—H2AC109.5
C5—C6—C7122.39 (12)H2AA—C2A—H2AC109.5
C5—C6—H6A118.8H2AB—C2A—H2AC109.5
C7—C6—H6A118.8O1S—C1S—H1S1109.5
C6—C7—C8117.99 (12)O1S—C1S—H1S2109.5
C6—C7—C1118.41 (13)H1S1—C1S—H1S2109.5
C8—C7—C1123.38 (12)O1S—C1S—H1S3109.5
N1—C8—C7124.97 (11)H1S1—C1S—H1S3109.5
N1—C8—H8A117.5H1S2—C1S—H1S3109.5
C7—C8—H8A117.5
O2—Mn—O1—C1163.53 (10)C5—C6—C7—C8176.75 (12)
N1—Mn—O1—C119.33 (11)C5—C6—C7—C11.98 (19)
O11—Mn—O1—C166.86 (10)O1—C1—C7—C6175.17 (12)
O12i—Mn—O1—C1101.09 (10)C2—C1—C7—C62.75 (17)
O1—Mn—O2—C18173.04 (11)O1—C1—C7—C80.71 (19)
N1—Mn—O2—C1817.3 (4)C2—C1—C7—C8177.21 (13)
O11—Mn—O2—C1894.75 (11)C9—N1—C8—C7173.48 (12)
O12i—Mn—O2—C1877.42 (11)Mn—N1—C8—C71.05 (19)
O1—Mn—O11—C1A62.12 (14)C6—C7—C8—N1177.21 (12)
O2—Mn—O11—C1A32.33 (14)C1—C7—C8—N18.3 (2)
N1—Mn—O11—C1A154.15 (14)C8—N1—C9—C10145.66 (12)
N2—Mn—O11—C1A123.80 (14)Mn—N1—C9—C1039.15 (12)
O12i—Mn—O11—C1A177.90 (14)C11—N2—C10—C9148.48 (12)
O1—Mn—N1—C811.85 (11)Mn—N2—C10—C930.37 (13)
N2—Mn—N1—C8167.12 (11)N1—C9—C10—N243.46 (13)
O11—Mn—N1—C879.72 (11)C10—N2—C11—C12178.70 (12)
O12i—Mn—N1—C8106.81 (11)Mn—N2—C11—C122.60 (19)
O1—Mn—N1—C9163.10 (9)N2—C11—C12—C13178.25 (12)
N2—Mn—N1—C917.93 (9)N2—C11—C12—C182.5 (2)
O11—Mn—N1—C9105.33 (9)C18—C12—C13—C140.3 (2)
O12i—Mn—N1—C968.14 (9)C11—C12—C13—C14179.57 (12)
O2—Mn—N2—C116.26 (11)C12—C13—C14—C151.3 (2)
N1—Mn—N2—C11170.77 (12)C16—O4—C15—C173.60 (18)
O11—Mn—N2—C11102.70 (11)C16—O4—C15—C14176.34 (12)
O12i—Mn—N2—C1188.56 (11)C13—C14—C15—O4178.69 (12)
O2—Mn—N2—C10174.99 (9)C13—C14—C15—C171.3 (2)
N1—Mn—N2—C107.99 (9)O4—C15—C17—C18179.78 (11)
O11—Mn—N2—C1078.55 (9)C14—C15—C17—C180.2 (2)
O12i—Mn—N2—C1090.19 (9)Mn—O2—C18—C17174.98 (8)
Mn—O1—C1—C2165.80 (9)Mn—O2—C18—C125.35 (19)
Mn—O1—C1—C716.26 (17)C15—C17—C18—O2179.44 (11)
O1—C1—C2—C3176.07 (11)C15—C17—C18—C120.88 (18)
C7—C1—C2—C31.96 (19)C13—C12—C18—O2179.53 (11)
C4—O3—C3—C24.39 (19)C11—C12—C18—O21.3 (2)
C4—O3—C3—C5175.82 (12)C13—C12—C18—C170.80 (19)
C1—C2—C3—O3179.49 (13)C11—C12—C18—C17178.40 (11)
C1—C2—C3—C50.3 (2)Mnii—O12—C1A—O11176.52 (12)
O3—C3—C5—C6179.64 (12)Mnii—O12—C1A—C2A4.1 (3)
C2—C3—C5—C60.57 (19)Mn—O11—C1A—O12177.27 (9)
C3—C5—C6—C70.3 (2)Mn—O11—C1A—C2A2.1 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···O20.842.082.8484 (15)153
C8—H8A···O11iii0.952.513.4152 (15)158
C8—H8A···O12iii0.952.633.4802 (14)150
C16—H16B···O3iv0.982.523.0358 (17)113
Symmetry codes: (iii) x+1/2, y+3/2, z; (iv) x+3/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C18H18N2O4)(C2H3O2)]·CH4O
Mr472.37
Crystal system, space groupMonoclinic, P21/a
Temperature (K)110
a, b, c (Å)6.6237 (2), 21.5007 (6), 14.5544 (4)
β (°) 97.539 (3)
V3)2054.84 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.52 × 0.41 × 0.16
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer with Ruby detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.914, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
27951, 27951, 23528
Rint0.000
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.135, 1.03
No. of reflections27951
No. of parameters286
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.69

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···O20.842.082.8484 (15)152.5
C8—H8A···O11i0.952.513.4152 (15)158.2
C8—H8A···O12i0.952.633.4802 (14)149.5
C16—H16B···O3ii0.982.523.0358 (17)112.8
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+3/2, y1/2, z+1.
 

Acknowledgements

RJB wishes to acknowledge the NSF-MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationHulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliffe, C. A., Jaiboon, N., Beagley, B., Sousa, A., Barmejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 31–41.  Google Scholar
First citationJang, W. & Jacobsen, E. N. (1991). J. Org. Chem. 56, 2296–2298.  Google Scholar
First citationKochi, J. K. (1978). Organometallic mechanism and catalysts. New York: Academic Press.  Google Scholar
First citationMandal, D., Chatterjee, P. B., Battacharya, S., Choi, K. Y., Clerac, R. & Chaudhury, M. (2009). Inorg. Chem. 48, 1826–1835.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, M., Ishikawa, T., Harada, A., Ohba, S., Sakamoto, M. & Nishida, Y. (1997). Polyhedron, 16, 2553–2561.  CSD CrossRef CAS Web of Science Google Scholar
First citationThampidas, V. S., Radhakrishnan, T. & Pike, R. D. (2008). Acta Cryst. E64, m150–m151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatkinson, M., Fondo, M., Bermejo, M. R., Sousa, A., McAuliffe, C. A., Pritchard, R. G., Jaiboon, N., Nadeem, A. & Naeem, M. (1999). J. Chem. Soc. Dalton Trans. pp. 31–41.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds