organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5-n-Hexyl-2-hydroxymethyl-1,3-dioxan-2-yl)methanol

aDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou Hunan 425100, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 13 October 2010; accepted 14 October 2010; online 23 October 2010)

In the title compound, C12H24O4, the dioxane ring adopts a chair conformation; the n-hexyl chain, which occupies an equatorial position, has an extended zigzag conformation. In the crystal, mol­ecules are connected by O—H⋯O hydrogen-bonds into a zigzag chain running along the b axis, giving rise to a herringbone pattern.

Related literature

For a related structure, see: Luo et al. (2008[Luo, Y.-M., Liu, X.-M., Yuan, X.-Y., Zhang, M. & Ng, S. W. (2008). Acta Cryst. E64, o1536.]).

[Scheme 1]

Experimental

Crystal data
  • C12H24O4

  • Mr = 232.31

  • Monoclinic, P 21 /n

  • a = 13.6602 (10) Å

  • b = 5.9370 (5) Å

  • c = 16.4268 (12) Å

  • β = 97.737 (1)°

  • V = 1320.10 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.40 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 7438 measured reflections

  • 2862 independent reflections

  • 1755 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.173

  • S = 1.06

  • 2862 reflections

  • 154 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.84 (1) 1.86 (1) 2.664 (2) 162 (3)
O4—H4⋯O3ii 0.85 (1) 1.81 (1) 2.630 (2) 164 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A previous study reported the crystal structure of 5,5-bis(hydroxylmethyl)-2-phenylmethyl-1,3-dioxane, which was synthesized by the condensation of 2,2-bis(hydroxymethyl)-1,3-propanediol and an aromatic aldehyde (benzaldehyde) (Luo et al., 2008). A variation of the synthesis with an aliphatic aldehyde under similar reaction conditions yielded a 1,3-dixoxane having the hydroxyl groups connected to another atom of the chair-shaped ring. In the molecule of the C12H24O4 (Scheme I, Fig. 1), the n-hexyl chain, which occupies an equatorial position, has an extended zigzag conformation. The hydroxy unit of one molecule is a hydrogen-bond donor to the hydroxy unit of an adjacent molecule so that the two O–H···O hydrogen bonds give rise to a herring-bone ribbon that runs along the b-axis of the monoclinic unit cell (Fig. 2).

Related literature top

For a related structure, see: Luo et al. (2008).

Experimental top

2,2-Bis(hydroxymethyl)-1,3-propanediol (13.0 g, 96 mmol) and N,N-dimethylformamide (100 ml) were heated until the 2,2-bis(hydroxymethyl)-1,3-propanediol dissolved completely. n-Heptanal (10.1 g, 89 mmol) and p-toluenesulfonic acid monohydrate (1 g, 5 mmol) were added. The solution was heated 363–373 K 5 h. The solution was cooled and ethyl acetate (100 ml) was added to dissolve the residue after DMF was removed by evaporation. The solution was washed successively with water and 5% sodium bicarbonate (50 ml); the solution was dried over sodium sulfate. The solvent was evaporated to give a solid that was recrystallized from ethyl acetate to yield 16.5 g (70%) of colorless crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

The hydroxy H-atoms were located in a difference Fourier map, and were refined isotropically with a distance restraint of O–H 0.84±0.01 Å.

Structure description top

A previous study reported the crystal structure of 5,5-bis(hydroxylmethyl)-2-phenylmethyl-1,3-dioxane, which was synthesized by the condensation of 2,2-bis(hydroxymethyl)-1,3-propanediol and an aromatic aldehyde (benzaldehyde) (Luo et al., 2008). A variation of the synthesis with an aliphatic aldehyde under similar reaction conditions yielded a 1,3-dixoxane having the hydroxyl groups connected to another atom of the chair-shaped ring. In the molecule of the C12H24O4 (Scheme I, Fig. 1), the n-hexyl chain, which occupies an equatorial position, has an extended zigzag conformation. The hydroxy unit of one molecule is a hydrogen-bond donor to the hydroxy unit of an adjacent molecule so that the two O–H···O hydrogen bonds give rise to a herring-bone ribbon that runs along the b-axis of the monoclinic unit cell (Fig. 2).

For a related structure, see: Luo et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C12H24O4 at the 70% probability level; hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded ribbon structure.
(5-n-Hexyl-2-hydroxymethyl-1,3-dioxan-2-yl)methanol top
Crystal data top
C12H24O4F(000) = 512
Mr = 232.31Dx = 1.169 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2106 reflections
a = 13.6602 (10) Åθ = 2.5–27.0°
b = 5.9370 (5) ŵ = 0.09 mm1
c = 16.4268 (12) ÅT = 173 K
β = 97.737 (1)°Prism, colorless
V = 1320.10 (18) Å30.40 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1755 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 27.1°, θmin = 1.8°
ω scansh = 1717
7438 measured reflectionsk = 77
2862 independent reflectionsl = 2014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0932P)2]
where P = (Fo2 + 2Fc2)/3
2862 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
C12H24O4V = 1320.10 (18) Å3
Mr = 232.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.6602 (10) ŵ = 0.09 mm1
b = 5.9370 (5) ÅT = 173 K
c = 16.4268 (12) Å0.40 × 0.25 × 0.20 mm
β = 97.737 (1)°
Data collection top
Bruker SMART APEX
diffractometer
1755 reflections with I > 2σ(I)
7438 measured reflectionsRint = 0.041
2862 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0562 restraints
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.32 e Å3
2862 reflectionsΔρmin = 0.24 e Å3
154 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21236 (8)1.1104 (2)0.46544 (7)0.0274 (3)
O20.08583 (9)1.3743 (2)0.45699 (9)0.0449 (4)
O30.25706 (13)1.7500 (2)0.65335 (8)0.0449 (4)
H30.2562 (18)1.699 (4)0.7006 (8)0.063 (8)*
O40.24968 (15)1.1821 (2)0.68721 (8)0.0551 (5)
H40.257 (2)1.051 (2)0.6681 (16)0.083 (9)*
C10.22572 (13)1.4192 (3)0.56451 (10)0.0259 (4)
C20.29973 (15)1.5895 (3)0.60499 (12)0.0358 (5)
H2A0.35291.50840.64020.043*
H2B0.33021.66930.56180.043*
C30.17790 (16)1.2926 (3)0.62952 (12)0.0390 (5)
H3A0.13981.39980.65900.047*
H3B0.13131.17940.60240.047*
C40.14640 (15)1.5360 (3)0.50544 (12)0.0387 (5)
H4A0.10461.62920.53690.046*
H4B0.17801.63700.46870.046*
C50.27918 (13)1.2561 (3)0.51385 (11)0.0275 (4)
H5A0.31731.34290.47740.033*
H5B0.32641.16480.55120.033*
C60.14157 (13)1.2334 (3)0.41238 (11)0.0321 (5)
H60.17561.32570.37370.039*
C70.07331 (14)1.0673 (4)0.36474 (12)0.0391 (5)
H7A0.01791.15080.33330.047*
H7B0.04520.96780.40400.047*
C80.12197 (14)0.9224 (3)0.30569 (12)0.0342 (5)
H8A0.17800.84020.33680.041*
H8B0.14891.02110.26550.041*
C90.05174 (14)0.7536 (4)0.25968 (13)0.0393 (5)
H9A0.02480.65620.30020.047*
H9B0.00430.83680.22900.047*
C100.09718 (14)0.6053 (4)0.20005 (11)0.0355 (5)
H10A0.12770.70260.16150.043*
H10B0.15050.51480.23110.043*
C110.02531 (15)0.4480 (4)0.15108 (14)0.0457 (6)
H11A0.02680.53890.11860.055*
H11B0.00690.35450.18970.055*
C120.07088 (17)0.2939 (4)0.09337 (13)0.0473 (6)
H12A0.10470.38430.05580.071*
H12B0.01890.20390.06170.071*
H12C0.11850.19360.12520.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0304 (7)0.0258 (7)0.0243 (6)0.0012 (5)0.0030 (5)0.0047 (5)
O20.0375 (8)0.0450 (9)0.0482 (9)0.0139 (7)0.0091 (7)0.0197 (7)
O30.0890 (12)0.0223 (7)0.0231 (7)0.0018 (7)0.0063 (8)0.0032 (6)
O40.1172 (14)0.0244 (8)0.0241 (7)0.0002 (9)0.0109 (8)0.0009 (6)
C10.0359 (10)0.0209 (9)0.0211 (9)0.0008 (7)0.0041 (7)0.0013 (7)
C20.0487 (12)0.0298 (11)0.0290 (10)0.0094 (9)0.0054 (9)0.0058 (8)
C30.0559 (13)0.0301 (11)0.0349 (11)0.0091 (9)0.0200 (10)0.0060 (8)
C40.0477 (12)0.0305 (11)0.0352 (11)0.0093 (9)0.0046 (9)0.0078 (8)
C50.0278 (9)0.0316 (10)0.0221 (9)0.0014 (7)0.0002 (7)0.0045 (7)
C60.0344 (10)0.0338 (11)0.0259 (10)0.0041 (8)0.0038 (8)0.0051 (8)
C70.0301 (10)0.0468 (13)0.0373 (11)0.0054 (9)0.0064 (9)0.0119 (9)
C80.0335 (10)0.0400 (12)0.0269 (9)0.0021 (9)0.0034 (8)0.0051 (8)
C90.0288 (10)0.0498 (13)0.0364 (11)0.0018 (9)0.0059 (9)0.0127 (9)
C100.0338 (10)0.0437 (12)0.0282 (10)0.0045 (9)0.0014 (8)0.0039 (9)
C110.0353 (11)0.0528 (14)0.0464 (12)0.0015 (10)0.0035 (9)0.0196 (10)
C120.0541 (13)0.0490 (14)0.0388 (12)0.0057 (11)0.0059 (11)0.0131 (10)
Geometric parameters (Å, º) top
O1—C61.415 (2)C6—C71.503 (3)
O1—C51.421 (2)C6—H61.0000
O2—C61.403 (2)C7—C81.516 (3)
O2—C41.436 (2)C7—H7A0.9900
O3—C21.415 (2)C7—H7B0.9900
O3—H30.84 (1)C8—C91.517 (3)
O4—C31.428 (3)C8—H8A0.9900
O4—H40.85 (1)C8—H8B0.9900
C1—C21.519 (2)C9—C101.511 (3)
C1—C41.521 (3)C9—H9A0.9900
C1—C31.523 (2)C9—H9B0.9900
C1—C51.525 (2)C10—C111.507 (3)
C2—H2A0.9900C10—H10A0.9900
C2—H2B0.9900C10—H10B0.9900
C3—H3A0.9900C11—C121.510 (3)
C3—H3B0.9900C11—H11A0.9900
C4—H4A0.9900C11—H11B0.9900
C4—H4B0.9900C12—H12A0.9800
C5—H5A0.9900C12—H12B0.9800
C5—H5B0.9900C12—H12C0.9800
C6—O1—C5111.39 (13)O1—C6—H6109.7
C6—O2—C4112.06 (13)C7—C6—H6109.7
C2—O3—H3109.7 (18)C6—C7—C8114.28 (15)
C3—O4—H4106.1 (19)C6—C7—H7A108.7
C2—C1—C4110.53 (16)C8—C7—H7A108.7
C2—C1—C3110.16 (14)C6—C7—H7B108.7
C4—C1—C3109.65 (15)C8—C7—H7B108.7
C2—C1—C5108.80 (14)H7A—C7—H7B107.6
C4—C1—C5107.08 (14)C7—C8—C9113.05 (16)
C3—C1—C5110.57 (15)C7—C8—H8A109.0
O3—C2—C1113.19 (15)C9—C8—H8A109.0
O3—C2—H2A108.9C7—C8—H8B109.0
C1—C2—H2A108.9C9—C8—H8B109.0
O3—C2—H2B108.9H8A—C8—H8B107.8
C1—C2—H2B108.9C10—C9—C8114.86 (16)
H2A—C2—H2B107.8C10—C9—H9A108.6
O4—C3—C1111.78 (16)C8—C9—H9A108.6
O4—C3—H3A109.3C10—C9—H9B108.6
C1—C3—H3A109.3C8—C9—H9B108.6
O4—C3—H3B109.3H9A—C9—H9B107.5
C1—C3—H3B109.3C11—C10—C9114.35 (16)
H3A—C3—H3B107.9C11—C10—H10A108.7
O2—C4—C1110.89 (15)C9—C10—H10A108.7
O2—C4—H4A109.5C11—C10—H10B108.7
C1—C4—H4A109.5C9—C10—H10B108.7
O2—C4—H4B109.5H10A—C10—H10B107.6
C1—C4—H4B109.5C10—C11—C12114.61 (17)
H4A—C4—H4B108.0C10—C11—H11A108.6
O1—C5—C1111.91 (13)C12—C11—H11A108.6
O1—C5—H5A109.2C10—C11—H11B108.6
C1—C5—H5A109.2C12—C11—H11B108.6
O1—C5—H5B109.2H11A—C11—H11B107.6
C1—C5—H5B109.2C11—C12—H12A109.5
H5A—C5—H5B107.9C11—C12—H12B109.5
O2—C6—O1111.11 (14)H12A—C12—H12B109.5
O2—C6—C7108.74 (14)C11—C12—H12C109.5
O1—C6—C7107.86 (15)H12A—C12—H12C109.5
O2—C6—H6109.7H12B—C12—H12C109.5
C4—C1—C2—O362.40 (19)C4—C1—C5—O152.67 (19)
C3—C1—C2—O358.9 (2)C3—C1—C5—O166.74 (19)
C5—C1—C2—O3179.70 (15)C4—O2—C6—O160.4 (2)
C2—C1—C3—O457.4 (2)C4—O2—C6—C7179.00 (16)
C4—C1—C3—O4179.27 (15)C5—O1—C6—O260.02 (18)
C5—C1—C3—O462.89 (19)C5—O1—C6—C7179.11 (14)
C6—O2—C4—C157.7 (2)O2—C6—C7—C8173.00 (17)
C2—C1—C4—O2170.43 (14)O1—C6—C7—C866.4 (2)
C3—C1—C4—O267.93 (19)C6—C7—C8—C9178.94 (17)
C5—C1—C4—O252.08 (19)C7—C8—C9—C10180.00 (18)
C6—O1—C5—C157.40 (18)C8—C9—C10—C11176.53 (18)
C2—C1—C5—O1172.15 (14)C9—C10—C11—C12178.08 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.84 (1)1.86 (1)2.664 (2)162 (3)
O4—H4···O3ii0.85 (1)1.81 (1)2.630 (2)164 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC12H24O4
Mr232.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)13.6602 (10), 5.9370 (5), 16.4268 (12)
β (°) 97.737 (1)
V3)1320.10 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7438, 2862, 1755
Rint0.041
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.173, 1.06
No. of reflections2862
No. of parameters154
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.24

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.84 (1)1.86 (1)2.664 (2)162 (3)
O4—H4···O3ii0.85 (1)1.81 (1)2.630 (2)164 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y1, z.
 

Acknowledgements

We thank the S&T Technology Planning Project of Hunan Province (No. 2010 N K3007), the Key Scientific Research Project of Hunan Provincial Education Department (No. 08 A023), the NSF of Hunan Province (09 J J3028), the Key Construction Project of Hunan Province (No. 2000–180) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLuo, Y.-M., Liu, X.-M., Yuan, X.-Y., Zhang, M. & Ng, S. W. (2008). Acta Cryst. E64, o1536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds