organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(Piperidin-1-yl)carbo­thioyl]benz­amide

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia
*Correspondence e-mail: mbkassim@ukm.my

(Received 12 October 2010; accepted 15 October 2010; online 23 October 2010)

In the title compound, C13H16N2OS, the piperidine ring exhibit a classical chair conformation. In the crystal, the mol­ecules are linked by N—H⋯O hydrogen bonds, forming zigzag chains running parallel to the c axis.

Related literature

For complexes with the title compound as a ligand, see: Mohamadou et al. (1994[Mohamadou, A., Dechamps-Olivier, I. & Barbier, J. (1994). Polyhedron, 13, 1363-1370.]); Salyn et al. (1977[Salyn, J. V., Zumadilov, E. K., Nefedov, V. I., Scheibe, R., Leonhardt, G., Beyer, L. & Hoyer, E. (1977). Z. Anorg. Allg. Chem. 432, 275-279.]); Röbisch et al. (1982[Röbisch, G., Ludwig, E., Bansse, W. R. & Szargan, R. (1982). Z. Anorg. Allg. Chem. 493, 26-32.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16N2OS

  • Mr = 248.34

  • Monoclinic, P 21 /c

  • a = 10.913 (3) Å

  • b = 14.297 (4) Å

  • c = 8.323 (2) Å

  • β = 102.212 (6)°

  • V = 1269.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.50 × 0.41 × 0.38 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.889, Tmax = 0.915

  • 7091 measured reflections

  • 2221 independent reflections

  • 1727 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.126

  • S = 1.08

  • 2221 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.18 2.949 (2) 149
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N,N-dialkyl-N'-benzoyl thioureas are known to form stable complexes with lage number of transition metals. The title compound has been used extensivelly as ligand to form stable complexes with Cu, Ni, Co, Pt, Pd, Hg, Ru, Os, Rh and Ir (Mohamadou et al., 1994; Salyn et al., 1977; Röbisch et al., 1982). The six-membered piperidine ring has a classical chair conformation.

In the crystal, the molecules are linked by N—H···O hydrogen bonds forming zigzag chains running parallel to the crystallographic c-axis.

Related literature top

For complexes with the title compound as a ligand, see: Mohamadou et al. (1994); Salyn et al. (1977); Röbisch et al. (1982).

Experimental top

A solution of benzoyl chloride (10 mmol) in acetone was added slowly to a equimolar solution of ammonium thiocyanate in acetone. The reaction mixture was stirred at room temperature before adding piperidine (10 mmol) slowly and left stirring at room temperature for 4 h. The mixture was poured on to a water-ice mixture and then filtered. The pure product was recrystallized to give colourless crystals (70% yield).

Refinement top

H atom positions were calculated and they were refined using a riding model with Uiso=1.2Ueq(C,N) and with Caromatic-H = 0.93 Å or C-H = 0.97 Å, and N-H = 0.86 Å.

Structure description top

N,N-dialkyl-N'-benzoyl thioureas are known to form stable complexes with lage number of transition metals. The title compound has been used extensivelly as ligand to form stable complexes with Cu, Ni, Co, Pt, Pd, Hg, Ru, Os, Rh and Ir (Mohamadou et al., 1994; Salyn et al., 1977; Röbisch et al., 1982). The six-membered piperidine ring has a classical chair conformation.

In the crystal, the molecules are linked by N—H···O hydrogen bonds forming zigzag chains running parallel to the crystallographic c-axis.

For complexes with the title compound as a ligand, see: Mohamadou et al. (1994); Salyn et al. (1977); Röbisch et al. (1982).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of N-(piperidine-1-carbamothioyl)benzamide, with displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the c-axis. Hydrogen bonds are drawn as dashed lines.
N-[(Piperidin-1-yl)carbothioyl]benzamide top
Crystal data top
C13H16N2OSF(000) = 528
Mr = 248.34Dx = 1.300 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1679 reflections
a = 10.913 (3) Åθ = 1.9–25.0°
b = 14.297 (4) ŵ = 0.24 mm1
c = 8.323 (2) ÅT = 298 K
β = 102.212 (6)°Needle, colourless
V = 1269.2 (6) Å30.50 × 0.41 × 0.38 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2221 independent reflections
Radiation source: fine-focus sealed tube1727 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scanθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 128
Tmin = 0.889, Tmax = 0.915k = 1617
7091 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.1087P]
where P = (Fo2 + 2Fc2)/3
2221 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H16N2OSV = 1269.2 (6) Å3
Mr = 248.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.913 (3) ŵ = 0.24 mm1
b = 14.297 (4) ÅT = 298 K
c = 8.323 (2) Å0.50 × 0.41 × 0.38 mm
β = 102.212 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2221 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1727 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.915Rint = 0.031
7091 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.08Δρmax = 0.29 e Å3
2221 reflectionsΔρmin = 0.27 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.93006 (6)0.86988 (4)0.12334 (8)0.0562 (2)
O11.15395 (14)0.65828 (11)0.05387 (17)0.0500 (4)
N11.07366 (15)0.72851 (13)0.2538 (2)0.0419 (4)
H1A1.08640.74270.35640.050*
N20.88426 (17)0.68658 (13)0.0845 (2)0.0444 (5)
C11.2732 (2)0.63954 (15)0.4875 (3)0.0472 (6)
H1B1.19680.64240.52010.057*
C21.3821 (3)0.61791 (16)0.6010 (3)0.0546 (6)
H2A1.37900.60720.71020.066*
C31.4937 (2)0.61231 (16)0.5526 (3)0.0560 (7)
H3A1.56650.59810.62940.067*
C41.4996 (2)0.62748 (16)0.3912 (3)0.0526 (6)
H4A1.57600.62300.35900.063*
C51.3923 (2)0.64924 (15)0.2774 (3)0.0448 (5)
H5A1.39610.65890.16810.054*
C61.27884 (19)0.65682 (14)0.3256 (2)0.0385 (5)
C71.1646 (2)0.68059 (14)0.1983 (2)0.0393 (5)
C80.95923 (19)0.75579 (16)0.1496 (2)0.0404 (5)
C90.9072 (2)0.58599 (16)0.1188 (3)0.0521 (6)
H9A0.98040.57850.20710.062*
H9B0.92430.55540.02180.062*
C100.7954 (2)0.53997 (16)0.1670 (3)0.0502 (6)
H10A0.80990.47310.17820.060*
H10B0.78640.56400.27290.060*
C110.6756 (2)0.55748 (17)0.0417 (3)0.0576 (7)
H11A0.60510.53190.08130.069*
H11B0.67970.52640.06050.069*
C120.6569 (2)0.66148 (17)0.0119 (3)0.0511 (6)
H12A0.58260.67170.07360.061*
H12B0.64380.69140.11150.061*
C130.7685 (2)0.70500 (17)0.0388 (3)0.0491 (6)
H13A0.77670.67960.14410.059*
H13B0.75590.77200.05140.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0585 (4)0.0490 (4)0.0571 (4)0.0034 (3)0.0029 (3)0.0042 (3)
O10.0432 (9)0.0702 (11)0.0352 (9)0.0035 (8)0.0048 (7)0.0055 (7)
N10.0350 (10)0.0584 (11)0.0305 (9)0.0052 (9)0.0028 (7)0.0008 (7)
N20.0314 (10)0.0495 (11)0.0489 (10)0.0030 (9)0.0009 (8)0.0062 (8)
C10.0428 (13)0.0551 (14)0.0431 (13)0.0013 (11)0.0078 (10)0.0043 (10)
C20.0624 (16)0.0561 (15)0.0399 (13)0.0032 (13)0.0013 (11)0.0079 (10)
C30.0446 (14)0.0504 (14)0.0619 (16)0.0031 (11)0.0136 (12)0.0039 (11)
C40.0352 (13)0.0545 (15)0.0653 (16)0.0000 (11)0.0044 (11)0.0026 (11)
C50.0383 (12)0.0496 (13)0.0456 (12)0.0010 (10)0.0065 (10)0.0002 (10)
C60.0341 (12)0.0411 (11)0.0387 (11)0.0015 (9)0.0042 (9)0.0004 (9)
C70.0342 (12)0.0475 (12)0.0359 (11)0.0035 (10)0.0065 (9)0.0032 (9)
C80.0351 (11)0.0556 (13)0.0313 (10)0.0023 (10)0.0084 (9)0.0030 (9)
C90.0374 (13)0.0471 (13)0.0689 (16)0.0065 (11)0.0051 (11)0.0026 (11)
C100.0447 (14)0.0438 (12)0.0586 (13)0.0018 (11)0.0033 (11)0.0000 (10)
C110.0454 (14)0.0603 (15)0.0625 (15)0.0081 (12)0.0012 (12)0.0025 (12)
C120.0338 (12)0.0640 (15)0.0505 (13)0.0001 (11)0.0027 (10)0.0025 (11)
C130.0396 (13)0.0599 (14)0.0420 (12)0.0039 (11)0.0041 (10)0.0062 (10)
Geometric parameters (Å, º) top
S1—C81.667 (2)C5—C61.385 (3)
O1—C71.225 (2)C5—H5A0.9300
N1—C71.364 (3)C6—C71.495 (3)
N1—C81.416 (3)C9—C101.514 (3)
N1—H1A0.8600C9—H9A0.9700
N2—C81.325 (3)C9—H9B0.9700
N2—C131.473 (3)C10—C111.511 (3)
N2—C91.477 (3)C10—H10A0.9700
C1—C61.385 (3)C10—H10B0.9700
C1—C21.388 (3)C11—C121.514 (3)
C1—H1B0.9300C11—H11A0.9700
C2—C31.364 (4)C11—H11B0.9700
C2—H2A0.9300C12—C131.506 (3)
C3—C41.376 (3)C12—H12A0.9700
C3—H3A0.9300C12—H12B0.9700
C4—C51.377 (3)C13—H13A0.9700
C4—H4A0.9300C13—H13B0.9700
C7—N1—C8122.74 (17)N2—C9—C10111.15 (18)
C7—N1—H1A118.6N2—C9—H9A109.4
C8—N1—H1A118.6C10—C9—H9A109.4
C8—N2—C13121.05 (18)N2—C9—H9B109.4
C8—N2—C9125.68 (18)C10—C9—H9B109.4
C13—N2—C9113.22 (18)H9A—C9—H9B108.0
C6—C1—C2119.6 (2)C11—C10—C9111.9 (2)
C6—C1—H1B120.2C11—C10—H10A109.2
C2—C1—H1B120.2C9—C10—H10A109.2
C3—C2—C1120.2 (2)C11—C10—H10B109.2
C3—C2—H2A119.9C9—C10—H10B109.2
C1—C2—H2A119.9H10A—C10—H10B107.9
C2—C3—C4120.5 (2)C10—C11—C12110.07 (19)
C2—C3—H3A119.7C10—C11—H11A109.6
C4—C3—H3A119.7C12—C11—H11A109.6
C3—C4—C5119.9 (2)C10—C11—H11B109.6
C3—C4—H4A120.0C12—C11—H11B109.6
C5—C4—H4A120.0H11A—C11—H11B108.2
C4—C5—C6120.1 (2)C13—C12—C11111.2 (2)
C4—C5—H5A120.0C13—C12—H12A109.4
C6—C5—H5A120.0C11—C12—H12A109.4
C1—C6—C5119.7 (2)C13—C12—H12B109.4
C1—C6—C7121.89 (19)C11—C12—H12B109.4
C5—C6—C7118.43 (18)H12A—C12—H12B108.0
O1—C7—N1122.59 (19)N2—C13—C12110.88 (18)
O1—C7—C6121.86 (19)N2—C13—H13A109.5
N1—C7—C6115.56 (17)C12—C13—H13A109.5
N2—C8—N1115.66 (19)N2—C13—H13B109.5
N2—C8—S1126.36 (16)C12—C13—H13B109.5
N1—C8—S1117.96 (16)H13A—C13—H13B108.1
C6—C1—C2—C31.0 (3)C13—N2—C8—N1173.80 (17)
C1—C2—C3—C40.3 (4)C9—N2—C8—N13.5 (3)
C2—C3—C4—C50.5 (3)C13—N2—C8—S17.6 (3)
C3—C4—C5—C60.7 (3)C9—N2—C8—S1175.12 (16)
C2—C1—C6—C52.2 (3)C7—N1—C8—N265.2 (3)
C2—C1—C6—C7179.9 (2)C7—N1—C8—S1116.00 (19)
C4—C5—C6—C12.0 (3)C8—N2—C9—C10128.2 (2)
C4—C5—C6—C7179.98 (19)C13—N2—C9—C1054.3 (2)
C8—N1—C7—O10.5 (3)N2—C9—C10—C1153.4 (3)
C8—N1—C7—C6179.52 (18)C9—C10—C11—C1254.2 (3)
C1—C6—C7—O1148.6 (2)C10—C11—C12—C1355.5 (3)
C5—C6—C7—O129.4 (3)C8—N2—C13—C12126.5 (2)
C1—C6—C7—N131.4 (3)C9—N2—C13—C1255.8 (2)
C5—C6—C7—N1150.61 (19)C11—C12—C13—N256.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.182.949 (2)149
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H16N2OS
Mr248.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.913 (3), 14.297 (4), 8.323 (2)
β (°) 102.212 (6)
V3)1269.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.50 × 0.41 × 0.38
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.889, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
7091, 2221, 1727
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 1.08
No. of reflections2221
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.182.949 (2)149
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia for providing facilities and a grant (UKM-GUP-BTT-07–30-190 and UKM-PTS-015–2010) and the Libyan Government for providing a scholarship for AA.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMohamadou, A., Dechamps-Olivier, I. & Barbier, J. (1994). Polyhedron, 13, 1363–1370.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRöbisch, G., Ludwig, E., Bansse, W. R. & Szargan, R. (1982). Z. Anorg. Allg. Chem. 493, 26–32.  Google Scholar
First citationSalyn, J. V., Zumadilov, E. K., Nefedov, V. I., Scheibe, R., Leonhardt, G., Beyer, L. & Hoyer, E. (1977). Z. Anorg. Allg. Chem. 432, 275–279.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds