organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Propyl-1H-2,1-benzo­thia­zin-4(3H)-one 2,2-dioxide

aMaterials Chemistry laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 30 September 2010; accepted 11 October 2010; online 20 October 2010)

In the title compound, C11H13NO3S, a benzothia­zine derivative, the heterocycle adopts a sofa conformation. In the crystal, weak C—H⋯O hydrogen bonds connect the mol­ecules into a three-dimensional network.

Related literature

For the synthesis of the title compound, see: Volovenko et al. (2007[Volovenko, Y., Volovenko, T. & Popov, K. (2007). J. Heterocycl. Chem. 44, 1413-1419.]). For a related structure, see: Shafiq et al. (2009[Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Arshad, M. N. (2009). Acta Cryst. E65, o430.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13NO3S

  • Mr = 239.28

  • Triclinic, [P \overline 1]

  • a = 7.9448 (2) Å

  • b = 8.0701 (3) Å

  • c = 9.6267 (2) Å

  • α = 87.468 (2)°

  • β = 84.097 (2)°

  • γ = 64.453 (1)°

  • V = 553.92 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.28 × 0.21 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.967

  • 12058 measured reflections

  • 2765 independent reflections

  • 2229 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.07

  • 2765 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O2i 0.96 2.57 3.346 (2) 138
C8—H8A⋯O3ii 0.97 2.55 3.453 (2) 155
C2—H2⋯O1iii 0.93 2.55 3.4665 (19) 170
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Here we report the crystal structure of title compound in countinuation to the previously published 3,3-dichloro-1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide derivative (Shafiq et al., 2009). The difference between the two compounds is a propyl which differ just only in substitution at N and at the methylene C atom in the benzothiazine ring. The heterocycle adopts a sofa conformation. Weak C—H···O type hydrogen bonds connect the molecules to a three dimensional network.

Related literature top

For the synthesis of the title compound, see: Volovenko et al. (2007). For a related structure, see: Shafiq et al. (2009).

Experimental top

The title compound was prepared following the available literature procedure (Volovenko et al., 2007).

Refinement top

All the C—H H-atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic C—H = 0.97 Å for methylene C—H = 0.96 Å for methyl and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) for aromatic, with Uiso(H) = 1.2 Ueq(C) for methylene, with Uiso(H) = 1.5 Ueq(C) for methyl.

Structure description top

Here we report the crystal structure of title compound in countinuation to the previously published 3,3-dichloro-1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide derivative (Shafiq et al., 2009). The difference between the two compounds is a propyl which differ just only in substitution at N and at the methylene C atom in the benzothiazine ring. The heterocycle adopts a sofa conformation. Weak C—H···O type hydrogen bonds connect the molecules to a three dimensional network.

For the synthesis of the title compound, see: Volovenko et al. (2007). For a related structure, see: Shafiq et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing diagram showing the hydrogen bonding with dashed lines.
1-Propyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide top
Crystal data top
C11H13NO3SZ = 2
Mr = 239.28F(000) = 252
Triclinic, P1Dx = 1.435 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9448 (2) ÅCell parameters from 5097 reflections
b = 8.0701 (3) Åθ = 2.2–21.8°
c = 9.6267 (2) ŵ = 0.28 mm1
α = 87.468 (2)°T = 296 K
β = 84.097 (2)°Needle, light brown
γ = 64.453 (1)°0.28 × 0.21 × 0.12 mm
V = 553.92 (2) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2765 independent reflections
Radiation source: fine-focus sealed tube2229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.925, Tmax = 0.967k = 1010
12058 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.0882P]
where P = (Fo2 + 2Fc2)/3
2765 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C11H13NO3Sγ = 64.453 (1)°
Mr = 239.28V = 553.92 (2) Å3
Triclinic, P1Z = 2
a = 7.9448 (2) ÅMo Kα radiation
b = 8.0701 (3) ŵ = 0.28 mm1
c = 9.6267 (2) ÅT = 296 K
α = 87.468 (2)°0.28 × 0.21 × 0.12 mm
β = 84.097 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2765 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2229 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.967Rint = 0.027
12058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.07Δρmax = 0.30 e Å3
2765 reflectionsΔρmin = 0.38 e Å3
146 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.44648 (6)0.31465 (5)0.66978 (4)0.04181 (14)
O10.2757 (2)0.71661 (17)0.91660 (14)0.0633 (4)
O20.62535 (17)0.25460 (17)0.71992 (15)0.0584 (3)
O30.4391 (2)0.2879 (2)0.52525 (12)0.0680 (4)
N10.31827 (18)0.22605 (17)0.76115 (12)0.0380 (3)
C10.28023 (19)0.26527 (18)0.90617 (14)0.0313 (3)
C20.2496 (2)0.1412 (2)0.99954 (16)0.0408 (3)
H20.25190.03380.96610.049*
C30.2161 (2)0.1770 (2)1.14058 (16)0.0473 (4)
H30.19510.09351.20120.057*
C40.2129 (2)0.3344 (2)1.19393 (17)0.0494 (4)
H40.19470.35491.28980.059*
C50.2372 (2)0.4602 (2)1.10331 (16)0.0421 (3)
H50.23220.56791.13840.051*
C60.26911 (19)0.42939 (18)0.95988 (14)0.0323 (3)
C70.2874 (2)0.57493 (19)0.87064 (16)0.0376 (3)
C80.3163 (3)0.5469 (2)0.71447 (16)0.0447 (4)
H8A0.38120.61710.67230.054*
H8B0.19530.59240.67730.054*
C90.3171 (2)0.0585 (2)0.70536 (16)0.0398 (3)
H9A0.37170.04250.76960.048*
H9B0.39360.02640.61680.048*
C100.1214 (2)0.0854 (2)0.68464 (17)0.0461 (4)
H10A0.04110.13450.76990.055*
H10B0.12360.03310.66730.055*
C110.0384 (3)0.2133 (3)0.5651 (2)0.0662 (5)
H11A0.03390.33150.58210.099*
H11B0.08600.22580.55750.099*
H11C0.11490.16370.47970.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0535 (3)0.0410 (2)0.0377 (2)0.02944 (19)0.01063 (16)0.00505 (15)
O10.0991 (11)0.0410 (7)0.0630 (8)0.0439 (7)0.0020 (7)0.0069 (6)
O20.0442 (7)0.0516 (7)0.0801 (9)0.0240 (6)0.0097 (6)0.0051 (6)
O30.1086 (11)0.0773 (9)0.0367 (7)0.0615 (9)0.0177 (7)0.0119 (6)
N10.0526 (7)0.0369 (6)0.0339 (6)0.0295 (6)0.0055 (5)0.0063 (5)
C10.0338 (7)0.0295 (7)0.0321 (7)0.0157 (5)0.0007 (5)0.0004 (5)
C20.0499 (9)0.0319 (7)0.0438 (8)0.0219 (7)0.0001 (6)0.0035 (6)
C30.0532 (10)0.0467 (9)0.0407 (9)0.0222 (8)0.0008 (7)0.0127 (7)
C40.0580 (10)0.0567 (10)0.0307 (7)0.0227 (8)0.0012 (7)0.0008 (7)
C50.0479 (9)0.0413 (8)0.0382 (8)0.0201 (7)0.0012 (6)0.0070 (6)
C60.0338 (7)0.0294 (7)0.0353 (7)0.0151 (5)0.0021 (5)0.0008 (5)
C70.0419 (8)0.0297 (7)0.0438 (8)0.0184 (6)0.0010 (6)0.0004 (6)
C80.0595 (10)0.0351 (8)0.0426 (8)0.0249 (7)0.0003 (7)0.0064 (6)
C90.0488 (9)0.0321 (7)0.0419 (8)0.0211 (6)0.0016 (6)0.0089 (6)
C100.0573 (10)0.0497 (9)0.0436 (8)0.0347 (8)0.0039 (7)0.0002 (7)
C110.0646 (12)0.0862 (15)0.0562 (11)0.0401 (11)0.0128 (9)0.0161 (10)
Geometric parameters (Å, º) top
S1—O21.4191 (14)C5—C61.3915 (19)
S1—O31.4282 (13)C5—H50.9300
S1—N11.6464 (12)C6—C71.473 (2)
S1—C81.7535 (16)C7—C81.509 (2)
O1—C71.2069 (18)C8—H8A0.9700
N1—C11.4178 (17)C8—H8B0.9700
N1—C91.4808 (17)C9—C101.508 (2)
C1—C21.3982 (19)C9—H9A0.9700
C1—C61.4070 (18)C9—H9B0.9700
C2—C31.375 (2)C10—C111.513 (3)
C2—H20.9300C10—H10A0.9700
C3—C41.380 (2)C10—H10B0.9700
C3—H30.9300C11—H11A0.9600
C4—C51.373 (2)C11—H11B0.9600
C4—H40.9300C11—H11C0.9600
O2—S1—O3117.98 (9)O1—C7—C6122.99 (14)
O2—S1—N1111.54 (7)O1—C7—C8118.84 (13)
O3—S1—N1107.86 (7)C6—C7—C8118.14 (12)
O2—S1—C8107.87 (8)C7—C8—S1111.75 (10)
O3—S1—C8110.27 (9)C7—C8—H8A109.3
N1—S1—C899.80 (7)S1—C8—H8A109.3
C1—N1—C9120.81 (11)C7—C8—H8B109.3
C1—N1—S1116.96 (9)S1—C8—H8B109.3
C9—N1—S1117.37 (10)H8A—C8—H8B107.9
C2—C1—C6118.28 (13)N1—C9—C10111.75 (13)
C2—C1—N1120.18 (12)N1—C9—H9A109.3
C6—C1—N1121.53 (12)C10—C9—H9A109.3
C3—C2—C1120.42 (14)N1—C9—H9B109.3
C3—C2—H2119.8C10—C9—H9B109.3
C1—C2—H2119.8H9A—C9—H9B107.9
C2—C3—C4121.32 (14)C9—C10—C11113.28 (15)
C2—C3—H3119.3C9—C10—H10A108.9
C4—C3—H3119.3C11—C10—H10A108.9
C5—C4—C3118.96 (14)C9—C10—H10B108.9
C5—C4—H4120.5C11—C10—H10B108.9
C3—C4—H4120.5H10A—C10—H10B107.7
C4—C5—C6121.20 (14)C10—C11—H11A109.5
C4—C5—H5119.4C10—C11—H11B109.5
C6—C5—H5119.4H11A—C11—H11B109.5
C5—C6—C1119.74 (13)C10—C11—H11C109.5
C5—C6—C7117.26 (12)H11A—C11—H11C109.5
C1—C6—C7122.99 (12)H11B—C11—H11C109.5
O2—S1—N1—C159.41 (12)C2—C1—C6—C53.0 (2)
O3—S1—N1—C1169.51 (11)N1—C1—C6—C5178.04 (13)
C8—S1—N1—C154.35 (12)C2—C1—C6—C7176.18 (14)
O2—S1—N1—C996.15 (12)N1—C1—C6—C72.8 (2)
O3—S1—N1—C934.93 (14)C5—C6—C7—O10.1 (2)
C8—S1—N1—C9150.09 (12)C1—C6—C7—O1179.13 (15)
C9—N1—C1—C23.0 (2)C5—C6—C7—C8178.19 (13)
S1—N1—C1—C2151.64 (12)C1—C6—C7—C81.0 (2)
C9—N1—C1—C6175.92 (13)O1—C7—C8—S1148.80 (14)
S1—N1—C1—C629.41 (17)C6—C7—C8—S132.99 (17)
C6—C1—C2—C32.2 (2)O2—S1—C8—C761.58 (13)
N1—C1—C2—C3178.80 (14)O3—S1—C8—C7168.29 (11)
C1—C2—C3—C40.5 (2)N1—S1—C8—C754.98 (12)
C2—C3—C4—C52.4 (3)C1—N1—C9—C1082.62 (17)
C3—C4—C5—C61.6 (3)S1—N1—C9—C10122.81 (12)
C4—C5—C6—C11.1 (2)N1—C9—C10—C1170.53 (19)
C4—C5—C6—C7178.08 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O2i0.962.573.346 (2)138
C8—H8A···O3ii0.972.553.453 (2)155
C2—H2···O1iii0.932.553.4665 (19)170
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC11H13NO3S
Mr239.28
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.9448 (2), 8.0701 (3), 9.6267 (2)
α, β, γ (°)87.468 (2), 84.097 (2), 64.453 (1)
V3)553.92 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.28 × 0.21 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.925, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
12058, 2765, 2229
Rint0.027
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.07
No. of reflections2765
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.38

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O2i0.962.573.346 (2)138.4
C8—H8A···O3ii0.972.553.453 (2)155.0
C2—H2···O1iii0.932.553.4665 (19)169.9
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x, y1, z.
 

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant for the project to strengthen the Materials Chemistry Laboratory at GC University Lahore.

References

First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Arshad, M. N. (2009). Acta Cryst. E65, o430.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVolovenko, Y., Volovenko, T. & Popov, K. (2007). J. Heterocycl. Chem. 44, 1413-1419.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds