metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis({tris­[2-(3,5-di-tert-butyl-2-oxido­benzyl­idene­amino)ethyl]amine}cerium(III)) di­ethyl ether solvate

aChemisches Institut der Otto-von-Guericke-Universität, Universitätsplatz 2, D-39116 Magdeburg, Germany
*Correspondence e-mail: frank.edelmann@ovgu.de

(Received 29 September 2010; accepted 4 October 2010; online 13 October 2010)

The title compound, 2[Ce(C51H75N4O3)]·C4H10O, was obtained in high yield (92%) by reduction of (TRENDSAL)CeIVCl [TRENDSAL is N,N′,N′′-tris­(3,5-di-tert-butyl­salicyl­ide­natoamino)­triethyl­amine] with potassium in THF. The bulky tripodal TRENDSAL ligand effectively encapsulates the central CeIII cation with a Ce—N(imine) distance of 2.860 (2) Å and an average C—N(amine) distance of 2.619 Å within a distorted monocapped octahedral coordination.

Related literature

For related structures, see: Dröse & Gottfriedsen (2008[Dröse, P. & Gottfriedsen, J. (2008). Z. Anorg. Allg. Chem. 634, 87-90.]); Dröse et al. (2010[Dröse, P., Blaurock, S., Hrib, C. G. & Edelmann, F. T. (2010). Z. Anorg. Allg. Chem. 636, 1431-1434.]); Essig et al. (2001[Essig, M. W., Keogh, W., Scott, B. L. & Watkin, J. G. (2001). Polyhedron, 20, 373-377.]); Salehzadeh et al. (2005[Salehzadeh, S., Nouri, S. M., Keypour, H. & Bagherzadeh, M. (2005). Polyhedron, 24, 1478-1486.]). In contrast to a previous report (Bernhardt et al., 2001[Bernhardt, P. V., Flanagan, B. M. & Riley, M. J. (2001). Aust. J. Chem. 54, 229-232.]), reactions of cerium(III) trichloride with either 3,5-di-tert-butyl salicylic aldehyde and tris­(2-amino­ethyl­amine) (in situ formation of the TRENDSAL ligand) or the free ligand H3TRENDSAL afforded only mixtures of Ce(III) and Ce(IV) products. We now found that the trivalent complex can be prepared by reduction of (TRENDSAL)CeCl (Dröse & Gottfriedsen, 2008[Dröse, P. & Gottfriedsen, J. (2008). Z. Anorg. Allg. Chem. 634, 87-90.]) with elemental potassium in THF.

[Scheme 1]

Experimental

Crystal data
  • 2[Ce(C51H75N4O3)]·C4H10O

  • Mr = 1938.66

  • Monoclinic, C 2/c

  • a = 27.840 (6) Å

  • b = 16.345 (3) Å

  • c = 24.849 (5) Å

  • β = 111.39 (3)°

  • V = 10528 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 180 K

  • 0.45 × 0.34 × 0.33 mm

Data collection
  • STOE IPDS 2T diffractometer

  • 36433 measured reflections

  • 12973 independent reflections

  • 9225 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.087

  • S = 1.05

  • 12973 reflections

  • 561 parameters

  • H-atom parameters constrained

  • Δρmax = 1.49 e Å−3

  • Δρmin = −0.87 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The di-tert-butyl-substituted heptadentate Schiff-base ligand N[CH2CH2N=CH-(2-OH-3,5-tBu2C6H2)]3 (= TRENDSAL) has frequently been employed for rare earth elements such as Ce, Gd, Sm, and Nd, leading in all cases to the formation of mononuclear complexes (Dröse & Gottfriedsen, 2008; Dröse et al., 2010; Essig et al., 2001; Salehzadeh et al., 2005). This very bulky tripodal ligand is generally assumed to encapsulate even the largest lanthanide ions and thereby prevent solvation of the resulting complexes. In contrast to a previous report (Bernhardt et al., 2001), reactions of cerium(III) trichloride with either 3,5-di-tert-butyl salicylic aldehyde and tris(2-aminoethylamine) (in situ formation of the TRENDSAL ligand) or the free ligand H3TRENDSAL afforded only mixtures of Ce(III) and Ce(IV) products. We now found that the trivalent complex can be prepared by reduction of (TRENDSAL)CeCl (Dröse & Gottfriedsen, 2008) with elemental potassium in THF. This new synthetic route afforded pure (TRENDSAL)Ce in excellent yield (92%) in the form of bright orange, air-sensitive crystals. The new compound was fully characterized by elemental analysis and spectroscopic methods. The transition from diamagnetic (TRENDSAL)CeCl to paramagnetic (TRENDSAL)Ce becomes particularly evident in the 1H NMR spectra. In the spectrum of (TRENDSAL)Ce the signals are paramagnetically shifted over a range of ca 30 p.p.m.. Orange, block-like single crystals were obtained by slow cooling of a saturated solution in diethyl ether to 5 °C.

The coordination geometry around the central cerium(3+) ion can be described as a distorted mono-capped octahedron in which the amine nitrogen (N1) forms the cap. As expected, the overall molecular structure does not differ significantly from those of the previously reported (TRENDSAL)Ln derivatives with Ln = Nd, Sm (Essig et al., 2001) and Ln = Gd (Salehzadeh et al., 2005). Despite the pronounced air-sensitivity of (TRENDSAL)Ce, all attempts to prepare well defined oxidation products, e.g. by treatment with Ag[BPh4], p-benzoquinone, or PhICl2, failed.

Related literature top

For related structures, see: Dröse & Gottfriedsen (2008); Dröse et al. (2010); Essig et al. (2001); Salehzadeh et al. (2005). In contrast to a previous report (Bernhardt et al., 2001), reactions of cerium(III) trichloride with either 3,5-di-tert-butyl salicylic aldehyde and tris(2-aminoethylamine) (in situ formation of the TRENDSAL ligand) or the free ligand H3TRENDSAL afforded only mixtures of Ce(III) and Ce(IV) products. We now found that the trivalent complex can be prepared by reduction of (TRENDSAL)CeCl (Dröse & Gottfriedsen, 2008) with elemental potassium in THF. Scheme should show same ratio ofcomponents as formula.

Experimental top

Preparation Ce(TRENDSAL): A 100 ml Schlenk-flask was charged with 2.93 g (0.58 mol) chloro[N,N',N''-tris(3,5-di-tert-butylsalicylidenatoamino)triethylamin]cerium(IV) (Dröse & Gottfriedsen, 2008), (= (TRENDSAL)CeCl), and 30 ml of THF and 0.03 g (0.77 mmol, excess) of clean potassium metal pieces were added. Stirring of the reaction mixture for 24 h at r.t. resulted in a color change from purple to orange-yellow. The mixture was evaporated to dryness and the residue was extracted with toluene (20 ml) followed by filtration. The clear filtrate was concentrated in vacuo to a total volume of ca 5 ml. Cooling to -32 °C for 24 h afforded 0.50 g (92%) of (TRENDSAL)Ce as orange microcrystals. X-ray quality single crystals were grown from a saturated solution in diethyl ether at 5 °C. M.p. 143 °C (dec). Anal. calcd for C51H75CeN4O3 (932.28 g/mol): C 65.70, H 8.11, N 6.01; found: C 65.47, H 8.04, N 5.63%. IR (KBr pellet): νmax 2958 (st, ns CH3), 2903 (m, nas CH2), 2860 (m, nas CH3), 2850 (m, ns CH2), 2173 (w), 1622 (versus), 1619 (versus, C=N), 1615 (versus), 1551 (m, C=C Ring), 1535 (st), 1470 (m, ds CH2 + das CH3), 1459 (m), 1434 (st), 1411 (st), 1391 (st), 1360 (m), 1336 (m), 1321 (st), 1275 (m), 1256 (st, CH ring), 1237 (m), 1199 (m), 1165 (st), 1138 (w), 1077 (w), 1064 (w), 1037 (w), 1025 (w), 981 (w), 905 (w), 884 (w), 837 (m, CH Ring), 809 (w), 790 (w), 744 (m), 735 (w), 698 (w), 641 (w), 614 (w), 588 (w), 555 (w), 541 (w), 523 (w) cm-1. 1H NMR (400 MHz, THF-d8): d = 17.99 (s, 3H, –N=CH–), 11.61 (s, 3H, Ar–H), 9.15 (s, 3H, Ar–H), 2.37 (s, 27H,–C(CH3)3), 0.92 (s, 3H, N–CH2–CH2–N=), -1.75 (s, 3H, N–CH2–CH2–N=), -2.16 (s, 27H,–C(CH3)3), -9.71 (s, 3H, N–CH2–CH2–N=), -12.41 (s, 3H, N–CH2–CH2–N=). 13C{1H} NMR (100.6 MHz, C6D6, 25 °C): δ = 188.1 (–O–CAr), 175.9 (–CH2–N=CH–Ar), 150.0 (tBu–CAr), 143.1 (–N=CH–CAr), 140.1 (tBu–CAr), 132.2 (H–CAr), 129.3 (H–CAr), 40.8 (–CH2CH2–N=CH–), 35.3 (–CH2–CH2–N=CH–), 33.6 (Ar–CMe3), 33.5 (–C(CH3)), 26.7 (–C(CH3)). EI—MS: m/z 931.7 (100) [M]+, 916.6 (60) [M – CH3]+, 673.3 (45) [M – {N(CH2)2N=CH—Ar}]+.

Refinement top

The hydrogen atoms were included using a riding model, with aromatic C—H = 0.95 Å, methyn C—H = 1.00 Å, methylen C—H = 0.99 Å [Uiso(H) = 1.2Ueq(C)] and methyl C—H = 0.98 Å [Uiso(H) = 1.5Ueq(C)].

Structure description top

The di-tert-butyl-substituted heptadentate Schiff-base ligand N[CH2CH2N=CH-(2-OH-3,5-tBu2C6H2)]3 (= TRENDSAL) has frequently been employed for rare earth elements such as Ce, Gd, Sm, and Nd, leading in all cases to the formation of mononuclear complexes (Dröse & Gottfriedsen, 2008; Dröse et al., 2010; Essig et al., 2001; Salehzadeh et al., 2005). This very bulky tripodal ligand is generally assumed to encapsulate even the largest lanthanide ions and thereby prevent solvation of the resulting complexes. In contrast to a previous report (Bernhardt et al., 2001), reactions of cerium(III) trichloride with either 3,5-di-tert-butyl salicylic aldehyde and tris(2-aminoethylamine) (in situ formation of the TRENDSAL ligand) or the free ligand H3TRENDSAL afforded only mixtures of Ce(III) and Ce(IV) products. We now found that the trivalent complex can be prepared by reduction of (TRENDSAL)CeCl (Dröse & Gottfriedsen, 2008) with elemental potassium in THF. This new synthetic route afforded pure (TRENDSAL)Ce in excellent yield (92%) in the form of bright orange, air-sensitive crystals. The new compound was fully characterized by elemental analysis and spectroscopic methods. The transition from diamagnetic (TRENDSAL)CeCl to paramagnetic (TRENDSAL)Ce becomes particularly evident in the 1H NMR spectra. In the spectrum of (TRENDSAL)Ce the signals are paramagnetically shifted over a range of ca 30 p.p.m.. Orange, block-like single crystals were obtained by slow cooling of a saturated solution in diethyl ether to 5 °C.

The coordination geometry around the central cerium(3+) ion can be described as a distorted mono-capped octahedron in which the amine nitrogen (N1) forms the cap. As expected, the overall molecular structure does not differ significantly from those of the previously reported (TRENDSAL)Ln derivatives with Ln = Nd, Sm (Essig et al., 2001) and Ln = Gd (Salehzadeh et al., 2005). Despite the pronounced air-sensitivity of (TRENDSAL)Ce, all attempts to prepare well defined oxidation products, e.g. by treatment with Ag[BPh4], p-benzoquinone, or PhICl2, failed.

For related structures, see: Dröse & Gottfriedsen (2008); Dröse et al. (2010); Essig et al. (2001); Salehzadeh et al. (2005). In contrast to a previous report (Bernhardt et al., 2001), reactions of cerium(III) trichloride with either 3,5-di-tert-butyl salicylic aldehyde and tris(2-aminoethylamine) (in situ formation of the TRENDSAL ligand) or the free ligand H3TRENDSAL afforded only mixtures of Ce(III) and Ce(IV) products. We now found that the trivalent complex can be prepared by reduction of (TRENDSAL)CeCl (Dröse & Gottfriedsen, 2008) with elemental potassium in THF. Scheme should show same ratio ofcomponents as formula.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound in the crystal. Displacement ellipsoids represent 50% probability levels.
Bis({tris[2-(3,5-di-tert-butyl-2- oxidobenzylideneamino)ethyl]amine}cerium(III)) diethyl ether solvate top
Crystal data top
2[Ce(C51H75N4O3)]·C4H10OF(000) = 4096
Mr = 1938.66Dx = 1.223 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.840 (6) ÅCell parameters from 37307 reflections
b = 16.345 (3) Åθ = 2–28°
c = 24.849 (5) ŵ = 0.91 mm1
β = 111.39 (3)°T = 180 K
V = 10528 (4) Å3Prism, orange
Z = 40.45 × 0.34 × 0.33 mm
Data collection top
STOE IPDS 2T
diffractometer
9225 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 28.3°, θmin = 2.1°
Detector resolution: 6.67 pixels mm-1h = 3737
rotation method scansk = 2121
36433 measured reflectionsl = 3333
12973 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0325P)2 + 19.2734P]
where P = (Fo2 + 2Fc2)/3
12973 reflections(Δ/σ)max = 0.001
561 parametersΔρmax = 1.49 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
2[Ce(C51H75N4O3)]·C4H10OV = 10528 (4) Å3
Mr = 1938.66Z = 4
Monoclinic, C2/cMo Kα radiation
a = 27.840 (6) ŵ = 0.91 mm1
b = 16.345 (3) ÅT = 180 K
c = 24.849 (5) Å0.45 × 0.34 × 0.33 mm
β = 111.39 (3)°
Data collection top
STOE IPDS 2T
diffractometer
9225 reflections with I > 2σ(I)
36433 measured reflectionsRint = 0.050
12973 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0325P)2 + 19.2734P]
where P = (Fo2 + 2Fc2)/3
12973 reflectionsΔρmax = 1.49 e Å3
561 parametersΔρmin = 0.87 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce0.329167 (5)0.498625 (12)0.474633 (6)0.01873 (4)
O10.24322 (7)0.50937 (14)0.42541 (9)0.0271 (4)
O20.35362 (8)0.59761 (14)0.42595 (10)0.0267 (5)
O30.34271 (8)0.38875 (13)0.42550 (10)0.0270 (5)
N10.36850 (8)0.49942 (19)0.59826 (9)0.0248 (4)
N20.28670 (9)0.60565 (15)0.52270 (10)0.0241 (5)
N30.42725 (9)0.53307 (16)0.52406 (11)0.0245 (5)
N40.31839 (9)0.36135 (15)0.52315 (10)0.0231 (5)
C10.33944 (12)0.5602 (2)0.61895 (13)0.0275 (6)
H1A0.36140.57920.65810.033*
H1B0.30860.53360.62190.033*
C20.32275 (12)0.6335 (2)0.57898 (14)0.0283 (7)
H2A0.30580.67450.59550.034*
H2B0.35320.65940.57450.034*
C30.42411 (11)0.5221 (2)0.61973 (13)0.0288 (7)
H3A0.44160.49890.65880.035*
H3B0.42740.58240.62270.035*
C40.45041 (11)0.4907 (2)0.57957 (12)0.0288 (6)
H4A0.48790.50190.59640.035*
H4B0.44530.43090.57410.035*
C50.36233 (12)0.41688 (19)0.61908 (13)0.0275 (6)
H5A0.36110.42130.65830.033*
H5B0.39260.38310.62180.033*
C60.31350 (13)0.3746 (2)0.57939 (14)0.0270 (7)
H6A0.30900.32160.59630.032*
H6B0.28300.40920.57460.032*
C70.24086 (11)0.63523 (17)0.50472 (13)0.0233 (6)
H70.23470.67760.52750.028*
C80.45673 (10)0.57956 (18)0.50817 (13)0.0244 (6)
H80.49250.57750.53110.029*
C90.31680 (11)0.28749 (18)0.50577 (13)0.0236 (6)
H90.30950.24690.52910.028*
C110.19961 (10)0.54758 (17)0.41628 (12)0.0220 (5)
C120.19737 (10)0.61164 (17)0.45373 (12)0.0217 (5)
C130.15009 (11)0.65110 (18)0.44488 (13)0.0252 (6)
H130.14900.69360.47050.030*
C140.10574 (11)0.63007 (19)0.40052 (13)0.0259 (6)
C150.10907 (11)0.5673 (2)0.36354 (13)0.0277 (6)
H150.07860.55300.33210.033*
C160.15368 (10)0.52489 (18)0.36981 (13)0.0231 (6)
C170.05388 (12)0.6731 (2)0.38862 (16)0.0344 (7)
C180.05544 (14)0.7287 (2)0.43844 (18)0.0419 (9)
H18A0.06490.69660.47410.063*
H18B0.02140.75340.43000.063*
H18C0.08110.77200.44330.063*
C190.04139 (15)0.7253 (3)0.33389 (18)0.0505 (10)
H19A0.00890.75450.32640.076*
H19B0.03810.68980.30100.076*
H19C0.06920.76490.33930.076*
C200.01111 (15)0.6101 (3)0.3802 (2)0.0587 (13)
H20A0.00590.57830.34510.088*
H20B0.02100.63830.37650.088*
H20C0.02100.57330.41360.088*
C210.15517 (11)0.4573 (2)0.32770 (13)0.0278 (6)
C220.10220 (13)0.4425 (3)0.28058 (16)0.0455 (9)
H22A0.07780.42490.29840.068*
H22B0.10510.39980.25420.068*
H22C0.08980.49320.25890.068*
C230.19178 (13)0.4830 (2)0.29713 (15)0.0366 (8)
H23A0.19230.44050.26960.055*
H23B0.22660.49040.32580.055*
H23C0.17980.53460.27650.055*
C240.17314 (14)0.3763 (2)0.35960 (16)0.0383 (8)
H24A0.17470.33440.33210.057*
H24B0.14880.35920.37760.057*
H24C0.20750.38350.38950.057*
C310.38962 (10)0.64423 (17)0.42079 (12)0.0209 (5)
C320.44176 (10)0.63478 (18)0.45940 (13)0.0230 (6)
C330.48008 (10)0.68774 (19)0.45542 (13)0.0247 (6)
H330.51470.68030.48130.030*
C340.46936 (11)0.74999 (19)0.41545 (13)0.0255 (6)
C350.41809 (11)0.75707 (19)0.37726 (13)0.0261 (6)
H350.41010.79950.34920.031*
C360.37823 (11)0.70633 (18)0.37764 (13)0.0225 (5)
C370.51156 (11)0.8114 (2)0.41629 (15)0.0315 (7)
C380.52635 (19)0.8631 (3)0.4711 (2)0.0594 (12)
H38A0.49560.89030.47270.089*
H38B0.55170.90440.47070.089*
H38C0.54130.82780.50500.089*
C390.49395 (14)0.8686 (2)0.36417 (18)0.0413 (9)
H39A0.52250.90470.36560.062*
H39B0.46480.90170.36490.062*
H39C0.48320.83630.32850.062*
C400.55927 (13)0.7654 (3)0.4160 (2)0.0466 (10)
H40A0.58710.80450.42010.070*
H40B0.55080.73550.37950.070*
H40C0.57050.72670.44830.070*
C410.32293 (11)0.71718 (19)0.33490 (14)0.0265 (6)
C420.31948 (13)0.7829 (2)0.28927 (16)0.0403 (8)
H42A0.34160.76730.26800.060*
H42B0.33090.83560.30850.060*
H42C0.28370.78760.26230.060*
C430.30158 (14)0.6380 (2)0.30144 (16)0.0395 (8)
H43A0.30210.59440.32870.059*
H43B0.32300.62200.27940.059*
H43C0.26600.64700.27490.059*
C440.28839 (13)0.7446 (2)0.36763 (17)0.0412 (8)
H44A0.30210.79510.38880.062*
H44B0.28770.70170.39490.062*
H44C0.25330.75430.34000.062*
C510.33861 (10)0.31035 (17)0.41651 (12)0.0217 (5)
C520.32485 (10)0.25835 (18)0.45449 (13)0.0232 (6)
C530.32302 (11)0.17272 (18)0.44667 (13)0.0251 (6)
H530.31480.13910.47330.030*
C540.33277 (11)0.13648 (18)0.40197 (13)0.0254 (6)
C550.34397 (11)0.18913 (18)0.36348 (13)0.0262 (6)
H550.34940.16520.33130.031*
C560.34763 (11)0.27323 (18)0.36900 (13)0.0235 (6)
C570.33084 (12)0.04404 (18)0.39251 (14)0.0295 (6)
C580.32820 (14)0.0032 (2)0.44429 (15)0.0400 (7)
H58A0.29670.01210.45090.060*
H58B0.35840.01010.47870.060*
H58C0.32780.06200.43660.060*
C590.37920 (14)0.01503 (19)0.38204 (18)0.0412 (9)
H59A0.41010.03150.41470.062*
H59B0.37990.03980.34640.062*
H59C0.37840.04470.37830.062*
C600.28270 (13)0.0230 (2)0.33925 (15)0.0354 (7)
H60A0.28470.05090.30520.053*
H60B0.25170.04100.34580.053*
H60C0.28110.03620.33280.053*
C610.36371 (11)0.32632 (19)0.32718 (13)0.0270 (6)
C620.37092 (16)0.2755 (2)0.27878 (16)0.0422 (8)
H62A0.39780.23430.29570.063*
H62B0.38110.31150.25330.063*
H62C0.33840.24820.25640.063*
C630.32315 (13)0.3919 (2)0.29867 (15)0.0349 (7)
H63A0.33460.42550.27290.052*
H63B0.31860.42670.32860.052*
H63C0.29030.36560.27630.052*
C640.41582 (13)0.3676 (3)0.36162 (17)0.0405 (8)
H64A0.44110.32570.38200.061*
H64B0.41120.40580.38980.061*
H64C0.42820.39740.33500.061*
O40.50000.5945 (4)0.25000.0883 (17)*
C930.5353 (3)0.6383 (6)0.2305 (4)0.126 (3)*
H93A0.51590.67570.19860.151*
H93B0.55890.67150.26250.151*
C940.5640 (3)0.5821 (5)0.2110 (3)0.116 (2)*
H94A0.57790.53920.24010.174*
H94B0.59240.61070.20480.174*
H94C0.54150.55730.17460.174*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce0.01725 (6)0.01654 (6)0.02120 (7)0.00030 (7)0.00557 (4)0.00044 (8)
O10.0187 (8)0.0272 (12)0.0316 (10)0.0048 (9)0.0047 (7)0.0087 (10)
O20.0165 (9)0.0282 (12)0.0313 (12)0.0021 (8)0.0037 (8)0.0102 (9)
O30.0331 (12)0.0187 (10)0.0342 (12)0.0025 (9)0.0183 (10)0.0014 (9)
N10.0251 (10)0.0251 (11)0.0213 (10)0.0009 (13)0.0051 (8)0.0004 (13)
N20.0250 (12)0.0234 (12)0.0213 (12)0.0008 (10)0.0052 (10)0.0030 (10)
N30.0193 (11)0.0238 (11)0.0255 (12)0.0017 (9)0.0023 (9)0.0057 (10)
N40.0247 (12)0.0231 (12)0.0218 (12)0.0006 (10)0.0090 (9)0.0003 (10)
C10.0275 (14)0.0312 (16)0.0216 (14)0.0003 (12)0.0063 (12)0.0053 (12)
C20.0271 (15)0.0289 (17)0.0256 (16)0.0010 (13)0.0056 (12)0.0060 (13)
C30.0247 (14)0.0310 (17)0.0237 (14)0.0018 (11)0.0003 (11)0.0022 (11)
C40.0235 (12)0.0279 (17)0.0296 (14)0.0034 (13)0.0033 (10)0.0079 (14)
C50.0315 (15)0.0269 (15)0.0220 (14)0.0038 (12)0.0074 (12)0.0055 (12)
C60.0341 (16)0.0219 (15)0.0300 (17)0.0003 (12)0.0176 (14)0.0023 (13)
C70.0269 (14)0.0183 (13)0.0247 (14)0.0016 (11)0.0093 (11)0.0027 (11)
C80.0164 (12)0.0264 (15)0.0272 (14)0.0020 (11)0.0041 (11)0.0020 (12)
C90.0233 (13)0.0228 (14)0.0254 (14)0.0012 (11)0.0098 (11)0.0031 (11)
C110.0206 (13)0.0217 (14)0.0247 (14)0.0015 (10)0.0094 (11)0.0002 (11)
C120.0205 (12)0.0212 (14)0.0221 (13)0.0017 (10)0.0061 (10)0.0014 (11)
C130.0268 (13)0.0195 (14)0.0305 (15)0.0041 (11)0.0117 (12)0.0004 (11)
C140.0233 (13)0.0276 (15)0.0284 (15)0.0062 (12)0.0111 (12)0.0012 (12)
C150.0195 (13)0.0350 (17)0.0265 (15)0.0020 (12)0.0060 (11)0.0024 (13)
C160.0188 (12)0.0254 (14)0.0245 (14)0.0004 (10)0.0072 (11)0.0024 (11)
C170.0225 (14)0.0342 (18)0.0453 (19)0.0072 (13)0.0110 (14)0.0027 (15)
C180.0328 (17)0.043 (2)0.054 (2)0.0115 (16)0.0209 (17)0.0049 (18)
C190.0389 (19)0.056 (3)0.046 (2)0.0221 (18)0.0029 (17)0.0016 (19)
C200.0282 (19)0.046 (2)0.103 (4)0.0008 (17)0.024 (2)0.018 (2)
C210.0197 (13)0.0354 (18)0.0274 (15)0.0033 (12)0.0075 (11)0.0089 (13)
C220.0289 (16)0.061 (3)0.040 (2)0.0035 (16)0.0044 (15)0.0242 (19)
C230.0373 (16)0.045 (2)0.0325 (16)0.0064 (14)0.0190 (14)0.0111 (14)
C240.0422 (18)0.0296 (17)0.045 (2)0.0042 (15)0.0174 (16)0.0087 (15)
C310.0172 (12)0.0192 (13)0.0247 (14)0.0008 (10)0.0059 (10)0.0001 (11)
C320.0181 (12)0.0245 (14)0.0254 (14)0.0009 (11)0.0068 (11)0.0005 (12)
C330.0149 (12)0.0291 (15)0.0284 (15)0.0003 (11)0.0059 (11)0.0008 (12)
C340.0183 (12)0.0269 (15)0.0314 (15)0.0050 (11)0.0091 (11)0.0016 (12)
C350.0241 (13)0.0251 (15)0.0281 (15)0.0026 (11)0.0084 (12)0.0032 (12)
C360.0214 (13)0.0205 (14)0.0241 (14)0.0023 (11)0.0066 (11)0.0014 (11)
C370.0185 (13)0.0355 (17)0.0395 (18)0.0082 (12)0.0093 (12)0.0014 (14)
C380.068 (3)0.057 (3)0.057 (3)0.038 (2)0.027 (2)0.019 (2)
C390.0293 (17)0.037 (2)0.058 (2)0.0082 (15)0.0170 (17)0.0120 (18)
C400.0211 (15)0.050 (2)0.069 (3)0.0003 (15)0.0177 (17)0.015 (2)
C410.0195 (13)0.0251 (15)0.0294 (15)0.0011 (11)0.0026 (12)0.0080 (12)
C420.0262 (16)0.040 (2)0.046 (2)0.0010 (14)0.0024 (14)0.0195 (17)
C430.0343 (17)0.0377 (19)0.0346 (18)0.0087 (15)0.0017 (14)0.0015 (15)
C440.0260 (15)0.046 (2)0.051 (2)0.0091 (15)0.0133 (15)0.0083 (18)
C510.0191 (12)0.0190 (13)0.0243 (14)0.0005 (10)0.0046 (11)0.0011 (11)
C520.0210 (13)0.0223 (14)0.0251 (14)0.0000 (10)0.0071 (11)0.0009 (11)
C530.0251 (14)0.0216 (14)0.0276 (15)0.0023 (11)0.0083 (12)0.0010 (12)
C540.0251 (14)0.0192 (14)0.0309 (15)0.0001 (11)0.0091 (12)0.0032 (12)
C550.0286 (14)0.0237 (14)0.0262 (15)0.0026 (12)0.0100 (12)0.0034 (12)
C560.0213 (13)0.0223 (14)0.0268 (15)0.0001 (11)0.0085 (12)0.0006 (12)
C570.0343 (16)0.0183 (15)0.0353 (17)0.0014 (12)0.0120 (13)0.0032 (12)
C580.0568 (19)0.0215 (14)0.0407 (17)0.0005 (19)0.0165 (15)0.0009 (19)
C590.0398 (18)0.024 (2)0.061 (2)0.0037 (13)0.0199 (17)0.0062 (15)
C600.0393 (17)0.0280 (17)0.0386 (18)0.0020 (13)0.0138 (15)0.0073 (13)
C610.0261 (14)0.0276 (15)0.0289 (15)0.0004 (12)0.0122 (12)0.0007 (12)
C620.059 (2)0.0370 (19)0.040 (2)0.0008 (17)0.0293 (18)0.0010 (16)
C630.0332 (17)0.0343 (18)0.0362 (18)0.0025 (14)0.0113 (14)0.0095 (15)
C640.0263 (15)0.051 (2)0.046 (2)0.0070 (15)0.0146 (15)0.0012 (17)
Geometric parameters (Å, º) top
Ce—O12.262 (2)C31—C321.427 (4)
Ce—O22.268 (2)C32—C331.405 (4)
Ce—O32.279 (2)C33—C341.376 (4)
Ce—N32.614 (2)C33—H330.9500
Ce—N42.616 (2)C34—C351.401 (4)
Ce—N22.630 (2)C34—C371.540 (4)
Ce—N12.860 (2)C35—C361.388 (4)
O1—C111.309 (3)C35—H350.9500
O2—C311.302 (3)C36—C411.529 (4)
O3—C511.299 (4)C37—C381.525 (5)
N1—C51.477 (4)C37—C391.526 (5)
N1—C11.487 (4)C37—C401.528 (5)
N1—C31.489 (4)C38—H38A0.9800
N2—C71.283 (4)C38—H38B0.9800
N2—C21.465 (4)C38—H38C0.9800
N3—C81.282 (4)C39—H39A0.9800
N3—C41.466 (4)C39—H39B0.9800
N4—C91.277 (4)C39—H39C0.9800
N4—C61.469 (4)C40—H40A0.9800
C1—C21.516 (5)C40—H40B0.9800
C1—H1A0.9900C40—H40C0.9800
C1—H1B0.9900C41—C441.535 (4)
C2—H2A0.9900C41—C431.536 (5)
C2—H2B0.9900C41—C421.539 (4)
C3—C41.526 (4)C42—H42A0.9800
C3—H3A0.9900C42—H42B0.9800
C3—H3B0.9900C42—H42C0.9800
C4—H4A0.9900C43—H43A0.9800
C4—H4B0.9900C43—H43B0.9800
C5—C61.523 (5)C43—H43C0.9800
C5—H5A0.9900C44—H44A0.9800
C5—H5B0.9900C44—H44B0.9800
C6—H6A0.9900C44—H44C0.9800
C6—H6B0.9900C51—C521.423 (4)
C7—C121.449 (4)C51—C561.429 (4)
C7—H70.9500C52—C531.411 (4)
C8—C321.445 (4)C53—C541.371 (4)
C8—H80.9500C53—H530.9500
C9—C521.452 (4)C54—C551.404 (4)
C9—H90.9500C54—C571.527 (4)
C11—C121.417 (4)C55—C561.382 (4)
C11—C161.424 (4)C55—H550.9500
C12—C131.409 (4)C56—C611.540 (4)
C13—C141.365 (4)C57—C581.525 (5)
C13—H130.9500C57—C591.537 (4)
C14—C151.403 (4)C57—C601.540 (5)
C14—C171.535 (4)C58—H58A0.9800
C15—C161.381 (4)C58—H58B0.9800
C15—H150.9500C58—H58C0.9800
C16—C211.532 (4)C59—H59A0.9800
C17—C181.524 (5)C59—H59B0.9800
C17—C201.530 (5)C59—H59C0.9800
C17—C191.534 (5)C60—H60A0.9800
C18—H18A0.9800C60—H60B0.9800
C18—H18B0.9800C60—H60C0.9800
C18—H18C0.9800C61—C631.531 (4)
C19—H19A0.9800C61—C621.534 (4)
C19—H19B0.9800C61—C641.545 (5)
C19—H19C0.9800C62—H62A0.9800
C20—H20A0.9800C62—H62B0.9800
C20—H20B0.9800C62—H62C0.9800
C20—H20C0.9800C63—H63A0.9800
C21—C241.531 (5)C63—H63B0.9800
C21—C221.531 (4)C63—H63C0.9800
C21—C231.535 (4)C64—H64A0.9800
C22—H22A0.9800C64—H64B0.9800
C22—H22B0.9800C64—H64C0.9800
C22—H22C0.9800O4—C93i1.435 (8)
C23—H23A0.9800O4—C931.435 (8)
C23—H23B0.9800C93—C941.414 (10)
C23—H23C0.9800C93—H93A0.9900
C24—H24A0.9800C93—H93B0.9900
C24—H24B0.9800C94—H94A0.9800
C24—H24C0.9800C94—H94B0.9800
C31—C361.426 (4)C94—H94C0.9800
O1—Ce—O296.91 (8)H24A—C24—H24C109.5
O1—Ce—O396.93 (8)H24B—C24—H24C109.5
O2—Ce—O397.81 (8)O2—C31—C36121.5 (2)
O1—Ce—N3162.71 (8)O2—C31—C32120.1 (3)
O2—Ce—N368.39 (8)C36—C31—C32118.4 (2)
O3—Ce—N394.17 (8)C33—C32—C31119.9 (3)
O1—Ce—N492.25 (8)C33—C32—C8116.7 (3)
O2—Ce—N4164.76 (8)C31—C32—C8122.9 (2)
O3—Ce—N468.91 (8)C34—C33—C32122.4 (3)
N3—Ce—N4104.12 (8)C34—C33—H33118.8
O1—Ce—N268.39 (8)C32—C33—H33118.8
O2—Ce—N292.29 (8)C33—C34—C35116.7 (3)
O3—Ce—N2163.18 (8)C33—C34—C37120.6 (3)
N3—Ce—N2102.06 (8)C35—C34—C37122.6 (3)
N4—Ce—N2102.43 (8)C36—C35—C34124.4 (3)
O1—Ce—N1119.69 (7)C36—C35—H35117.8
O2—Ce—N1119.85 (8)C34—C35—H35117.8
O3—Ce—N1120.37 (8)C35—C36—C31118.1 (3)
N3—Ce—N164.49 (8)C35—C36—C41122.1 (3)
N4—Ce—N164.68 (8)C31—C36—C41119.8 (2)
N2—Ce—N164.44 (8)C38—C37—C39108.4 (3)
C11—O1—Ce149.52 (19)C38—C37—C40108.9 (3)
C31—O2—Ce149.49 (19)C39—C37—C40108.0 (3)
C51—O3—Ce148.04 (18)C38—C37—C34109.2 (3)
C5—N1—C1110.0 (2)C39—C37—C34112.4 (3)
C5—N1—C3109.9 (2)C40—C37—C34109.8 (3)
C1—N1—C3109.6 (2)C37—C38—H38A109.5
C5—N1—Ce108.91 (17)C37—C38—H38B109.5
C1—N1—Ce109.33 (17)H38A—C38—H38B109.5
C3—N1—Ce109.07 (16)C37—C38—H38C109.5
C7—N2—C2117.6 (2)H38A—C38—H38C109.5
C7—N2—Ce130.4 (2)H38B—C38—H38C109.5
C2—N2—Ce112.03 (18)C37—C39—H39A109.5
C8—N3—C4117.3 (2)C37—C39—H39B109.5
C8—N3—Ce131.2 (2)H39A—C39—H39B109.5
C4—N3—Ce111.47 (17)C37—C39—H39C109.5
C9—N4—C6117.2 (2)H39A—C39—H39C109.5
C9—N4—Ce130.58 (19)H39B—C39—H39C109.5
C6—N4—Ce112.20 (18)C37—C40—H40A109.5
N1—C1—C2112.1 (2)C37—C40—H40B109.5
N1—C1—H1A109.2H40A—C40—H40B109.5
C2—C1—H1A109.2C37—C40—H40C109.5
N1—C1—H1B109.2H40A—C40—H40C109.5
C2—C1—H1B109.2H40B—C40—H40C109.5
H1A—C1—H1B107.9C36—C41—C44109.4 (3)
N2—C2—C1108.7 (3)C36—C41—C43111.8 (3)
N2—C2—H2A110.0C44—C41—C43109.8 (3)
C1—C2—H2A110.0C36—C41—C42111.7 (2)
N2—C2—H2B110.0C44—C41—C42107.7 (3)
C1—C2—H2B110.0C43—C41—C42106.4 (3)
H2A—C2—H2B108.3C41—C42—H42A109.5
N1—C3—C4111.5 (2)C41—C42—H42B109.5
N1—C3—H3A109.3H42A—C42—H42B109.5
C4—C3—H3A109.3C41—C42—H42C109.5
N1—C3—H3B109.3H42A—C42—H42C109.5
C4—C3—H3B109.3H42B—C42—H42C109.5
H3A—C3—H3B108.0C41—C43—H43A109.5
N3—C4—C3107.8 (2)C41—C43—H43B109.5
N3—C4—H4A110.2H43A—C43—H43B109.5
C3—C4—H4A110.2C41—C43—H43C109.5
N3—C4—H4B110.2H43A—C43—H43C109.5
C3—C4—H4B110.2H43B—C43—H43C109.5
H4A—C4—H4B108.5C41—C44—H44A109.5
N1—C5—C6112.2 (2)C41—C44—H44B109.5
N1—C5—H5A109.2H44A—C44—H44B109.5
C6—C5—H5A109.2C41—C44—H44C109.5
N1—C5—H5B109.2H44A—C44—H44C109.5
C6—C5—H5B109.2H44B—C44—H44C109.5
H5A—C5—H5B107.9O3—C51—C52120.2 (3)
N4—C6—C5108.2 (2)O3—C51—C56122.0 (3)
N4—C6—H6A110.1C52—C51—C56117.7 (3)
C5—C6—H6A110.1C53—C52—C51120.4 (3)
N4—C6—H6B110.1C53—C52—C9115.9 (3)
C5—C6—H6B110.1C51—C52—C9123.4 (3)
H6A—C6—H6B108.4C54—C53—C52122.2 (3)
N2—C7—C12127.7 (3)C54—C53—H53118.9
N2—C7—H7116.1C52—C53—H53118.9
C12—C7—H7116.1C53—C54—C55116.5 (3)
N3—C8—C32127.4 (3)C53—C54—C57123.1 (3)
N3—C8—H8116.3C55—C54—C57120.4 (3)
C32—C8—H8116.3C56—C55—C54124.7 (3)
N4—C9—C52127.5 (3)C56—C55—H55117.7
N4—C9—H9116.2C54—C55—H55117.7
C52—C9—H9116.2C55—C56—C51118.4 (3)
O1—C11—C12119.9 (3)C55—C56—C61121.5 (3)
O1—C11—C16121.2 (2)C51—C56—C61120.0 (3)
C12—C11—C16118.9 (2)C58—C57—C54112.4 (3)
C13—C12—C11119.9 (3)C58—C57—C59107.6 (3)
C13—C12—C7116.7 (3)C54—C57—C59110.3 (3)
C11—C12—C7123.2 (2)C58—C57—C60108.5 (3)
C14—C13—C12121.9 (3)C54—C57—C60108.9 (3)
C14—C13—H13119.0C59—C57—C60109.1 (3)
C12—C13—H13119.0C57—C58—H58A109.5
C13—C14—C15117.2 (3)C57—C58—H58B109.5
C13—C14—C17123.4 (3)H58A—C58—H58B109.5
C15—C14—C17119.4 (3)C57—C58—H58C109.5
C16—C15—C14124.4 (3)H58A—C58—H58C109.5
C16—C15—H15117.8H58B—C58—H58C109.5
C14—C15—H15117.8C57—C59—H59A109.5
C15—C16—C11117.7 (3)C57—C59—H59B109.5
C15—C16—C21122.1 (3)H59A—C59—H59B109.5
C11—C16—C21120.1 (2)C57—C59—H59C109.5
C18—C17—C20107.6 (3)H59A—C59—H59C109.5
C18—C17—C19108.6 (3)H59B—C59—H59C109.5
C20—C17—C19109.9 (4)C57—C60—H60A109.5
C18—C17—C14111.8 (3)C57—C60—H60B109.5
C20—C17—C14110.4 (3)H60A—C60—H60B109.5
C19—C17—C14108.6 (3)C57—C60—H60C109.5
C17—C18—H18A109.5H60A—C60—H60C109.5
C17—C18—H18B109.5H60B—C60—H60C109.5
H18A—C18—H18B109.5C63—C61—C62107.6 (3)
C17—C18—H18C109.5C63—C61—C56111.1 (2)
H18A—C18—H18C109.5C62—C61—C56112.2 (3)
H18B—C18—H18C109.5C63—C61—C64109.6 (3)
C17—C19—H19A109.5C62—C61—C64107.8 (3)
C17—C19—H19B109.5C56—C61—C64108.5 (3)
H19A—C19—H19B109.5C61—C62—H62A109.5
C17—C19—H19C109.5C61—C62—H62B109.5
H19A—C19—H19C109.5H62A—C62—H62B109.5
H19B—C19—H19C109.5C61—C62—H62C109.5
C17—C20—H20A109.5H62A—C62—H62C109.5
C17—C20—H20B109.5H62B—C62—H62C109.5
H20A—C20—H20B109.5C61—C63—H63A109.5
C17—C20—H20C109.5C61—C63—H63B109.5
H20A—C20—H20C109.5H63A—C63—H63B109.5
H20B—C20—H20C109.5C61—C63—H63C109.5
C24—C21—C22107.5 (3)H63A—C63—H63C109.5
C24—C21—C16110.8 (3)H63B—C63—H63C109.5
C22—C21—C16112.2 (3)C61—C64—H64A109.5
C24—C21—C23110.0 (3)C61—C64—H64B109.5
C22—C21—C23107.0 (3)H64A—C64—H64B109.5
C16—C21—C23109.2 (3)C61—C64—H64C109.5
C21—C22—H22A109.5H64A—C64—H64C109.5
C21—C22—H22B109.5H64B—C64—H64C109.5
H22A—C22—H22B109.5C93i—O4—C93120.1 (9)
C21—C22—H22C109.5C94—C93—O4109.5 (7)
H22A—C22—H22C109.5C94—C93—H93A109.8
H22B—C22—H22C109.5O4—C93—H93A109.8
C21—C23—H23A109.5C94—C93—H93B109.8
C21—C23—H23B109.5O4—C93—H93B109.8
H23A—C23—H23B109.5H93A—C93—H93B108.2
C21—C23—H23C109.5C93—C94—H94A109.5
H23A—C23—H23C109.5C93—C94—H94B109.5
H23B—C23—H23C109.5H94A—C94—H94B109.5
C21—C24—H24A109.5C93—C94—H94C109.5
C21—C24—H24B109.5H94A—C94—H94C109.5
H24A—C24—H24B109.5H94B—C94—H94C109.5
C21—C24—H24C109.5
O2—Ce—O1—C1178.9 (4)Ce—O1—C11—C16174.0 (3)
O3—Ce—O1—C11177.7 (4)O1—C11—C12—C13178.1 (3)
N3—Ce—O1—C1148.1 (5)C16—C11—C12—C130.6 (4)
N4—Ce—O1—C11113.3 (4)O1—C11—C12—C73.5 (4)
N2—Ce—O1—C1110.8 (4)C16—C11—C12—C7175.2 (3)
N1—Ce—O1—C1151.3 (4)N2—C7—C12—C13177.0 (3)
O1—Ce—O2—C31171.1 (4)N2—C7—C12—C112.3 (5)
O3—Ce—O2—C3190.9 (4)C11—C12—C13—C140.6 (4)
N3—Ce—O2—C310.5 (4)C7—C12—C13—C14175.6 (3)
N4—Ce—O2—C3162.3 (6)C12—C13—C14—C150.3 (4)
N2—Ce—O2—C31102.6 (4)C12—C13—C14—C17178.4 (3)
N1—Ce—O2—C3141.0 (4)C13—C14—C15—C161.3 (5)
O1—Ce—O3—C5175.9 (4)C17—C14—C15—C16179.5 (3)
O2—Ce—O3—C51173.9 (4)C14—C15—C16—C111.3 (5)
N3—Ce—O3—C51117.4 (4)C14—C15—C16—C21179.4 (3)
N4—Ce—O3—C5113.8 (4)O1—C11—C16—C15179.0 (3)
N2—Ce—O3—C5147.5 (5)C12—C11—C16—C150.4 (4)
N1—Ce—O3—C5154.6 (4)O1—C11—C16—C212.9 (4)
O1—Ce—N1—C580.51 (19)C12—C11—C16—C21178.5 (3)
O2—Ce—N1—C5160.35 (16)C13—C14—C17—C1811.6 (5)
O3—Ce—N1—C539.17 (19)C15—C14—C17—C18170.3 (3)
N3—Ce—N1—C5118.44 (19)C13—C14—C17—C20131.4 (4)
N4—Ce—N1—C53.20 (16)C15—C14—C17—C2050.5 (4)
N2—Ce—N1—C5122.56 (18)C13—C14—C17—C19108.1 (4)
O1—Ce—N1—C139.7 (2)C15—C14—C17—C1969.9 (4)
O2—Ce—N1—C179.43 (19)C15—C16—C21—C24121.6 (3)
O3—Ce—N1—C1159.39 (18)C11—C16—C21—C2460.4 (4)
N3—Ce—N1—C1121.3 (2)C15—C16—C21—C221.4 (4)
N4—Ce—N1—C1117.0 (2)C11—C16—C21—C22179.5 (3)
N2—Ce—N1—C12.34 (18)C15—C16—C21—C23117.1 (3)
O1—Ce—N1—C3159.51 (19)C11—C16—C21—C2360.9 (4)
O2—Ce—N1—C340.4 (2)Ce—O2—C31—C36174.5 (3)
O3—Ce—N1—C380.8 (2)Ce—O2—C31—C324.4 (6)
N3—Ce—N1—C31.54 (19)O2—C31—C32—C33177.0 (3)
N4—Ce—N1—C3123.2 (2)C36—C31—C32—C332.0 (4)
N2—Ce—N1—C3117.5 (2)O2—C31—C32—C85.4 (4)
O1—Ce—N2—C78.5 (2)C36—C31—C32—C8173.6 (3)
O2—Ce—N2—C788.0 (3)N3—C8—C32—C33171.4 (3)
O3—Ce—N2—C739.0 (4)N3—C8—C32—C310.5 (5)
N3—Ce—N2—C7156.4 (3)C31—C32—C33—C340.5 (4)
N4—Ce—N2—C796.0 (3)C8—C32—C33—C34171.6 (3)
N1—Ce—N2—C7149.8 (3)C32—C33—C34—C351.7 (4)
O1—Ce—N2—C2171.1 (2)C32—C33—C34—C37174.3 (3)
O2—Ce—N2—C292.4 (2)C33—C34—C35—C360.5 (5)
O3—Ce—N2—C2140.6 (3)C37—C34—C35—C36175.5 (3)
N3—Ce—N2—C224.0 (2)C34—C35—C36—C312.0 (5)
N4—Ce—N2—C283.6 (2)C34—C35—C36—C41179.9 (3)
N1—Ce—N2—C229.83 (19)O2—C31—C36—C35175.8 (3)
O1—Ce—N3—C839.6 (4)C32—C31—C36—C353.1 (4)
O2—Ce—N3—C86.4 (3)O2—C31—C36—C412.1 (4)
O3—Ce—N3—C890.3 (3)C32—C31—C36—C41179.0 (3)
N4—Ce—N3—C8159.6 (3)C33—C34—C37—C3866.9 (4)
N2—Ce—N3—C894.1 (3)C35—C34—C37—C38108.9 (4)
N1—Ce—N3—C8147.9 (3)C33—C34—C37—C39172.7 (3)
O1—Ce—N3—C4139.9 (2)C35—C34—C37—C3911.5 (4)
O2—Ce—N3—C4173.0 (2)C33—C34—C37—C4052.5 (4)
O3—Ce—N3—C490.2 (2)C35—C34—C37—C40131.7 (3)
N4—Ce—N3—C420.9 (2)C35—C36—C41—C44112.8 (3)
N2—Ce—N3—C485.4 (2)C31—C36—C41—C4465.0 (4)
N1—Ce—N3—C431.58 (19)C35—C36—C41—C43125.3 (3)
O1—Ce—N4—C987.4 (3)C31—C36—C41—C4356.8 (4)
O2—Ce—N4—C939.6 (5)C35—C36—C41—C426.3 (4)
O3—Ce—N4—C99.2 (2)C31—C36—C41—C42175.8 (3)
N3—Ce—N4—C998.2 (3)Ce—O3—C51—C5211.0 (5)
N2—Ce—N4—C9155.8 (3)Ce—O3—C51—C56169.1 (3)
N1—Ce—N4—C9150.6 (3)O3—C51—C52—C53176.6 (3)
O1—Ce—N4—C692.6 (2)C56—C51—C52—C533.3 (4)
O2—Ce—N4—C6140.4 (3)O3—C51—C52—C92.7 (4)
O3—Ce—N4—C6170.9 (2)C56—C51—C52—C9177.2 (3)
N3—Ce—N4—C681.8 (2)N4—C9—C52—C53177.4 (3)
N2—Ce—N4—C624.2 (2)N4—C9—C52—C513.2 (5)
N1—Ce—N4—C629.44 (18)C51—C52—C53—C541.9 (4)
C5—N1—C1—C2152.9 (2)C9—C52—C53—C54176.3 (3)
C3—N1—C1—C286.2 (3)C52—C53—C54—C551.0 (4)
Ce—N1—C1—C233.3 (3)C52—C53—C54—C57179.8 (3)
C7—N2—C2—C1118.9 (3)C53—C54—C55—C562.5 (5)
Ce—N2—C2—C160.8 (3)C57—C54—C55—C56178.6 (3)
N1—C1—C2—N263.7 (3)C54—C55—C56—C511.1 (5)
C5—N1—C3—C486.2 (3)C54—C55—C56—C61175.8 (3)
C1—N1—C3—C4152.8 (2)O3—C51—C56—C55178.1 (3)
Ce—N1—C3—C433.2 (3)C52—C51—C56—C551.8 (4)
C8—N3—C4—C3116.4 (3)O3—C51—C56—C611.1 (4)
Ce—N3—C4—C363.2 (3)C52—C51—C56—C61178.8 (3)
N1—C3—C4—N365.0 (3)C53—C54—C57—C5812.0 (4)
C1—N1—C5—C685.3 (3)C55—C54—C57—C58169.3 (3)
C3—N1—C5—C6154.0 (2)C53—C54—C57—C59132.0 (3)
Ce—N1—C5—C634.5 (3)C55—C54—C57—C5949.2 (4)
C9—N4—C6—C5119.6 (3)C53—C54—C57—C60108.3 (3)
Ce—N4—C6—C560.4 (3)C55—C54—C57—C6070.5 (4)
N1—C5—C6—N464.4 (3)C55—C56—C61—C63124.3 (3)
C2—N2—C7—C12173.6 (3)C51—C56—C61—C6358.9 (4)
Ce—N2—C7—C126.0 (5)C55—C56—C61—C623.8 (4)
C4—N3—C8—C32171.8 (3)C51—C56—C61—C62179.3 (3)
Ce—N3—C8—C327.6 (5)C55—C56—C61—C64115.2 (3)
C6—N4—C9—C52174.6 (3)C51—C56—C61—C6461.7 (4)
Ce—N4—C9—C525.4 (5)C93i—O4—C93—C94177.2 (8)
Ce—O1—C11—C127.3 (5)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula2[Ce(C51H75N4O3)]·C4H10O
Mr1938.66
Crystal system, space groupMonoclinic, C2/c
Temperature (K)180
a, b, c (Å)27.840 (6), 16.345 (3), 24.849 (5)
β (°) 111.39 (3)
V3)10528 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.45 × 0.34 × 0.33
Data collection
DiffractometerSTOE IPDS 2T
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
36433, 12973, 9225
Rint0.050
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.087, 1.05
No. of reflections12973
No. of parameters561
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0325P)2 + 19.2734P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.49, 0.87

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support of this work by the Otto-von-Guericke-Universität Magdeburg is gratefully acknowledged. PD thanks the Government of Sachsen-Anhalt for a PhD scholarship.

References

First citationBernhardt, P. V., Flanagan, B. M. & Riley, M. J. (2001). Aust. J. Chem. 54, 229–232.  Web of Science CSD CrossRef CAS Google Scholar
First citationDröse, P., Blaurock, S., Hrib, C. G. & Edelmann, F. T. (2010). Z. Anorg. Allg. Chem. 636, 1431–1434.  Google Scholar
First citationDröse, P. & Gottfriedsen, J. (2008). Z. Anorg. Allg. Chem. 634, 87–90.  Google Scholar
First citationEssig, M. W., Keogh, W., Scott, B. L. & Watkin, J. G. (2001). Polyhedron, 20, 373–377.  Web of Science CSD CrossRef CAS Google Scholar
First citationSalehzadeh, S., Nouri, S. M., Keypour, H. & Bagherzadeh, M. (2005). Polyhedron, 24, 1478–1486.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds