metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris[2-eth­­oxy-6-(methyl­imino­meth­yl)phenolato-κ2N,O1]cobalt(III) monohydrate

aCollege of Chemistry and Bioengineering, Guilin University of Technology, Key Laboratory of Non-ferrous Metal Materials and Processing Technology, Ministry of Education, Guilin 541004, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: zsh720108@163.com,

(Received 29 September 2010; accepted 7 October 2010; online 13 October 2010)

In the title compound, [Co(C10H12NO2)3]·H2O, the CoIII ion is coordinated by three O atoms and three N atoms from three bidentate 2-eth­oxy-6-(methyl­imino­meth­yl)phenolate ligands in a slightly distorted octa­hedral environment. The water mol­ecule connects two ligands by O—H⋯O hydrogen bonds. One terminal methyl group is disordered over two positions, with site-occupancy factors of 0.412 (15) and 0.588 (15).

Related literature

For CoIII complexes, see: Park et al. (2008[Park, J., Lang, K., Abboud, K. A. & Hong, S. (2008). J. Am. Chem. Soc. 130, 16484-16485.]); Galezowski et al. (2008[Galezowski, W., Kuta, J. & Kozlowski, P. M. (2008). J. Phys. Chem. B, 112, 3177-3183.]); Gupta et al. (2007[Gupta, S. K., Hitchcock, P. B., Kushwah, Y. S. & Argal, G. S. (2007). Inorg. Chim. Acta, 360, 2145-2152.]). For Schiff-base compounds, see: Gupta & Sutar (2008[Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420-1450.]); Sreenivasulu et al. (2005[Sreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. & Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635-4645.]); Zhang & Feng (2010[Zhang, S. H. & Feng, C. (2010). J. Mol. Struct. 977, 62-66.]); Zhang et al. (2010[Zhang, S. H., Song, Y., Liang, H. & Zeng, M. H. (2009). CrystEngComm, 11, 865-872.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H12NO2)3]·H2O

  • Mr = 611.56

  • Monoclinic, P 21 /n

  • a = 14.022 (5) Å

  • b = 16.969 (6) Å

  • c = 14.233 (5) Å

  • β = 117.857 (4)°

  • V = 2994.1 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 296 K

  • 0.42 × 0.20 × 0.09 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.860, Tmax = 0.944

  • 21931 measured reflections

  • 5317 independent reflections

  • 3929 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.01

  • 5317 reflections

  • 379 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3 0.85 2.01 2.821 (3) 159
O1W—H1WB⋯O6 0.85 2.24 3.038 (3) 155

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base complexes have been studied for many years (Gupta & Sutar, 2008; Sreenivasulu et al.,2005; Zhang et al., 2009; Zhang et al., 2010) and have attracted interest because of their anticancer, catalytic and fluorescent properties. Using 2-hydrogen-3-ethoxy-benzaldehyde, methylamine and Co(ClO4)2.6H2O, we have hydrothermally prepared the title compound, (I). As an example of CoIII compounds there is a series of CoIII complexes that were synthesized and characterized (Park et al. 2008; Galezowski et al. 2008; Gupta et al., 2007).

In the molecular structure of (I), the CoIII ion is coordinated by three O atoms and three N atoms from three bidentate L ligand forming a slightly distorted octahedral geometry (Fig. 1). The Co–X (X = O, N) bond lengths lie in the range 1.878 (2)–1.954 (2) Å, and the angles subtended at the CoIII atom range from 85.61 (9) to 94.25 (10) °. The Co ion is in the 3+ oxidation state, as evidenced by bond valence summation calculations, charge balance considerations, and the presence of typical bond lengths for CoIII (Park, et al. 2008; Galezowski, et al. 2008; Gupta et al., 2007). The water molecule connects two ligands by O–H···O hydrogen bonds (Table 1).

Related literature top

For CoIII complexes, see: Park et al. (2008); Galezowski et al. (2008); Gupta et al. (2007). For Schiff-base compounds, see: Gupta & Sutar (2008); Sreenivasulu, et al. (2005); Zhang et al. (2009); Zhang et al. (2010).

Experimental top

Complex I was prepared from a mixture of 2-hydrogen-3-ethoxy-benzaldehyde (0.166 g, 1 mmol), methylamine solution (0.5 ml), Co(ClO4)2.6H2O (0.360 g, 1 mmol), and methanol (8 ml) sealed in a 15 ml Teflon-lined stainless steel bomb, and kept at 120 °C for 72 h under autogenous pressure. After the reaction was slowly cooled to room temperature, red block crystals were produced (yield: 52%, based on 2-hydrogen-3-ethoxy-benzaldehyde). Anal. Calcd for C30H38CoN3O7 (%): C, 58.91; H, 6.26; N, 6.88. Found (%): C, 58.88; H, 6.31; N, 6.92.

Refinement top

H atoms were positioned geometrically and were treated as riding atoms, with C–H distances of 0.93–0.97 Å, O–H 0.85 Å with Uiso(H) = 1.2 Ueq(Csp2) and Uiso(H) = 1.5Ueq (Csp3 or O). One terminal methyl group is disordered over two positions with site occupation factors of 0.412 (15) and 0.588 (15), respectively. The displacement parameters of the disordered atoms were restrained to an approximately isotropic behaviour.

Structure description top

Schiff base complexes have been studied for many years (Gupta & Sutar, 2008; Sreenivasulu et al.,2005; Zhang et al., 2009; Zhang et al., 2010) and have attracted interest because of their anticancer, catalytic and fluorescent properties. Using 2-hydrogen-3-ethoxy-benzaldehyde, methylamine and Co(ClO4)2.6H2O, we have hydrothermally prepared the title compound, (I). As an example of CoIII compounds there is a series of CoIII complexes that were synthesized and characterized (Park et al. 2008; Galezowski et al. 2008; Gupta et al., 2007).

In the molecular structure of (I), the CoIII ion is coordinated by three O atoms and three N atoms from three bidentate L ligand forming a slightly distorted octahedral geometry (Fig. 1). The Co–X (X = O, N) bond lengths lie in the range 1.878 (2)–1.954 (2) Å, and the angles subtended at the CoIII atom range from 85.61 (9) to 94.25 (10) °. The Co ion is in the 3+ oxidation state, as evidenced by bond valence summation calculations, charge balance considerations, and the presence of typical bond lengths for CoIII (Park, et al. 2008; Galezowski, et al. 2008; Gupta et al., 2007). The water molecule connects two ligands by O–H···O hydrogen bonds (Table 1).

For CoIII complexes, see: Park et al. (2008); Galezowski et al. (2008); Gupta et al. (2007). For Schiff-base compounds, see: Gupta & Sutar (2008); Sreenivasulu, et al. (2005); Zhang et al. (2009); Zhang et al. (2010).

Computing details top

Data collection: SMART (Bruker 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
Tris[2-ethoxy-6-(methyliminomethyl)phenolato- κ2N,O1]cobalt(III) monohydrate top
Crystal data top
[Co(C10H12NO2)3]·H2OF(000) = 1288
Mr = 611.56Dx = 1.357 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7434 reflections
a = 14.022 (5) Åθ = 2.8–28.4°
b = 16.969 (6) ŵ = 0.62 mm1
c = 14.233 (5) ÅT = 296 K
β = 117.857 (4)°Block, red
V = 2994.1 (17) Å30.42 × 0.20 × 0.09 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5317 independent reflections
Radiation source: fine-focus sealed tube3929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
phi and ω scansθmax = 25.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.860, Tmax = 0.944k = 2019
21931 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.9938P]
where P = (Fo2 + 2Fc2)/3
5317 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.31 e Å3
12 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Co(C10H12NO2)3]·H2OV = 2994.1 (17) Å3
Mr = 611.56Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.022 (5) ŵ = 0.62 mm1
b = 16.969 (6) ÅT = 296 K
c = 14.233 (5) Å0.42 × 0.20 × 0.09 mm
β = 117.857 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5317 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3929 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.944Rint = 0.035
21931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03712 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.01Δρmax = 0.31 e Å3
5317 reflectionsΔρmin = 0.21 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.25696 (2)0.943185 (18)0.22915 (2)0.04238 (12)
C10.45768 (19)0.96749 (15)0.22521 (19)0.0484 (6)
C20.5048 (2)0.89830 (16)0.2845 (2)0.0536 (7)
C30.6109 (2)0.87721 (19)0.3075 (2)0.0698 (9)
H30.64120.83150.34610.084*
C40.6695 (2)0.9220 (2)0.2748 (3)0.0802 (10)
H40.73880.90680.28960.096*
C50.6255 (2)0.9904 (2)0.2193 (3)0.0735 (9)
H50.66661.02170.19830.088*
C60.5225 (2)1.01357 (16)0.1942 (2)0.0560 (7)
C70.4056 (3)1.0805 (2)0.0383 (3)0.0950 (12)
H7A0.35391.03970.03050.142*
H7B0.43991.06570.00460.142*
C90.4483 (2)0.84859 (16)0.3222 (2)0.0583 (8)
H90.48580.80480.36110.070*
C100.3095 (3)0.79479 (17)0.3507 (3)0.0754 (9)
H10A0.36470.75620.38710.113*
H10B0.24860.77010.29310.113*
H10C0.28740.81740.39940.113*
C110.19289 (18)0.90745 (15)0.01213 (19)0.0451 (6)
C120.14933 (18)0.98317 (15)0.02230 (19)0.0469 (6)
C130.1192 (2)1.00754 (18)0.1260 (2)0.0583 (7)
H130.09031.05760.14750.070*
C140.1313 (2)0.9596 (2)0.1968 (2)0.0673 (8)
H140.11140.97680.26550.081*
C150.1737 (2)0.88476 (19)0.1645 (2)0.0624 (8)
H150.18160.85150.21240.075*
C160.2044 (2)0.85881 (16)0.0627 (2)0.0541 (7)
C170.3562 (3)0.7792 (2)0.0374 (3)0.0882 (11)
H17A0.37570.82040.09050.132*
H17B0.39720.78700.00100.132*
C180.3805 (4)0.7025 (3)0.0884 (4)0.1320 (17)
H18A0.33970.69520.12640.198*
H18B0.45610.69930.13720.198*
H18C0.36170.66210.03550.198*
C190.12739 (19)1.03513 (14)0.0451 (2)0.0484 (6)
H190.08431.07870.01250.058*
C200.1228 (2)1.08673 (15)0.1956 (2)0.0552 (7)
H20A0.18191.12010.24070.083*
H20B0.09501.06040.23740.083*
H20C0.06691.11810.14200.083*
C210.1177 (2)0.90195 (14)0.32031 (19)0.0456 (6)
C220.1746 (2)0.95016 (15)0.4104 (2)0.0514 (7)
C230.1439 (3)0.95312 (17)0.4916 (2)0.0644 (8)
H230.18140.98580.55000.077*
C240.0613 (3)0.90943 (19)0.4861 (2)0.0690 (8)
H240.04110.91280.53960.083*
C250.0061 (2)0.85931 (16)0.4001 (2)0.0616 (7)
H250.05010.82860.39710.074*
C260.0336 (2)0.85452 (15)0.3196 (2)0.0504 (6)
C270.0963 (3)0.75265 (17)0.2315 (2)0.0699 (8)
H27A0.15730.78240.22710.105*
H27B0.06710.72130.29600.105*
C280.1311 (3)0.7007 (2)0.1376 (3)0.0891 (11)
H28A0.16210.73200.07410.134*
H28B0.18380.66390.13600.134*
H28C0.06990.67240.14180.134*
C290.2648 (2)0.99735 (16)0.4233 (2)0.0556 (7)
H290.29721.02750.48490.067*
C300.3961 (2)1.05901 (18)0.3891 (3)0.0714 (9)
H30A0.40841.08670.45260.107*
H30B0.37821.09610.33230.107*
H30C0.46021.03070.40120.107*
N10.35163 (18)0.85684 (12)0.30894 (16)0.0514 (5)
N20.16059 (15)1.02795 (11)0.14483 (16)0.0435 (5)
N30.30595 (16)1.00281 (12)0.35992 (17)0.0505 (5)
O10.36036 (12)0.99193 (9)0.19967 (13)0.0493 (4)
O20.48376 (15)1.08425 (12)0.14429 (17)0.0684 (6)
O30.21754 (13)0.87875 (9)0.10683 (12)0.0486 (4)
O40.24247 (16)0.78279 (11)0.03486 (15)0.0663 (5)
O50.13858 (13)0.89719 (9)0.23996 (13)0.0475 (4)
O60.01521 (15)0.80540 (10)0.23346 (14)0.0584 (5)
O1W0.0519 (2)0.76823 (16)0.0638 (2)0.1173 (10)
H1WA0.11120.79070.07770.176*
H1WB0.04680.76640.12140.176*
C80.3302 (13)1.1506 (9)0.0252 (13)0.110 (3)0.412 (15)
H8A0.27031.13270.03470.165*0.412 (15)
H8B0.30411.17270.04460.165*0.412 (15)
H8C0.36931.19010.07750.165*0.412 (15)
C8'0.3642 (9)1.1540 (6)0.0134 (9)0.110 (3)0.588 (15)
H8'A0.41681.17900.02870.165*0.588 (15)
H8'B0.34871.18740.03230.165*0.588 (15)
H8'C0.29931.14510.07840.165*0.588 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.04589 (19)0.03229 (19)0.03721 (19)0.00247 (14)0.00959 (14)0.00092 (14)
C10.0427 (14)0.0450 (15)0.0415 (14)0.0012 (11)0.0063 (11)0.0116 (11)
C20.0462 (14)0.0468 (16)0.0471 (15)0.0083 (12)0.0045 (12)0.0074 (13)
C30.0526 (17)0.0628 (19)0.065 (2)0.0147 (15)0.0036 (15)0.0126 (16)
C40.0423 (16)0.089 (3)0.088 (2)0.0107 (17)0.0131 (17)0.022 (2)
C50.0472 (16)0.082 (2)0.082 (2)0.0067 (16)0.0221 (15)0.0183 (19)
C60.0468 (15)0.0523 (17)0.0553 (17)0.0053 (12)0.0123 (13)0.0132 (13)
C70.091 (3)0.080 (2)0.079 (3)0.006 (2)0.010 (2)0.005 (2)
C90.0626 (18)0.0465 (16)0.0420 (15)0.0183 (14)0.0046 (13)0.0014 (12)
C100.101 (2)0.0520 (18)0.077 (2)0.0271 (17)0.0448 (19)0.0278 (16)
C110.0425 (13)0.0451 (14)0.0374 (14)0.0065 (11)0.0101 (11)0.0028 (12)
C120.0384 (12)0.0487 (15)0.0412 (14)0.0022 (11)0.0082 (11)0.0031 (12)
C130.0508 (15)0.0639 (18)0.0447 (16)0.0012 (13)0.0095 (13)0.0111 (14)
C140.0594 (17)0.089 (2)0.0431 (16)0.0056 (16)0.0151 (14)0.0104 (16)
C150.0616 (17)0.078 (2)0.0435 (16)0.0102 (15)0.0213 (14)0.0110 (15)
C160.0540 (15)0.0520 (17)0.0472 (16)0.0055 (12)0.0161 (13)0.0054 (13)
C170.097 (3)0.070 (2)0.082 (2)0.0242 (19)0.029 (2)0.0117 (19)
C180.146 (4)0.102 (3)0.136 (4)0.039 (3)0.055 (3)0.041 (3)
C190.0393 (13)0.0409 (14)0.0512 (17)0.0029 (10)0.0097 (12)0.0071 (12)
C200.0560 (15)0.0399 (14)0.0639 (18)0.0072 (12)0.0232 (14)0.0006 (13)
C210.0536 (14)0.0365 (14)0.0390 (14)0.0087 (11)0.0151 (12)0.0041 (11)
C220.0596 (16)0.0447 (15)0.0424 (15)0.0068 (12)0.0177 (13)0.0027 (12)
C230.080 (2)0.0571 (18)0.0532 (18)0.0083 (15)0.0281 (16)0.0088 (14)
C240.090 (2)0.067 (2)0.0576 (19)0.0080 (18)0.0416 (17)0.0022 (16)
C250.0729 (19)0.0503 (17)0.0662 (19)0.0057 (14)0.0364 (16)0.0074 (15)
C260.0601 (16)0.0382 (14)0.0457 (15)0.0055 (12)0.0186 (13)0.0061 (12)
C270.0747 (19)0.0583 (19)0.070 (2)0.0154 (15)0.0278 (16)0.0028 (16)
C280.095 (3)0.076 (2)0.083 (2)0.0341 (19)0.031 (2)0.0142 (19)
C290.0616 (17)0.0471 (16)0.0433 (16)0.0008 (13)0.0122 (14)0.0111 (12)
C300.0659 (18)0.069 (2)0.067 (2)0.0190 (15)0.0213 (15)0.0273 (16)
N10.0646 (14)0.0390 (12)0.0384 (12)0.0099 (10)0.0137 (10)0.0026 (9)
N20.0417 (11)0.0325 (11)0.0474 (13)0.0011 (8)0.0132 (10)0.0001 (9)
N30.0500 (12)0.0426 (12)0.0448 (12)0.0006 (10)0.0102 (10)0.0085 (10)
O10.0423 (9)0.0417 (10)0.0525 (10)0.0045 (7)0.0126 (8)0.0039 (8)
O20.0624 (12)0.0585 (12)0.0731 (14)0.0073 (10)0.0224 (11)0.0016 (11)
O30.0635 (11)0.0344 (9)0.0394 (10)0.0011 (8)0.0170 (8)0.0007 (7)
O40.0811 (14)0.0505 (12)0.0580 (12)0.0003 (10)0.0247 (11)0.0132 (9)
O50.0579 (10)0.0390 (10)0.0387 (9)0.0051 (8)0.0167 (8)0.0030 (8)
O60.0678 (12)0.0476 (11)0.0572 (11)0.0114 (9)0.0270 (10)0.0023 (9)
O1W0.137 (2)0.126 (2)0.1031 (19)0.0782 (19)0.0675 (18)0.0525 (17)
C80.108 (5)0.083 (3)0.097 (5)0.009 (4)0.013 (3)0.016 (4)
C8'0.108 (5)0.083 (3)0.097 (5)0.009 (4)0.013 (3)0.016 (4)
Geometric parameters (Å, º) top
Co1—O11.8792 (18)C17—H17B0.9700
Co1—O51.9044 (18)C18—H18A0.9600
Co1—O31.9061 (17)C18—H18B0.9600
Co1—N31.940 (2)C18—H18C0.9600
Co1—N11.947 (2)C19—N21.276 (3)
Co1—N21.954 (2)C19—H190.9300
C1—O11.305 (3)C20—N21.468 (3)
C1—C21.416 (4)C20—H20A0.9600
C1—C61.416 (4)C20—H20B0.9600
C2—C31.411 (4)C20—H20C0.9600
C2—C91.423 (4)C21—O51.309 (3)
C3—C41.352 (5)C21—C221.412 (3)
C3—H30.9300C21—C261.424 (4)
C4—C51.376 (5)C22—C231.411 (4)
C4—H40.9300C22—C291.434 (4)
C5—C61.374 (4)C23—C241.347 (4)
C5—H50.9300C23—H230.9300
C6—O21.370 (3)C24—C251.391 (4)
C7—O21.391 (4)C24—H240.9300
C7—C81.546 (16)C25—C261.371 (4)
C7—C8'1.427 (10)C25—H250.9300
C7—H7A0.9700C26—O61.372 (3)
C7—H7B0.9700C27—O61.437 (3)
C9—N11.286 (3)C27—C281.481 (4)
C9—H90.9300C27—H27A0.9700
C10—N11.463 (4)C27—H27B0.9700
C10—H10A0.9600C28—H28A0.9600
C10—H10B0.9600C28—H28B0.9600
C10—H10C0.9600C28—H28C0.9600
C11—O31.318 (3)C29—N31.281 (3)
C11—C121.409 (3)C29—H290.9300
C11—C161.415 (4)C30—N31.480 (3)
C12—C131.395 (4)C30—H30A0.9600
C12—C191.438 (4)C30—H30B0.9600
C13—C141.365 (4)C30—H30C0.9600
C13—H130.9300O1W—H1WA0.8507
C14—C151.386 (4)O1W—H1WB0.8550
C14—H140.9300C8—H8A0.9600
C15—C161.377 (4)C8—H8B0.9600
C15—H150.9300C8—H8C0.9600
C16—O41.381 (3)C8'—H8'A0.9600
C17—O41.439 (4)C8'—H8'B0.9600
C17—C181.452 (5)C8'—H8'C0.9600
C17—H17A0.9700
O1—Co1—O5172.32 (7)H18A—C18—H18C109.5
O1—Co1—O388.46 (8)H18B—C18—H18C109.5
O5—Co1—O386.96 (7)N2—C19—C12127.1 (2)
O1—Co1—N391.17 (9)N2—C19—H19116.5
O5—Co1—N393.87 (9)C12—C19—H19116.5
O3—Co1—N3175.49 (8)N2—C20—H20A109.5
O1—Co1—N194.28 (9)N2—C20—H20B109.5
O5—Co1—N191.54 (9)H20A—C20—H20B109.5
O3—Co1—N185.92 (8)N2—C20—H20C109.5
N3—Co1—N189.63 (9)H20A—C20—H20C109.5
O1—Co1—N285.59 (8)H20B—C20—H20C109.5
O5—Co1—N288.43 (8)O5—C21—C22124.5 (2)
O3—Co1—N292.24 (8)O5—C21—C26118.8 (2)
N3—Co1—N292.21 (9)C22—C21—C26116.7 (3)
N1—Co1—N2178.15 (9)C23—C22—C21120.3 (3)
O1—C1—C2124.5 (3)C23—C22—C29117.6 (3)
O1—C1—C6118.5 (2)C21—C22—C29122.1 (3)
C2—C1—C6117.0 (2)C24—C23—C22121.1 (3)
C3—C2—C1119.8 (3)C24—C23—H23119.5
C3—C2—C9118.3 (3)C22—C23—H23119.5
C1—C2—C9121.9 (2)C23—C24—C25119.8 (3)
C4—C3—C2121.4 (3)C23—C24—H24120.1
C4—C3—H3119.3C25—C24—H24120.1
C2—C3—H3119.3C26—C25—C24121.0 (3)
C3—C4—C5119.4 (3)C26—C25—H25119.5
C3—C4—H4120.3C24—C25—H25119.5
C5—C4—H4120.3C25—C26—O6124.4 (3)
C6—C5—C4121.6 (3)C25—C26—C21121.0 (3)
C6—C5—H5119.2O6—C26—C21114.6 (2)
C4—C5—H5119.2O6—C27—C28108.2 (3)
O2—C6—C5119.9 (3)O6—C27—H27A110.1
O2—C6—C1119.2 (2)C28—C27—H27A110.1
C5—C6—C1120.7 (3)O6—C27—H27B110.1
O2—C7—C8104.0 (6)C28—C27—H27B110.1
O2—C7—C8'116.3 (5)H27A—C27—H27B108.4
O2—C7—H7A108.9C27—C28—H28A109.5
C8—C7—H7A95.8C27—C28—H28B109.5
C8'—C7—H7A117.5H28A—C28—H28B109.5
O2—C7—H7B108.9C27—C28—H28C109.5
C8—C7—H7B129.5H28A—C28—H28C109.5
C8'—C7—H7B96.0H28B—C28—H28C109.5
H7A—C7—H7B107.9N3—C29—C22127.6 (2)
N1—C9—C2128.0 (2)N3—C29—H29116.2
N1—C9—H9116.0C22—C29—H29116.2
C2—C9—H9116.0N3—C30—H30A109.5
N1—C10—H10A109.5N3—C30—H30B109.5
N1—C10—H10B109.5H30A—C30—H30B109.5
H10A—C10—H10B109.5N3—C30—H30C109.5
N1—C10—H10C109.5H30A—C30—H30C109.5
H10A—C10—H10C109.5H30B—C30—H30C109.5
H10B—C10—H10C109.5C9—N1—C10117.4 (2)
O3—C11—C12123.8 (2)C9—N1—Co1123.5 (2)
O3—C11—C16119.1 (2)C10—N1—Co1118.94 (19)
C12—C11—C16117.0 (2)C19—N2—C20117.0 (2)
C13—C12—C11120.4 (3)C19—N2—Co1122.78 (18)
C13—C12—C19118.1 (2)C20—N2—Co1120.17 (17)
C11—C12—C19121.4 (2)C29—N3—C30117.1 (2)
C14—C13—C12121.6 (3)C29—N3—Co1124.30 (18)
C14—C13—H13119.2C30—N3—Co1118.6 (2)
C12—C13—H13119.2C1—O1—Co1127.84 (17)
C13—C14—C15118.9 (3)C6—O2—C7116.3 (2)
C13—C14—H14120.6C11—O3—Co1123.20 (15)
C15—C14—H14120.6C16—O4—C17113.3 (2)
C16—C15—C14121.1 (3)C21—O5—Co1127.20 (15)
C16—C15—H15119.4C26—O6—C27117.1 (2)
C14—C15—H15119.4H1WA—O1W—H1WB107.7
C15—C16—O4119.3 (3)C7—C8—H8A109.5
C15—C16—C11121.0 (3)C7—C8—H8B109.5
O4—C16—C11119.6 (2)H8A—C8—H8B109.5
O4—C17—C18108.6 (3)C7—C8—H8C109.5
O4—C17—H17A110.0H8A—C8—H8C109.5
C18—C17—H17A110.0H8B—C8—H8C109.5
O4—C17—H17B110.0C7—C8'—H8'A109.5
C18—C17—H17B110.0C7—C8'—H8'B109.5
H17A—C17—H17B108.4H8'A—C8'—H8'B109.5
C17—C18—H18A109.5C7—C8'—H8'C109.5
C17—C18—H18B109.5H8'A—C8'—H8'C109.5
H18A—C18—H18B109.5H8'B—C8'—H8'C109.5
C17—C18—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.852.012.821 (3)159
O1W—H1WB···O60.852.243.038 (3)155

Experimental details

Crystal data
Chemical formula[Co(C10H12NO2)3]·H2O
Mr611.56
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)14.022 (5), 16.969 (6), 14.233 (5)
β (°) 117.857 (4)
V3)2994.1 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.42 × 0.20 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.860, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
21931, 5317, 3929
Rint0.035
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.01
No. of reflections5317
No. of parameters379
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: SMART (Bruker 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.852.012.821 (3)158.6
O1W—H1WB···O60.852.243.038 (3)154.7
 

Acknowledgements

The work was supported financially by the Guangxi Key Laboratory for Advanced Materials and New Preparation Technology (No. 0842003–25), the Young Science Foundation of Guangxi Province of China (No. 0832085) and the Doctoral start-up research fund of Guilin University of Technology.

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGalezowski, W., Kuta, J. & Kozlowski, P. M. (2008). J. Phys. Chem. B, 112, 3177–3183.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGupta, S. K., Hitchcock, P. B., Kushwah, Y. S. & Argal, G. S. (2007). Inorg. Chim. Acta, 360, 2145–2152.  Web of Science CSD CrossRef CAS Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.  Web of Science CrossRef CAS Google Scholar
First citationPark, J., Lang, K., Abboud, K. A. & Hong, S. (2008). J. Am. Chem. Soc. 130, 16484–16485.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. & Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635–4645.  Web of Science CSD CrossRef Google Scholar
First citationZhang, S. H. & Feng, C. (2010). J. Mol. Struct. 977, 62–66.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, S. H., Song, Y., Liang, H. & Zeng, M. H. (2009). CrystEngComm, 11, 865–872.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds