organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(αR,4R,4aR,6aS,7R,8S,10R,11S)-Methyl α-acet­­oxy-4-(3-furan­yl)-10-hy­dr­oxy-4a,7,9,9-tetra­methyl-2,13-dioxo-1,4,4a,5,6,6a,7,8,9,10,11,12-dodeca­hydro-7,11-methano-2H-cyclo­octa­[f][2]benzo­pyran-8-acetate (6-O-acetyl­swietenolide) from the seeds of Swietenia macrophylla

aInstitute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 October 2010; accepted 6 October 2010; online 13 October 2010)

The mol­ecule of O-acetyl­swietenolide, C29H36O9, isolated from the seeds of Swietenia macrophylla, features four six-membered rings connected together in the shape of a bowl; one of the inner rings adopts a twisted chair conformation owing to the C=C double bond. The furyl substitutent is connected to an outer ring, and it points away from the bowl cavity. The hy­droxy group is connected to a carbonyl O atom of an adjacent mol­ecule by an O—H⋯O hydrogen bond, generating a chain running along the b axis.

Related literature

For the absolute stereochemistry assignment, see: Bickii et al. (2000[Bickii, J., Njifutie, N., Ayafo Foyere, J., Basco, L. K. & Ringwald, P. (2000). J. Enthnopharmacol. 69, 27-33.]); Kadota et al. (1990[Kadota, S., Maraung, L., Kikuchi, T. & Ekimoto, H. (1990). Chem. Pharm. Bull. 36, 639-651.]); Mootoo et al. (1999[Mootoo, B. S., Ali, A., Motilal, R., Pingal, R., Ramlal, A., Khan, A., Reynolds, W. F. & McLean, S. (1999). J. Nat. Prod. 62, 1515-1517.]); Narender et al. (2008[Narender, T., Khaliq, T. & Shweta, T. (2008). Nat. Prod. Res. A22, 763-800.]). For another swietenolide isolated from Swietenia macrophylla, see: Goh et al. (2010[Goh, B. H., Abdul Kadir, H., Abdul Malek, S. N. & Ng, S. W. (2010). Acta Cryst. E66, o1396.]).

[Scheme 1]

Experimental

Crystal data
  • C29H36O9

  • Mr = 528.58

  • Monoclinic, P 21

  • a = 11.5648 (9) Å

  • b = 8.4355 (6) Å

  • c = 14.5082 (11) Å

  • β = 112.985 (1)°

  • V = 1302.98 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 12419 measured reflections

  • 3178 independent reflections

  • 2952 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.100

  • S = 1.00

  • 3178 reflections

  • 353 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O8i 0.84 (1) 1.99 (1) 2.827 (2) 175 (3)
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sweietenia macrophylla is a large mahogany tree growing in the rainforests of Malaysia. The extracts of the seeds contain flavonoids, saponins and alkaloids that are commecialized in local herbal products. A previous study reports the crystal structure of swietenolide diactate (Goh et al., 2010). The title compound (Scheme I, Fig. 1), which was isolated from the same plant, differs only in having a hydroxy group in place of a acetoxy group. The hydroxy group engages in O–H···O hydrogen bonding to generate a chain structure.

Related literature top

For the absolute stereochemistry assignment, see: Bickii et al. (2000); Kadota et al. (1990); Mootoo et al. (1999); Narender et al. (2008). For another swietenolide isolated from Swietenia macrophylla, see: Goh et al. (2010).

Experimental top

The finely ground seeds ofSweietenia macrophylla (600 g) were soaked in ethanol at room temperature for three days. The mixture was filtered and the solvent evaporated to give a dark yellow crude material (70 g). A portion (40 g) was successively extracted with n-hexane, ethyl acetate and water to give an n-hexane-insoluble residue. The residue was partitioned between ethyl acetate-water (1:1) to give an ethyl acetate-soluble fraction (30 g, 80%).

This fraction (3 g) was subjected to column chromatography on silica gel (70–230 mesh, 300 g), with initial elution by n-hexane, followed by increasing proportions of chloroform. Eleven fractions were obtained. The fourth fraction (2 g) was further subjected to column chromatography (70–230 mesh,200 g), initially eluting with n-hexane and later with acetone to give twelve fractions.

The eighth fraction (600 mg) was dissolved in methanol and kept in a refrigerator. A white solid was obtained after two days, and a second crop was obtained after another two days. Recrystallization of the first crop from chloroform yielded colorless crystals of the swietenolide diacetate (yield 15 mg). The ninth fraction (80 mg) yielded O-acetylswietenolide (13 mg) after recrystalization from chloroform.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The hydroxy H-atom was located in a difference Fourier map, and was refined isotropically with a distance restraint of O–H 0.84±0.01 Å.

2201 Friedel pairs were merged.

Structure description top

Sweietenia macrophylla is a large mahogany tree growing in the rainforests of Malaysia. The extracts of the seeds contain flavonoids, saponins and alkaloids that are commecialized in local herbal products. A previous study reports the crystal structure of swietenolide diactate (Goh et al., 2010). The title compound (Scheme I, Fig. 1), which was isolated from the same plant, differs only in having a hydroxy group in place of a acetoxy group. The hydroxy group engages in O–H···O hydrogen bonding to generate a chain structure.

For the absolute stereochemistry assignment, see: Bickii et al. (2000); Kadota et al. (1990); Mootoo et al. (1999); Narender et al. (2008). For another swietenolide isolated from Swietenia macrophylla, see: Goh et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C29H36O9 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
(αR,4R,4aR,6aS,7R,8S,10R, 11S)-Methyl α-acetoxy-4-(3-furanyl)-10-hydroxy-4a,7,9,9-tetramethyl-2,13-dioxo- 1,4,4a,5,6,6a,7,8,9,10,11,12-dodecahydro-7,11-methano-2H- cycloocta[f][2]benzopyran-8-acetate top
Crystal data top
C29H36O9F(000) = 564
Mr = 528.58Dx = 1.347 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4876 reflections
a = 11.5648 (9) Åθ = 2.9–28.1°
b = 8.4355 (6) ŵ = 0.10 mm1
c = 14.5082 (11) ÅT = 100 K
β = 112.985 (1)°Prism, colorless
V = 1302.98 (17) Å30.35 × 0.15 × 0.05 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
2952 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
ω scansh = 1515
12419 measured reflectionsk = 1010
3178 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0733P)2 + 0.1429P]
where P = (Fo2 + 2Fc2)/3
3178 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 0.27 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C29H36O9V = 1302.98 (17) Å3
Mr = 528.58Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.5648 (9) ŵ = 0.10 mm1
b = 8.4355 (6) ÅT = 100 K
c = 14.5082 (11) Å0.35 × 0.15 × 0.05 mm
β = 112.985 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2952 reflections with I > 2σ(I)
12419 measured reflectionsRint = 0.034
3178 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.27 e Å3
3178 reflectionsΔρmin = 0.20 e Å3
353 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61851 (17)0.5009 (2)1.01707 (12)0.0283 (4)
O20.47929 (19)1.1423 (2)0.73073 (15)0.0344 (4)
O30.55291 (15)0.92107 (19)0.81247 (12)0.0198 (3)
O40.87219 (16)0.6373 (2)0.44745 (12)0.0257 (4)
O50.89022 (14)0.99908 (19)0.69927 (12)0.0200 (3)
H50.945 (2)1.059 (3)0.7393 (18)0.024 (7)*
O60.92901 (15)0.6390 (2)0.91487 (12)0.0264 (4)
O71.12489 (15)0.5429 (2)0.96568 (11)0.0224 (4)
O81.06597 (15)0.21550 (19)0.82808 (12)0.0218 (3)
O91.10687 (14)0.46053 (18)0.78928 (12)0.0169 (3)
C10.4977 (2)0.5532 (3)0.98089 (18)0.0268 (5)
H10.43650.52021.00540.032*
C20.4760 (2)0.6575 (3)0.90604 (17)0.0237 (5)
H20.39900.70970.86880.028*
C30.5928 (2)0.6741 (3)0.89368 (16)0.0184 (4)
C40.6748 (2)0.5781 (3)0.96307 (17)0.0252 (5)
H40.76050.56600.97300.030*
C50.61902 (19)0.7714 (3)0.81867 (16)0.0162 (4)
H5A0.71120.79370.84510.019*
C60.5376 (2)1.0223 (3)0.73623 (17)0.0200 (4)
C70.5993 (2)0.9818 (3)0.66575 (16)0.0174 (4)
H7A0.68141.03700.68920.021*
H7B0.54711.02610.59930.021*
C80.62213 (18)0.8084 (3)0.65186 (15)0.0144 (4)
C90.57977 (19)0.6948 (3)0.71383 (16)0.0156 (4)
C100.4363 (2)0.6743 (3)0.66379 (17)0.0203 (5)
H10A0.41330.63340.59570.030*
H10B0.39550.77700.66100.030*
H10C0.40880.59950.70280.030*
C110.6478 (2)0.5347 (2)0.72606 (16)0.0159 (4)
H11A0.73480.54600.77620.019*
H11B0.60460.45530.75170.019*
C120.6513 (2)0.4750 (3)0.62825 (16)0.0178 (4)
H12A0.56460.45030.58130.021*
H12B0.70020.37510.64150.021*
C130.70907 (19)0.5924 (3)0.57788 (16)0.0159 (4)
H130.66770.57060.50440.019*
C140.67811 (19)0.7634 (3)0.59133 (15)0.0148 (4)
C150.7178 (2)0.8800 (3)0.53024 (16)0.0183 (4)
H15A0.70450.98910.54930.022*
H15B0.66380.86550.45850.022*
C160.8571 (2)0.8611 (3)0.54462 (17)0.0186 (4)
H160.87120.92380.49140.022*
C170.8692 (2)0.6869 (3)0.52527 (16)0.0189 (4)
C180.85658 (19)0.5781 (3)0.60545 (16)0.0153 (4)
C190.8895 (2)0.4080 (3)0.58576 (17)0.0189 (4)
H19A0.83200.37420.51890.028*
H19B0.88130.33640.63610.028*
H19C0.97600.40500.58970.028*
C200.93657 (19)0.6467 (2)0.71258 (15)0.0125 (4)
H200.87500.70490.73290.015*
C211.03242 (19)0.7743 (3)0.71073 (16)0.0154 (4)
C220.9545 (2)0.9152 (3)0.64803 (17)0.0185 (4)
H221.01390.99060.63610.022*
C231.1253 (2)0.7223 (3)0.66323 (18)0.0211 (5)
H23A1.18430.64420.70670.032*
H23B1.17190.81490.65550.032*
H23C1.07850.67480.59750.032*
C241.1129 (2)0.8349 (3)0.81604 (17)0.0198 (5)
H24A1.17010.75080.85410.030*
H24B1.05820.86560.85030.030*
H24C1.16180.92700.81100.030*
C250.99178 (19)0.5175 (2)0.79253 (15)0.0146 (4)
H250.93100.42710.77530.018*
C261.0111 (2)0.5757 (3)0.89756 (16)0.0179 (4)
C271.1475 (3)0.5980 (4)1.06570 (19)0.0352 (7)
H27A1.23820.60541.10470.053*
H27B1.11050.52331.09820.053*
H27C1.10920.70271.06200.053*
C281.1339 (2)0.3050 (3)0.80775 (16)0.0166 (4)
C291.2531 (2)0.2641 (3)0.79648 (18)0.0216 (5)
H29A1.23560.24380.72580.032*
H29B1.28980.16910.83590.032*
H29C1.31230.35260.82040.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0289 (9)0.0383 (10)0.0209 (8)0.0019 (8)0.0133 (7)0.0061 (7)
O20.0402 (11)0.0271 (9)0.0458 (11)0.0131 (9)0.0274 (9)0.0032 (9)
O30.0224 (8)0.0193 (7)0.0225 (8)0.0008 (6)0.0140 (7)0.0051 (6)
O40.0284 (9)0.0365 (9)0.0172 (8)0.0106 (8)0.0142 (7)0.0037 (7)
O50.0157 (7)0.0171 (7)0.0276 (9)0.0008 (6)0.0090 (7)0.0000 (6)
O60.0182 (8)0.0465 (10)0.0158 (8)0.0061 (8)0.0079 (6)0.0018 (8)
O70.0201 (8)0.0307 (9)0.0139 (7)0.0063 (7)0.0038 (6)0.0016 (7)
O80.0229 (8)0.0159 (7)0.0267 (9)0.0003 (6)0.0097 (7)0.0020 (7)
O90.0141 (7)0.0146 (7)0.0230 (8)0.0029 (6)0.0084 (6)0.0025 (6)
C10.0251 (11)0.0347 (13)0.0254 (12)0.0046 (10)0.0150 (10)0.0012 (10)
C20.0208 (11)0.0304 (12)0.0249 (12)0.0033 (10)0.0142 (9)0.0012 (10)
C30.0196 (10)0.0231 (11)0.0150 (10)0.0037 (9)0.0096 (8)0.0058 (8)
C40.0219 (11)0.0363 (13)0.0198 (11)0.0019 (10)0.0105 (9)0.0025 (10)
C50.0134 (9)0.0197 (10)0.0170 (10)0.0018 (8)0.0077 (8)0.0030 (8)
C60.0172 (10)0.0220 (10)0.0223 (11)0.0000 (9)0.0095 (9)0.0044 (9)
C70.0158 (10)0.0195 (10)0.0182 (10)0.0031 (8)0.0081 (8)0.0009 (8)
C80.0081 (9)0.0189 (10)0.0132 (10)0.0018 (7)0.0010 (7)0.0003 (8)
C90.0116 (9)0.0203 (10)0.0151 (9)0.0016 (8)0.0053 (8)0.0032 (8)
C100.0137 (10)0.0282 (12)0.0199 (10)0.0035 (9)0.0076 (8)0.0071 (9)
C110.0161 (9)0.0175 (10)0.0167 (10)0.0035 (8)0.0094 (8)0.0018 (8)
C120.0165 (10)0.0189 (10)0.0200 (10)0.0024 (8)0.0091 (8)0.0044 (8)
C130.0116 (9)0.0201 (10)0.0152 (10)0.0017 (8)0.0045 (8)0.0032 (8)
C140.0105 (9)0.0203 (10)0.0124 (9)0.0026 (8)0.0031 (7)0.0008 (8)
C150.0147 (10)0.0249 (10)0.0156 (10)0.0057 (9)0.0063 (8)0.0051 (9)
C160.0183 (11)0.0241 (11)0.0182 (10)0.0055 (8)0.0123 (9)0.0081 (9)
C170.0136 (10)0.0274 (11)0.0172 (10)0.0050 (8)0.0077 (8)0.0045 (9)
C180.0131 (9)0.0193 (10)0.0146 (9)0.0019 (8)0.0066 (8)0.0007 (8)
C190.0188 (10)0.0228 (11)0.0174 (10)0.0027 (9)0.0096 (9)0.0033 (8)
C200.0108 (8)0.0141 (9)0.0127 (9)0.0029 (7)0.0045 (7)0.0010 (7)
C210.0129 (9)0.0161 (9)0.0201 (10)0.0013 (8)0.0096 (8)0.0029 (8)
C220.0154 (10)0.0159 (10)0.0260 (11)0.0030 (8)0.0102 (9)0.0068 (8)
C230.0134 (10)0.0234 (10)0.0303 (12)0.0039 (8)0.0126 (9)0.0074 (9)
C240.0148 (10)0.0168 (10)0.0259 (12)0.0007 (8)0.0058 (9)0.0002 (8)
C250.0127 (9)0.0145 (9)0.0173 (10)0.0012 (8)0.0065 (8)0.0014 (8)
C260.0169 (10)0.0218 (10)0.0157 (10)0.0007 (9)0.0071 (8)0.0028 (8)
C270.0271 (13)0.0530 (18)0.0161 (11)0.0144 (13)0.0017 (10)0.0026 (11)
C280.0178 (10)0.0147 (10)0.0139 (10)0.0019 (8)0.0026 (8)0.0014 (8)
C290.0183 (10)0.0187 (10)0.0276 (12)0.0055 (9)0.0089 (9)0.0002 (9)
Geometric parameters (Å, º) top
O1—C11.360 (3)C12—H12B0.9900
O1—C41.364 (3)C13—C141.518 (3)
O2—C61.202 (3)C13—C181.597 (3)
O3—C61.353 (3)C13—H131.0000
O3—C51.461 (3)C14—C151.510 (3)
O4—C171.217 (3)C15—C161.550 (3)
O5—C221.427 (3)C15—H15A0.9900
O5—H50.84 (1)C15—H15B0.9900
O6—C261.198 (3)C16—C171.513 (3)
O7—C261.330 (3)C16—C221.552 (3)
O7—C271.447 (3)C16—H161.0000
O8—C281.206 (3)C17—C181.533 (3)
O9—C281.351 (3)C18—C191.540 (3)
O9—C251.433 (2)C18—C201.576 (3)
C1—C21.343 (4)C19—H19A0.9800
C1—H10.9500C19—H19B0.9800
C2—C31.438 (3)C19—H19C0.9800
C2—H20.9500C20—C251.537 (3)
C3—C41.350 (3)C20—C211.553 (3)
C3—C51.486 (3)C20—H201.0000
C4—H40.9500C21—C241.533 (3)
C5—C91.548 (3)C21—C231.549 (3)
C5—H5A1.0000C21—C221.553 (3)
C6—C71.497 (3)C22—H221.0000
C7—C81.513 (3)C23—H23A0.9800
C7—H7A0.9900C23—H23B0.9800
C7—H7B0.9900C23—H23C0.9800
C8—C141.333 (3)C24—H24A0.9800
C8—C91.520 (3)C24—H24B0.9800
C9—C111.538 (3)C24—H24C0.9800
C9—C101.539 (3)C25—C261.532 (3)
C10—H10A0.9800C25—H251.0000
C10—H10B0.9800C27—H27A0.9800
C10—H10C0.9800C27—H27B0.9800
C11—C121.521 (3)C27—H27C0.9800
C11—H11A0.9900C28—C291.490 (3)
C11—H11B0.9900C29—H29A0.9800
C12—C131.530 (3)C29—H29B0.9800
C12—H12A0.9900C29—H29C0.9800
C1—O1—C4105.78 (19)C17—C16—C22112.35 (18)
C6—O3—C5119.61 (16)C15—C16—C22115.07 (18)
C22—O5—H5104 (2)C17—C16—H16108.4
C26—O7—C27114.67 (18)C15—C16—H16108.4
C28—O9—C25117.71 (17)C22—C16—H16108.4
C2—C1—O1111.4 (2)O4—C17—C16123.0 (2)
C2—C1—H1124.3O4—C17—C18122.9 (2)
O1—C1—H1124.3C16—C17—C18113.45 (18)
C1—C2—C3106.0 (2)C17—C18—C19108.29 (17)
C1—C2—H2127.0C17—C18—C20109.63 (18)
C3—C2—H2127.0C19—C18—C20115.63 (17)
C4—C3—C2105.6 (2)C17—C18—C13100.00 (16)
C4—C3—C5126.4 (2)C19—C18—C13109.91 (18)
C2—C3—C5128.0 (2)C20—C18—C13112.19 (16)
C3—C4—O1111.2 (2)C18—C19—H19A109.5
C3—C4—H4124.4C18—C19—H19B109.5
O1—C4—H4124.4H19A—C19—H19B109.5
O3—C5—C3105.74 (16)C18—C19—H19C109.5
O3—C5—C9110.76 (17)H19A—C19—H19C109.5
C3—C5—C9115.06 (18)H19B—C19—H19C109.5
O3—C5—H5A108.4C25—C20—C21114.55 (16)
C3—C5—H5A108.4C25—C20—C18113.28 (17)
C9—C5—H5A108.4C21—C20—C18112.67 (16)
O2—C6—O3118.5 (2)C25—C20—H20105.1
O2—C6—C7123.5 (2)C21—C20—H20105.1
O3—C6—C7117.99 (19)C18—C20—H20105.1
C6—C7—C8117.74 (19)C24—C21—C23106.33 (18)
C6—C7—H7A107.9C24—C21—C20111.93 (17)
C8—C7—H7A107.9C23—C21—C20115.78 (18)
C6—C7—H7B107.9C24—C21—C22108.43 (18)
C8—C7—H7B107.9C23—C21—C22107.51 (17)
H7A—C7—H7B107.2C20—C21—C22106.60 (16)
C14—C8—C7121.15 (19)O5—C22—C16108.69 (17)
C14—C8—C9124.17 (19)O5—C22—C21112.06 (17)
C7—C8—C9114.66 (17)C16—C22—C21112.18 (18)
C8—C9—C11110.70 (16)O5—C22—H22107.9
C8—C9—C10109.21 (18)C16—C22—H22107.9
C11—C9—C10111.35 (18)C21—C22—H22107.9
C8—C9—C5106.23 (16)C21—C23—H23A109.5
C11—C9—C5108.21 (17)C21—C23—H23B109.5
C10—C9—C5111.03 (17)H23A—C23—H23B109.5
C9—C10—H10A109.5C21—C23—H23C109.5
C9—C10—H10B109.5H23A—C23—H23C109.5
H10A—C10—H10B109.5H23B—C23—H23C109.5
C9—C10—H10C109.5C21—C24—H24A109.5
H10A—C10—H10C109.5C21—C24—H24B109.5
H10B—C10—H10C109.5H24A—C24—H24B109.5
C12—C11—C9112.46 (17)C21—C24—H24C109.5
C12—C11—H11A109.1H24A—C24—H24C109.5
C9—C11—H11A109.1H24B—C24—H24C109.5
C12—C11—H11B109.1O9—C25—C26111.32 (17)
C9—C11—H11B109.1O9—C25—C20109.29 (16)
H11A—C11—H11B107.8C26—C25—C20112.31 (17)
C11—C12—C13114.02 (17)O9—C25—H25107.9
C11—C12—H12A108.7C26—C25—H25107.9
C13—C12—H12A108.7C20—C25—H25107.9
C11—C12—H12B108.7O6—C26—O7124.9 (2)
C13—C12—H12B108.7O6—C26—C25122.11 (19)
H12A—C12—H12B107.6O7—C26—C25112.95 (18)
C14—C13—C12112.65 (17)O7—C27—H27A109.5
C14—C13—C18108.77 (17)O7—C27—H27B109.5
C12—C13—C18117.01 (18)H27A—C27—H27B109.5
C14—C13—H13105.9O7—C27—H27C109.5
C12—C13—H13105.9H27A—C27—H27C109.5
C18—C13—H13105.9H27B—C27—H27C109.5
C8—C14—C15122.6 (2)O8—C28—O9122.2 (2)
C8—C14—C13123.70 (19)O8—C28—C29126.9 (2)
C15—C14—C13113.74 (17)O9—C28—C29110.79 (19)
C14—C15—C16113.10 (17)C28—C29—H29A109.5
C14—C15—H15A109.0C28—C29—H29B109.5
C16—C15—H15A109.0H29A—C29—H29B109.5
C14—C15—H15B109.0C28—C29—H29C109.5
C16—C15—H15B109.0H29A—C29—H29C109.5
H15A—C15—H15B107.8H29B—C29—H29C109.5
C17—C16—C15103.94 (19)
C4—O1—C1—C20.9 (3)C15—C16—C17—C1868.0 (2)
O1—C1—C2—C30.4 (3)C22—C16—C17—C1857.1 (2)
C1—C2—C3—C40.3 (3)O4—C17—C18—C1917.1 (3)
C1—C2—C3—C5177.9 (2)C16—C17—C18—C19171.89 (18)
C2—C3—C4—O10.9 (3)O4—C17—C18—C20144.1 (2)
C5—C3—C4—O1177.3 (2)C16—C17—C18—C2044.9 (2)
C1—O1—C4—C31.1 (3)O4—C17—C18—C1397.9 (2)
C6—O3—C5—C3166.70 (18)C16—C17—C18—C1373.1 (2)
C6—O3—C5—C941.4 (2)C14—C13—C18—C1762.5 (2)
C4—C3—C5—O3140.9 (2)C12—C13—C18—C17168.46 (18)
C2—C3—C5—O341.3 (3)C14—C13—C18—C19176.26 (17)
C4—C3—C5—C996.5 (3)C12—C13—C18—C1954.7 (2)
C2—C3—C5—C981.3 (3)C14—C13—C18—C2053.6 (2)
C5—O3—C6—O2177.6 (2)C12—C13—C18—C2075.4 (2)
C5—O3—C6—C75.1 (3)C17—C18—C20—C25147.54 (17)
O2—C6—C7—C8155.4 (2)C19—C18—C20—C2524.8 (2)
O3—C6—C7—C827.5 (3)C13—C18—C20—C25102.3 (2)
C6—C7—C8—C14179.1 (2)C17—C18—C20—C2115.5 (2)
C6—C7—C8—C90.7 (3)C19—C18—C20—C21107.2 (2)
C14—C8—C9—C1119.3 (3)C13—C18—C20—C21125.63 (18)
C7—C8—C9—C11159.00 (18)C25—C20—C21—C2446.3 (2)
C14—C8—C9—C10103.6 (2)C18—C20—C21—C24177.77 (17)
C7—C8—C9—C1078.1 (2)C25—C20—C21—C2375.7 (2)
C14—C8—C9—C5136.6 (2)C18—C20—C21—C2355.7 (2)
C7—C8—C9—C541.7 (2)C25—C20—C21—C22164.74 (17)
O3—C5—C9—C863.6 (2)C18—C20—C21—C2263.8 (2)
C3—C5—C9—C8176.52 (18)C17—C16—C22—O5129.80 (18)
O3—C5—C9—C11177.45 (16)C15—C16—C22—O511.1 (2)
C3—C5—C9—C1157.6 (2)C17—C16—C22—C215.3 (2)
O3—C5—C9—C1055.0 (2)C15—C16—C22—C21113.3 (2)
C3—C5—C9—C1064.9 (2)C24—C21—C22—O549.9 (2)
C8—C9—C11—C1245.1 (2)C23—C21—C22—O5164.50 (18)
C10—C9—C11—C1276.6 (2)C20—C21—C22—O570.7 (2)
C5—C9—C11—C12161.11 (17)C24—C21—C22—C16172.51 (17)
C9—C11—C12—C1355.3 (2)C23—C21—C22—C1672.9 (2)
C11—C12—C13—C1435.6 (3)C20—C21—C22—C1651.8 (2)
C11—C12—C13—C1891.5 (2)C28—O9—C25—C2690.9 (2)
C7—C8—C14—C152.3 (3)C28—O9—C25—C20144.50 (18)
C9—C8—C14—C15179.45 (19)C21—C20—C25—O947.2 (2)
C7—C8—C14—C13177.06 (19)C18—C20—C25—O984.0 (2)
C9—C8—C14—C131.2 (3)C21—C20—C25—C2676.9 (2)
C12—C13—C14—C88.9 (3)C18—C20—C25—C26151.96 (17)
C18—C13—C14—C8122.5 (2)C27—O7—C26—O63.3 (4)
C12—C13—C14—C15171.68 (18)C27—O7—C26—C25179.2 (2)
C18—C13—C14—C1556.9 (2)O9—C25—C26—O6174.3 (2)
C8—C14—C15—C16127.9 (2)C20—C25—C26—O651.4 (3)
C13—C14—C15—C1651.6 (3)O9—C25—C26—O78.1 (3)
C14—C15—C16—C1752.2 (2)C20—C25—C26—O7131.01 (19)
C14—C15—C16—C2271.1 (2)C25—O9—C28—O81.2 (3)
C15—C16—C17—O4103.1 (2)C25—O9—C28—C29177.21 (17)
C22—C16—C17—O4131.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O8i0.84 (1)1.99 (1)2.827 (2)175 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC29H36O9
Mr528.58
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)11.5648 (9), 8.4355 (6), 14.5082 (11)
β (°) 112.985 (1)
V3)1302.98 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.15 × 0.05
Data collection
DiffractometerBruker SMART APEX
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12419, 3178, 2952
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.100, 1.00
No. of reflections3178
No. of parameters353
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O8i0.84 (1)1.99 (1)2.827 (2)175 (3)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBickii, J., Njifutie, N., Ayafo Foyere, J., Basco, L. K. & Ringwald, P. (2000). J. Enthnopharmacol. 69, 27–33.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGoh, B. H., Abdul Kadir, H., Abdul Malek, S. N. & Ng, S. W. (2010). Acta Cryst. E66, o1396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKadota, S., Maraung, L., Kikuchi, T. & Ekimoto, H. (1990). Chem. Pharm. Bull. 36, 639–651.  CrossRef Google Scholar
First citationMootoo, B. S., Ali, A., Motilal, R., Pingal, R., Ramlal, A., Khan, A., Reynolds, W. F. & McLean, S. (1999). J. Nat. Prod. 62, 1515–1517.  Web of Science CrossRef Google Scholar
First citationNarender, T., Khaliq, T. & Shweta, T. (2008). Nat. Prod. Res. A22, 763–800.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds