metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Cyanido-1:2κ2N:C-tricyanido-2κ3C-(rac-5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-1κ4N,N′,N′′,N′′′)dinickel(II) N,N-di­methyl­formamide monosolvate hemi­hydrate

aDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou Hunan 425100, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 18 October 2010; accepted 20 October 2010; online 30 October 2010)

The two NiII atoms in the title complex, [Ni2(CN)4(C16H36N4)]·C3H7NO·0.5H2O, are bridged by a cyanide ion. The macrocycle folds around one NiII atom, which is five-coordinated in an NiN5 square-pyramidal geometry. The other NiII atom is surrounded by the cyanide ions in an NiN4 square-planar geometry. The dimethyl­formamide solvent mol­ecule is disordered over two positions in a 0.62 (1):0.38 (1) ratio and the water mol­ecule is disordered about a center of inversion. The dinuclear mol­ecule and solvent mol­ecules are linked by N—H⋯O, N–H⋯N and O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For two related structures, see: Jiang et al. (2005[Jiang, L., Lu, T.-B. & Feng, X.-L. (2005). Inorg. Chem. 44, 7056-7062.], 2007[Jiang, L., Feng, X.-L., Su, C.-Y., Chen, X.-M. & Lu, T.-B. (2007). Inorg. Chem. 46, 2637-2644.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(CN)4(C16H36N4)]·C3H7NO·0.5H2O

  • Mr = 588.09

  • Monoclinic, P 21 /n

  • a = 10.0122 (5) Å

  • b = 10.2109 (5) Å

  • c = 28.3246 (15) Å

  • β = 91.468 (1)°

  • V = 2894.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 173 K

  • 0.40 × 0.35 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.617, Tmax = 0.825

  • 14236 measured reflections

  • 6181 independent reflections

  • 4435 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.121

  • S = 1.03

  • 6181 reflections

  • 393 parameters

  • 76 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯N7 0.84 2.01 2.825 (8) 163
N1—H1⋯N6i 0.88 (3) 2.49 (3) 2.854 (4) 105 (3)
N2—H2⋯O1 0.88 (3) 2.46 (2) 3.278 (7) 156 (3)
N2—H2⋯O1′ 0.88 (3) 2.05 (2) 2.88 (1) 158 (3)
N3—H3⋯N5 0.87 (3) 2.48 (3) 2.843 (4) 106 (3)
N4—H4⋯O1 0.88 (3) 2.08 (2) 2.927 (8) 162 (3)
N4—H4⋯O1′ 0.88 (3) 2.30 (2) 3.14 (1) 160 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have previously reported the adducts of 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane with nickel salts. The macrocycle in these adducts chelate to the metal atom in a tetradentate manner. With the counterion as a tetracyanidonickellate(II) dianion, a tetranuclear compound was isolated in which the two dianions each bridges two macrocycle-coordinated nickel atoms (Jiang et al., 2005). Another study reported a macrocycle-nickel–tetracyanidonickellate compound, which exists as a chain (Jiang et al., 2007). In dinuclear [Ni2(C16H36N4)].DMF.0.5H2O (Scheme I, Fig. 1) the two metal atoms are linked by only one cyanide bridge. The dinuclear molecule, DMF molecule and lattice water molecules are linked by N–H···O, N–H···N and O–H···O hydrogen bonds into a linear chain motif.

Related literature top

For two related structures, see: Jiang et al. (2005, 2007).

Experimental top

A DMF solution (20 ml) of dipotassium tetracyanonickellate dihydrate (0.139 g, 0.5 mmol) was layered with an acetonitrile solution (20 ml) of [Ni(rac-L)](ClO4)2 (0.272 g, 0.5 mmol) (rac-L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) in a glass tube. After about aone month, blue prismatic crystals formed along the walls.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

The amino H atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.86±0.01 Å and Uiso(H) = 1.5Ueq(N).

The water molecule is disordered about a center-of-inversion, and is assigned half occupany. Two H atoms were placed on the O atom, with one of them in a chemically sensible position on the basis of hydrogen bonding and Uiso(H) = 1.5Ueq(O).

The DMF molecule is disordered over two positions in a 62 (1):38 (1) ratio. The carbon–oxygen distances were restrained to 1.25±0.01 Å, the carboncarbonyl–nitrogen distances to 1.35±0.01 Å and the carbon–carbonmethyl distances to 1.45±0.01 Å. The molecule was restrained to lie on a plane. The anisotropic displacement parameters of the disordered atoms were restrained to be nearly isotropic.

Structure description top

We have previously reported the adducts of 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane with nickel salts. The macrocycle in these adducts chelate to the metal atom in a tetradentate manner. With the counterion as a tetracyanidonickellate(II) dianion, a tetranuclear compound was isolated in which the two dianions each bridges two macrocycle-coordinated nickel atoms (Jiang et al., 2005). Another study reported a macrocycle-nickel–tetracyanidonickellate compound, which exists as a chain (Jiang et al., 2007). In dinuclear [Ni2(C16H36N4)].DMF.0.5H2O (Scheme I, Fig. 1) the two metal atoms are linked by only one cyanide bridge. The dinuclear molecule, DMF molecule and lattice water molecules are linked by N–H···O, N–H···N and O–H···O hydrogen bonds into a linear chain motif.

For two related structures, see: Jiang et al. (2005, 2007).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound at the 70% probability level; hydrogen atoms are shown as spheres of arbitrary radius. The disorder is not shown.
µ-Cyanido-1:2κ2N:C-tricyanido-2κ3C-(rac- 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane- 1κ4N,N',N'',N''')dinickel(II) N,N-dimethylformamide monosolvate hemihydrate top
Crystal data top
[Ni2(CN)4(C16H36N4)]·C3H7NO·0.5H2OF(000) = 1252
Mr = 588.09Dx = 1.349 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5065 reflections
a = 10.0122 (5) Åθ = 2.5–26.8°
b = 10.2109 (5) ŵ = 1.33 mm1
c = 28.3246 (15) ÅT = 173 K
β = 91.468 (1)°Prim, blue
V = 2894.8 (3) Å30.40 × 0.35 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
6181 independent reflections
Radiation source: fine-focus sealed tube4435 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.617, Tmax = 0.825k = 1312
14236 measured reflectionsl = 3036
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0666P)2 + 0.7079P]
where P = (Fo2 + 2Fc2)/3
6181 reflections(Δ/σ)max = 0.001
393 parametersΔρmax = 0.55 e Å3
76 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Ni2(CN)4(C16H36N4)]·C3H7NO·0.5H2OV = 2894.8 (3) Å3
Mr = 588.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0122 (5) ŵ = 1.33 mm1
b = 10.2109 (5) ÅT = 173 K
c = 28.3246 (15) Å0.40 × 0.35 × 0.15 mm
β = 91.468 (1)°
Data collection top
Bruker SMART APEX
diffractometer
6181 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4435 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 0.825Rint = 0.035
14236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04276 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.55 e Å3
6181 reflectionsΔρmin = 0.39 e Å3
393 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.40876 (4)0.41556 (4)0.163713 (13)0.02095 (12)
Ni20.41778 (4)0.28354 (4)0.332984 (14)0.02452 (13)
O1W0.5942 (8)0.0422 (7)0.4816 (2)0.076 (2)0.50
H110.54900.02000.47020.115*0.50
H120.56020.06570.50710.115*0.50
N10.2327 (3)0.3662 (3)0.12200 (10)0.0284 (6)
H10.177 (3)0.429 (3)0.1287 (12)0.034*
N20.4790 (3)0.4921 (3)0.09926 (10)0.0282 (6)
H20.532 (3)0.433 (3)0.0872 (11)0.034*
N30.6097 (3)0.4408 (3)0.19194 (9)0.0261 (6)
H30.599 (3)0.435 (3)0.2224 (4)0.031*
N40.4697 (3)0.2182 (3)0.15349 (11)0.0285 (6)
H40.491 (4)0.213 (4)0.1236 (5)0.034*
N50.3642 (3)0.3681 (3)0.23283 (10)0.0310 (6)
N60.1889 (3)0.0938 (3)0.32576 (10)0.0289 (6)
N70.4806 (4)0.1648 (5)0.42804 (14)0.0729 (13)
N80.6614 (4)0.4584 (4)0.33648 (15)0.0586 (10)
C10.2720 (4)0.3856 (4)0.07273 (12)0.0358 (8)
H1A0.19110.39510.05220.043*
H1B0.32210.30800.06190.043*
C20.3578 (3)0.5057 (4)0.06859 (12)0.0335 (8)
H2A0.38390.51740.03540.040*
H2B0.30670.58400.07810.040*
C30.5572 (4)0.6160 (4)0.10311 (13)0.0360 (8)
H3A0.50260.68220.12010.043*
C40.5928 (5)0.6725 (5)0.05472 (15)0.0663 (15)
H4A0.51060.69100.03640.100*
H4B0.64680.60890.03770.100*
H4C0.64370.75380.05920.100*
C50.6883 (4)0.5960 (4)0.13084 (12)0.0341 (8)
H5A0.74220.67650.12730.041*
H5B0.73730.52420.11540.041*
C60.6846 (3)0.5644 (3)0.18365 (12)0.0288 (7)
C70.6187 (4)0.6735 (3)0.21114 (13)0.0370 (8)
H7A0.52500.68170.20070.056*
H7B0.66530.75620.20550.056*
H7C0.62340.65300.24490.056*
C80.8294 (4)0.5519 (4)0.20212 (14)0.0418 (9)
H8A0.83020.51660.23430.063*
H8B0.87180.63840.20230.063*
H8C0.87850.49280.18160.063*
C90.6805 (3)0.3219 (3)0.17783 (14)0.0347 (8)
H9A0.76280.31160.19760.042*
H9B0.70680.32980.14450.042*
C100.5924 (4)0.2031 (3)0.18337 (14)0.0366 (9)
H10A0.64130.12340.17390.044*
H10B0.56820.19330.21690.044*
C110.3705 (4)0.1138 (3)0.16224 (14)0.0356 (8)
H11A0.33660.12570.19490.043*
C120.4307 (4)0.0238 (4)0.15890 (18)0.0563 (12)
H12A0.50600.03190.18150.084*
H12B0.46220.03850.12680.084*
H12C0.36250.08910.16620.084*
C130.2526 (4)0.1236 (3)0.12764 (13)0.0359 (8)
H13A0.19850.04310.13110.043*
H13B0.28840.12240.09540.043*
C140.1569 (3)0.2413 (3)0.13060 (13)0.0322 (8)
C150.0965 (4)0.2505 (4)0.17929 (14)0.0407 (9)
H15A0.03480.32490.18010.061*
H15B0.16790.26290.20320.061*
H15C0.04790.16950.18600.061*
C160.0434 (4)0.2243 (4)0.09397 (15)0.0504 (11)
H16A0.00980.30480.09220.076*
H16B0.01370.15110.10320.076*
H16C0.08090.20600.06300.076*
C170.3803 (3)0.3420 (3)0.27219 (12)0.0266 (7)
C180.2738 (3)0.1684 (3)0.32772 (11)0.0253 (7)
C190.4574 (4)0.2135 (4)0.39238 (14)0.0441 (10)
C200.5677 (4)0.3942 (4)0.33603 (13)0.0354 (8)
O10.5992 (7)0.2131 (7)0.0620 (3)0.064 (2)0.620 (6)
N90.7506 (6)0.0709 (6)0.0306 (2)0.063 (2)0.620 (6)
C210.6732 (6)0.1167 (7)0.0637 (2)0.058 (2)0.620 (6)
H210.67460.06930.09260.070*0.620 (6)
C220.7521 (12)0.1403 (11)0.0141 (3)0.100 (4)0.620 (6)
H22A0.67440.19840.01660.150*0.620 (6)
H22B0.74890.07700.04010.150*0.620 (6)
H22C0.83410.19230.01570.150*0.620 (6)
C230.8352 (7)0.0424 (7)0.0360 (3)0.064 (2)0.620 (6)
H23A0.81880.08430.06640.095*0.620 (6)
H23B0.92900.01560.03480.095*0.620 (6)
H23C0.81520.10460.01040.095*0.620 (6)
O1'0.5863 (12)0.2654 (13)0.0530 (4)0.063 (4)0.380 (6)
N9'0.7086 (10)0.1118 (10)0.0163 (2)0.053 (3)0.380 (6)
C21'0.6906 (10)0.2298 (11)0.0351 (3)0.044 (3)0.380 (6)
H21B0.76280.29020.03460.053*0.380 (6)
C22'0.6064 (16)0.0150 (16)0.0151 (7)0.120 (7)0.380 (6)
H22D0.51890.05780.01260.180*0.380 (6)
H22E0.61180.03710.04420.180*0.380 (6)
H22F0.61820.04230.01220.180*0.380 (6)
C23'0.8349 (13)0.0747 (18)0.0046 (5)0.095 (6)0.380 (6)
H23D0.90480.13660.00550.142*0.380 (6)
H23E0.82500.07630.03910.142*0.380 (6)
H23F0.85980.01380.00580.142*0.380 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0237 (2)0.0160 (2)0.0233 (2)0.00309 (15)0.00128 (15)0.00060 (16)
Ni20.0249 (2)0.0212 (2)0.0276 (2)0.00409 (16)0.00209 (17)0.00290 (17)
O1W0.118 (6)0.062 (4)0.048 (4)0.007 (4)0.008 (4)0.012 (3)
N10.0267 (15)0.0263 (15)0.0323 (15)0.0035 (11)0.0017 (12)0.0028 (12)
N20.0302 (16)0.0263 (15)0.0281 (15)0.0010 (12)0.0012 (12)0.0024 (12)
N30.0300 (15)0.0219 (14)0.0262 (14)0.0001 (11)0.0007 (12)0.0023 (12)
N40.0296 (15)0.0164 (14)0.0395 (16)0.0021 (11)0.0032 (13)0.0003 (12)
N50.0344 (16)0.0250 (15)0.0338 (17)0.0053 (12)0.0064 (13)0.0025 (13)
N60.0306 (16)0.0225 (15)0.0336 (16)0.0002 (12)0.0029 (12)0.0012 (12)
N70.054 (3)0.112 (4)0.053 (2)0.006 (2)0.0085 (19)0.040 (3)
N80.041 (2)0.044 (2)0.091 (3)0.0159 (17)0.0035 (19)0.000 (2)
C10.040 (2)0.040 (2)0.0273 (18)0.0005 (16)0.0068 (15)0.0015 (16)
C20.038 (2)0.040 (2)0.0219 (17)0.0006 (16)0.0022 (15)0.0066 (15)
C30.042 (2)0.031 (2)0.0351 (19)0.0068 (16)0.0025 (16)0.0113 (16)
C40.074 (3)0.078 (4)0.046 (3)0.032 (3)0.007 (2)0.031 (3)
C50.036 (2)0.0317 (19)0.0353 (19)0.0061 (15)0.0055 (15)0.0002 (16)
C60.0314 (19)0.0251 (18)0.0297 (18)0.0053 (14)0.0007 (14)0.0002 (14)
C70.041 (2)0.0260 (18)0.044 (2)0.0066 (16)0.0026 (17)0.0060 (16)
C80.036 (2)0.041 (2)0.048 (2)0.0102 (17)0.0057 (17)0.0059 (18)
C90.0248 (18)0.0279 (19)0.051 (2)0.0058 (14)0.0082 (16)0.0004 (16)
C100.038 (2)0.0198 (18)0.052 (2)0.0080 (14)0.0071 (17)0.0012 (16)
C110.035 (2)0.0197 (17)0.052 (2)0.0012 (14)0.0032 (17)0.0002 (16)
C120.050 (3)0.0140 (19)0.105 (4)0.0030 (17)0.004 (2)0.003 (2)
C130.035 (2)0.0240 (18)0.049 (2)0.0072 (15)0.0056 (17)0.0084 (16)
C140.0290 (19)0.0250 (18)0.042 (2)0.0057 (14)0.0011 (15)0.0026 (15)
C150.0267 (19)0.042 (2)0.054 (2)0.0040 (16)0.0095 (17)0.0040 (18)
C160.037 (2)0.054 (3)0.060 (3)0.0094 (19)0.0093 (19)0.009 (2)
C170.0288 (18)0.0190 (16)0.0322 (19)0.0051 (13)0.0041 (14)0.0025 (14)
C180.0289 (18)0.0194 (16)0.0277 (17)0.0032 (14)0.0011 (14)0.0053 (13)
C190.031 (2)0.060 (3)0.042 (2)0.0073 (18)0.0011 (17)0.015 (2)
C200.034 (2)0.0273 (19)0.045 (2)0.0002 (15)0.0024 (16)0.0038 (16)
O10.060 (4)0.084 (6)0.049 (4)0.033 (4)0.013 (3)0.003 (4)
N90.060 (5)0.079 (5)0.050 (4)0.013 (4)0.011 (3)0.003 (4)
C210.057 (4)0.080 (5)0.038 (4)0.008 (4)0.008 (3)0.007 (4)
C220.123 (7)0.097 (7)0.080 (6)0.030 (6)0.010 (6)0.015 (5)
C230.054 (4)0.074 (5)0.064 (5)0.004 (4)0.023 (4)0.015 (4)
O1'0.068 (6)0.065 (7)0.057 (6)0.032 (5)0.002 (5)0.017 (5)
N9'0.052 (6)0.053 (6)0.056 (7)0.000 (5)0.018 (5)0.023 (5)
C21'0.047 (6)0.047 (6)0.037 (5)0.005 (5)0.002 (4)0.004 (5)
C22'0.113 (10)0.091 (9)0.156 (11)0.002 (8)0.022 (8)0.014 (8)
C23'0.084 (8)0.105 (9)0.095 (9)0.017 (7)0.008 (7)0.036 (8)
Geometric parameters (Å, º) top
Ni1—N52.076 (3)C8—H8A0.9800
Ni1—N6i2.091 (3)C8—H8B0.9800
Ni1—N22.122 (3)C8—H8C0.9800
Ni1—N42.127 (3)C9—C101.510 (5)
Ni1—N12.156 (3)C9—H9A0.9900
Ni1—N32.161 (3)C9—H9B0.9900
Ni2—C171.852 (3)C10—H10A0.9900
Ni2—C191.861 (4)C10—H10B0.9900
Ni2—C181.863 (3)C11—C131.519 (5)
Ni2—C201.879 (4)C11—C121.533 (5)
O1W—H110.84C11—H11A1.0000
O1W—H120.84C12—H12A0.9800
N1—C11.473 (4)C12—H12B0.9800
N1—C141.507 (4)C12—H12C0.9800
N1—H10.88 (3)C13—C141.540 (5)
N2—C21.481 (4)C13—H13A0.9900
N2—C31.490 (4)C13—H13B0.9900
N2—H20.88 (3)C14—C151.523 (5)
N3—C91.467 (4)C14—C161.529 (5)
N3—C61.489 (4)C15—H15A0.9800
N3—H30.87 (3)C15—H15B0.9800
N4—C101.482 (4)C15—H15C0.9800
N4—C111.483 (4)C16—H16A0.9800
N4—H40.88 (3)C16—H16B0.9800
N5—C171.154 (4)C16—H16C0.9800
N6—C181.142 (4)O1—C211.233 (7)
N6—Ni1ii2.091 (3)N9—C211.318 (7)
N7—C191.144 (5)N9—C231.440 (7)
N8—C201.144 (5)N9—C221.450 (8)
C1—C21.504 (5)C21—H210.9500
C1—H1A0.9900C22—H22A0.9800
C1—H1B0.9900C22—H22B0.9800
C2—H2A0.9900C22—H22C0.9800
C2—H2B0.9900C23—H23A0.9800
C3—C51.526 (5)C23—H23B0.9800
C3—C41.537 (5)C23—H23C0.9800
C3—H3A1.0000O1'—C21'1.228 (9)
C4—H4A0.9800N9'—C21'1.331 (14)
C4—H4B0.9800N9'—C22'1.422 (9)
C4—H4C0.9800N9'—C23'1.461 (9)
C5—C61.532 (5)C21'—H21B0.9500
C5—H5A0.9900C22'—H22D0.9800
C5—H5B0.9900C22'—H22E0.9800
C6—C71.519 (5)C22'—H22F0.9800
C6—C81.534 (5)C23'—H23D0.9800
C7—H7A0.9800C23'—H23E0.9800
C7—H7B0.9800C23'—H23F0.9800
C7—H7C0.9800
N5—Ni1—N6i87.47 (11)H7A—C7—H7B109.5
N5—Ni1—N2168.80 (11)C6—C7—H7C109.5
N6i—Ni1—N288.20 (11)H7A—C7—H7C109.5
N5—Ni1—N488.68 (11)H7B—C7—H7C109.5
N6i—Ni1—N4168.73 (11)C6—C8—H8A109.5
N2—Ni1—N497.42 (11)C6—C8—H8B109.5
N5—Ni1—N1105.64 (11)H8A—C8—H8B109.5
N6i—Ni1—N184.45 (11)C6—C8—H8C109.5
N2—Ni1—N184.20 (11)H8A—C8—H8C109.5
N4—Ni1—N186.41 (11)H8B—C8—H8C109.5
N5—Ni1—N384.24 (11)N3—C9—C10110.4 (3)
N6i—Ni1—N3106.11 (11)N3—C9—H9A109.6
N2—Ni1—N387.05 (11)C10—C9—H9A109.6
N4—Ni1—N384.01 (11)N3—C9—H9B109.6
N1—Ni1—N3166.08 (10)C10—C9—H9B109.6
C17—Ni2—C19176.11 (17)H9A—C9—H9B108.1
C17—Ni2—C1889.49 (14)N4—C10—C9109.5 (3)
C19—Ni2—C1888.66 (15)N4—C10—H10A109.8
C17—Ni2—C2089.51 (15)C9—C10—H10A109.8
C19—Ni2—C2092.17 (16)N4—C10—H10B109.8
C18—Ni2—C20177.02 (15)C9—C10—H10B109.8
H11—O1W—H12108.8H10A—C10—H10B108.2
C1—N1—C14114.5 (3)N4—C11—C13111.0 (3)
C1—N1—Ni1104.7 (2)N4—C11—C12112.5 (3)
C14—N1—Ni1121.1 (2)C13—C11—C12108.7 (3)
C1—N1—H1107 (2)N4—C11—H11A108.2
C14—N1—H1105 (2)C13—C11—H11A108.2
Ni1—N1—H1103 (2)C12—C11—H11A108.2
C2—N2—C3112.6 (3)C11—C12—H12A109.5
C2—N2—Ni1104.8 (2)C11—C12—H12B109.5
C3—N2—Ni1115.8 (2)H12A—C12—H12B109.5
C2—N2—H2109 (2)C11—C12—H12C109.5
C3—N2—H2107 (2)H12A—C12—H12C109.5
Ni1—N2—H2107 (2)H12B—C12—H12C109.5
C9—N3—C6114.2 (3)C11—C13—C14119.4 (3)
C9—N3—Ni1104.6 (2)C11—C13—H13A107.5
C6—N3—Ni1120.7 (2)C14—C13—H13A107.5
C9—N3—H3106 (2)C11—C13—H13B107.5
C6—N3—H3107 (2)C14—C13—H13B107.5
Ni1—N3—H3103 (2)H13A—C13—H13B107.0
C10—N4—C11112.3 (3)N1—C14—C15107.9 (3)
C10—N4—Ni1104.9 (2)N1—C14—C16110.8 (3)
C11—N4—Ni1117.6 (2)C15—C14—C16108.4 (3)
C10—N4—H4109 (2)N1—C14—C13109.6 (3)
C11—N4—H4107 (2)C15—C14—C13111.1 (3)
Ni1—N4—H4105 (2)C16—C14—C13109.1 (3)
C17—N5—Ni1159.5 (3)C14—C15—H15A109.5
C18—N6—Ni1ii157.5 (3)C14—C15—H15B109.5
N1—C1—C2110.5 (3)H15A—C15—H15B109.5
N1—C1—H1A109.5C14—C15—H15C109.5
C2—C1—H1A109.5H15A—C15—H15C109.5
N1—C1—H1B109.5H15B—C15—H15C109.5
C2—C1—H1B109.5C14—C16—H16A109.5
H1A—C1—H1B108.1C14—C16—H16B109.5
N2—C2—C1109.8 (3)H16A—C16—H16B109.5
N2—C2—H2A109.7C14—C16—H16C109.5
C1—C2—H2A109.7H16A—C16—H16C109.5
N2—C2—H2B109.7H16B—C16—H16C109.5
C1—C2—H2B109.7N5—C17—Ni2173.3 (3)
H2A—C2—H2B108.2N6—C18—Ni2176.8 (3)
N2—C3—C5111.6 (3)N7—C19—Ni2176.8 (4)
N2—C3—C4112.8 (3)N8—C20—Ni2177.1 (4)
C5—C3—C4107.0 (3)C21—N9—C23124.4 (7)
N2—C3—H3A108.5C21—N9—C22117.8 (7)
C5—C3—H3A108.5C23—N9—C22117.8 (7)
C4—C3—H3A108.5O1—C21—N9128.3 (7)
C3—C4—H4A109.5O1—C21—H21115.8
C3—C4—H4B109.5N9—C21—H21115.8
H4A—C4—H4B109.5C21'—N9'—C22'122.3 (11)
C3—C4—H4C109.5C21'—N9'—C23'121.6 (11)
H4A—C4—H4C109.5C22'—N9'—C23'116.1 (13)
H4B—C4—H4C109.5O1'—C21'—N9'123.9 (12)
C3—C5—C6119.3 (3)O1'—C21'—H21B118.0
C3—C5—H5A107.5N9'—C21'—H21B118.0
C6—C5—H5A107.5N9'—C22'—H22D109.5
C3—C5—H5B107.5N9'—C22'—H22E109.5
C6—C5—H5B107.5H22D—C22'—H22E109.5
H5A—C5—H5B107.0N9'—C22'—H22F109.5
N3—C6—C7108.3 (3)H22D—C22'—H22F109.5
N3—C6—C5110.9 (3)H22E—C22'—H22F109.5
C7—C6—C5111.6 (3)N9'—C23'—H23D109.5
N3—C6—C8110.6 (3)N9'—C23'—H23E109.5
C7—C6—C8107.8 (3)H23D—C23'—H23E109.5
C5—C6—C8107.7 (3)N9'—C23'—H23F109.5
C6—C7—H7A109.5H23D—C23'—H23F109.5
C6—C7—H7B109.5H23E—C23'—H23F109.5
N5—Ni1—N1—C1173.4 (2)C14—N1—C1—C2174.7 (3)
N6i—Ni1—N1—C1100.8 (2)Ni1—N1—C1—C239.7 (3)
N2—Ni1—N1—C112.0 (2)C3—N2—C2—C1170.5 (3)
N4—Ni1—N1—C185.8 (2)Ni1—N2—C2—C143.8 (3)
N3—Ni1—N1—C139.3 (5)N1—C1—C2—N259.1 (4)
N5—Ni1—N1—C1442.2 (3)C2—N2—C3—C5174.4 (3)
N6i—Ni1—N1—C14128.0 (2)Ni1—N2—C3—C565.1 (3)
N2—Ni1—N1—C14143.3 (2)C2—N2—C3—C453.9 (4)
N4—Ni1—N1—C1445.4 (2)Ni1—N2—C3—C4174.4 (3)
N3—Ni1—N1—C1492.0 (5)N2—C3—C5—C667.3 (4)
N5—Ni1—N2—C2134.8 (5)C4—C3—C5—C6168.9 (3)
N6i—Ni1—N2—C267.6 (2)C9—N3—C6—C7165.2 (3)
N4—Ni1—N2—C2102.6 (2)Ni1—N3—C6—C768.8 (3)
N1—Ni1—N2—C217.0 (2)C9—N3—C6—C572.1 (4)
N3—Ni1—N2—C2173.8 (2)Ni1—N3—C6—C553.9 (3)
N5—Ni1—N2—C310.2 (7)C9—N3—C6—C847.3 (4)
N6i—Ni1—N2—C357.1 (2)Ni1—N3—C6—C8173.4 (2)
N4—Ni1—N2—C3132.7 (2)C3—C5—C6—N359.8 (4)
N1—Ni1—N2—C3141.7 (2)C3—C5—C6—C761.0 (4)
N3—Ni1—N2—C349.1 (2)C3—C5—C6—C8179.1 (3)
N5—Ni1—N3—C9102.4 (2)C6—N3—C9—C10174.9 (3)
N6i—Ni1—N3—C9171.9 (2)Ni1—N3—C9—C1040.9 (3)
N2—Ni1—N3—C984.7 (2)C11—N4—C10—C9172.1 (3)
N4—Ni1—N3—C913.1 (2)Ni1—N4—C10—C943.3 (3)
N1—Ni1—N3—C933.6 (5)N3—C9—C10—N459.6 (4)
N5—Ni1—N3—C6127.3 (2)C10—N4—C11—C13174.0 (3)
N6i—Ni1—N3—C641.6 (2)Ni1—N4—C11—C1364.1 (3)
N2—Ni1—N3—C645.6 (2)C10—N4—C11—C1252.0 (4)
N4—Ni1—N3—C6143.4 (2)Ni1—N4—C11—C12173.8 (3)
N1—Ni1—N3—C696.7 (5)N4—C11—C13—C1467.8 (4)
N5—Ni1—N4—C1068.0 (2)C12—C11—C13—C14168.0 (3)
N6i—Ni1—N4—C10138.0 (5)C1—N1—C14—C15167.1 (3)
N2—Ni1—N4—C10102.6 (2)Ni1—N1—C14—C1566.0 (3)
N1—Ni1—N4—C10173.8 (2)C1—N1—C14—C1648.6 (4)
N3—Ni1—N4—C1016.3 (2)Ni1—N1—C14—C16175.5 (2)
N5—Ni1—N4—C1157.5 (3)C1—N1—C14—C1371.8 (4)
N6i—Ni1—N4—C1112.5 (7)Ni1—N1—C14—C1355.1 (3)
N2—Ni1—N4—C11131.9 (3)C11—C13—C14—N161.6 (4)
N1—Ni1—N4—C1148.2 (3)C11—C13—C14—C1557.6 (4)
N3—Ni1—N4—C11141.9 (3)C11—C13—C14—C16177.0 (3)
N6i—Ni1—N5—C17117.1 (8)C23—N9—C21—O1179.4 (4)
N2—Ni1—N5—C1749.8 (11)C22—N9—C21—O10.2 (4)
N4—Ni1—N5—C1773.5 (8)C22'—N9'—C21'—O1'0.4 (4)
N1—Ni1—N5—C17159.3 (8)C23'—N9'—C21'—O1'180.0 (3)
N3—Ni1—N5—C1710.7 (8)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···N70.842.012.825 (8)163
N1—H1···N6i0.88 (3)2.49 (3)2.854 (4)105 (3)
N2—H2···O10.88 (3)2.46 (2)3.278 (7)156 (3)
N2—H2···O10.88 (3)2.05 (2)2.88 (1)158 (3)
N3—H3···N50.87 (3)2.48 (3)2.843 (4)106 (3)
N4—H4···O10.88 (3)2.08 (2)2.927 (8)162 (3)
N4—H4···O10.88 (3)2.30 (2)3.14 (1)160 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni2(CN)4(C16H36N4)]·C3H7NO·0.5H2O
Mr588.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.0122 (5), 10.2109 (5), 28.3246 (15)
β (°) 91.468 (1)
V3)2894.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.40 × 0.35 × 0.15
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.617, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
14236, 6181, 4435
Rint0.035
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.121, 1.03
No. of reflections6181
No. of parameters393
No. of restraints76
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.39

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···N70.842.012.825 (8)163
N1—H1···N6i0.88 (3)2.49 (3)2.854 (4)105 (3)
N2—H2···O10.88 (3)2.46 (2)3.278 (7)156 (3)
N2—H2···O1'0.88 (3)2.05 (2)2.88 (1)158 (3)
N3—H3···N50.87 (3)2.48 (3)2.843 (4)106 (3)
N4—H4···O10.88 (3)2.08 (2)2.927 (8)162 (3)
N4—H4···O1'0.88 (3)2.30 (2)3.14 (1)160 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the Scientific Research Fund of Hunan Provincial Education Department (10 C0730) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, L., Feng, X.-L., Su, C.-Y., Chen, X.-M. & Lu, T.-B. (2007). Inorg. Chem. 46, 2637–2644.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJiang, L., Lu, T.-B. & Feng, X.-L. (2005). Inorg. Chem. 44, 7056–7062.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds