metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ3-methano­lato-tetra­kis­[(2-formyl-6-meth­­oxy­phenolato)methano­lnickel(II)]

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 22 October 2010; accepted 25 October 2010; online 31 October 2010)

The molecule of the title compound, [Ni4(CH3O)4(C8H7O3)4(CH3OH)4], has S4 symmetry. Each of the four NiII atoms occupies every other corner of a cube, with the alternate corners occupied by μ3-methano­late bridging groups linking to three NiII atoms. Each NiII atom is in an O6 octa­hedral coordination environment formed by three O atoms from three μ3-methano­late groups, one from methanol, and two others from a bidentate 2-formyl-6-meth­oxy­phenolate ligand. The Ni—O bond distances range from 2.0020 (14) to 2.0938 (14) Å, the cis bond angles range from 81.74 (6) to 97.63°, and the trans bond angles range from 168.76 (5) to 175.22 (6)°. There are bifurcated hydrogen-bonding inter­actions between the coordinated methanol OH groups and both the phenolic and meth­oxy O atoms of an adjoining 2-formyl-6-meth­oxy­phenolate moiety. In addition, there are weak inter­molecular C—H⋯O inter­actions involving the meth­oxy O atoms.

Related literature

For literature related to Ni4 cubane-type clusters, see; Andrew & Blake (1969[Andrew, J. E. & Blake, A. B. (1969). J. Chem. Soc. A, pp. 1456-1461.]); Barnes & Hatfield (1971[Barnes, J. A. & Hatfield, W. E. (1971). Inorg. Chem. 10, 2355-2357.]); Bertrand et al. (1971[Bertrand, J. A., Ginsberg, A. P., Kaplan, R. I., Kirkwood, C. E., Martin, R. L. & Sherwood, R. C. (1971). Inorg. Chem. 10, 240-246.], 1978[Bertrand, J. A., Marabella, C. & Vanderveer, D. G. (1978). Inorg. Chim. Acta, 26, 113-118.]); Brezina et al. (1998[Brezina, F., Biler, M. & Pastorek, R. (1998). Acta Univ. Palacki. Olomuc. Fac. Rerum Nat. Chem. 37, 7-10.]); Cromie et al. (2001[Cromie, S., Launay, F. & McKee, V. (2001). Chem. Commun. pp. 1918-1919.]); El Fallah et al. (1996[El Fallah, M. S., Rentschler, E., Caneschi, A. & Gatteschi, D. (1996). Inorg. Chim. Acta, 247, 231-235.]); Gladfelter et al. (1981[Gladfelter, W. L., Lynch, M. W., Schaefer, W. P., Hendrickson, D. N. & Gray, H. B. (1981). Inorg. Chem. 20, 2390-2397.]); Luo et al. (2007[Luo, F., Zheng, J.-M. & Kurmoo, M. (2007). Inorg. Chem. 46, 8448-8450.]); Moragues-Canovas et al. (2004[Moragues-Canovas, M., Helliwell, M., Ricard, L., Riviere, E., Wernsdorfer, W., Brechin, E. & Mallah, T. (2004). Eur. J. Inorg. Chem. pp. 2219-2222.]); Mukherjee et al. (2003[Mukherjee, S., Weyhermüller, T., Bothe, E., Wieghardt, K. & Chaudhuri, P. (2003). Eur. J. Inorg. Chem. pp. 863-875.]); Ran et al. (2008[Ran, J.-W., Zhang, S.-Y., Xu, B., Xia, Y., Guo, D., Zhang, J.-Y. & Li, Y. (2008). Inorg. Chem. Commun. 11, 73-76.]); Yang et al. (2006[Yang, E. C., Wernsdorfer, W., Zakharov, L. N., Karaki, Y., Yamaguchi, A., Isidro, R. M., Lu, G. D., Wilson, S. A., Rheingold, A. L., Ishimoto, H. & Hendrickson, D. N. (2006). Inorg. Chem. 45, 529-546.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni4(CH3O)4(C8H7O3)4(CH4O)4]

  • Mr = 1091.69

  • Tetragonal, I 41 /a

  • a = 22.2670 (9) Å

  • c = 9.70106 (10) Å

  • V = 4810.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 110 K

  • 0.47 × 0.28 × 0.24 mm

Data collection
  • Oxford Xcalibur diffractometer with a Ruby (Gemini Mo) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.463, Tmax = 1.000

  • 12226 measured reflections

  • 2962 independent reflections

  • 2131 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.081

  • S = 0.99

  • 2962 reflections

  • 149 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2S—H2S⋯O1i 0.84 2.05 2.8062 (19) 150
O2S—H2S⋯O3i 0.84 2.50 3.181 (2) 139
C5—H5A⋯O3ii 0.95 2.45 3.360 (3) 159
C1S—H1SC⋯O2Siii 0.98 2.47 3.106 (3) 122
Symmetry codes: (i) [-y+{\script{3\over 4}}, x-{\script{1\over 4}}, -z+{\script{3\over 4}}]; (ii) [-y+{\script{1\over 4}}, x-{\script{1\over 4}}, z-{\script{1\over 4}}]; (iii) [y+{\script{1\over 4}}, -x+{\script{3\over 4}}, -z+{\script{3\over 4}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Polynuclear nickel(II) complexes have become a focused research area due to their single-molecule magnet properties, biomimetic activity and their flexibility to engender cluster construction. (Yang et al., 2006). The structural and magnetic properties of symmetric Ni4O4 cores have been correlated to the Ni—O—Ni angle. It has been shown that the Ni4O4 core exhibits ferromagnetic interactions when the Ni—O—Ni angle is less than 98° and antiferromagnetic interactions when the angle is greater than 109° (Andrew & Blake, 1969; Barnes & Hatfield, 1971; Bertrand et al., 1971, 1978; Gladfelter et al., 1981; Mukherjee et al., 2003). Moragues-Canovas et al. (2004) have synthesized and studied the low-temperature magnetism of the Ni4O4 cubane core complex with four pendant acetonitrile ions and four nitrate ions. Brezina et al. (1998), El Fallah et al. (1996), Luo et al. (2007), Cromie et al. (2001), and Ran et al. (2008) have synthesized, crystallized and studied their magnetism at low and/or various temperatures and confirmed the ferromagnetism/antiferromagnetism of such cubane Ni4O4 core complexes.

In Fig.(1), we report a structure of {Ni-(µ3-OCH3)[o-OC6H3(CH3O)CHO](CH3OH)}4 which has a Ni4O4 cubane-type core centre formed from four µ3-methanolate O atoms and four nickels. Each NiII is in an octahedral O6 coordination environment completed with three µ3-methanolate O atoms, a bidentate 2-formyl-6-methoxyphenolate ligand, and a coordinated methanol molecule. The Ni—O(cubane) bond distances range from 2.0020 (14) to 2.0938 (14) Å, the cis bond angles range from 81.74 (6) to 97.63°, and the trans bond angles range from 168.76 (5) to 175.22 (6)°. The three Ni—O µ3-methanolate bond distances are 2.0350 (13), 2.0568 (13), and 2.0636 (13) Å. All Ni—O distances are within the normal ranges observed in other Ni complexes containing similar ligands. The o-vanillin, the methanol, and methanoate cause less distortion about the Ni's due to rigidity and stability established by the cubane Ni4O4. As a result, this coordination environment of the Ni is closer to perfect octahedral with the following bond angles: O(1S)#1-Ni—O(1S)#2 81.74 (6)°, O(1S)#2-Ni—O(1S) 82.32 (5)°, O(1S)#1-Ni—O(1S) 82.85 (5)°, Ni#1-O(1S)—Ni 96.50 (5)°, Ni#2-O(1S)—Ni 97.19 (5)°, Ni#2-O(1S)—Ni#1 97.91 (6)°. All the bond angles on the cubane (Ni—O—Ni and O—Ni—O) are close to but less than 98°. There are bifurcated hydrogen-bonding interactions between the coordinated methanol OH and both the phenolic and methoxy O of an adjoining 2-formyl-6-methoxyphenolate moiety. In addition there are weak intermolecular C—H···O interactions involving the methoxy O.

Related literature top

For literature related to Ni4 cubane-type clusters, see; Andrew & Blake (1969); Barnes & Hatfield (1971); Bertrand et al. (1971, 1978); Brezina et al. (1998); Cromie et al. (2001); El Fallah et al. (1996); Gladfelter et al. (1981); Luo et al. (2007); Moragues-Canovas et al. (2004); Mukherjee et al. (2003); Ran et al. (2008); Yang et al. (2006).

Experimental top

The complex was synthesized by reacting 0.53 g (1.45 mmol) of nickel perchlorate [NiII(ClO4)2.6H2O] in methanol [MeOH] (20 ml) with a mixture of 0.23 g o-vanillin (1.46 mmol) and 0.26 g of 2-benzylaminopyridine (2-BAP) (1.46 mmol). The secondary amine and the aldehyde were initially mixed in 30 ml of methanol and refluxed with stirring overnight between 50 C and 60 C. The nickel salt solution and the ligands were then mixed and stirred overnight at room temperature (23°-25°), followed by reduced pressure (vacuum) evaporated to obtain a green oily (semi-solid). A portion of the washed product (about 0.025 g) was dissolved in 50/50 MeOH/Propanol. This solution obtained was filtered and layered with diethyl ether. Greenish X-ray quality crystals were obtained after five days of slow diffusion of the diethyl ether into the MeOH/Propanol solvent.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.95 Uiso(H) = 1.2Ueq(C) and 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)]. The H atoms attached to O were idealized with an O—H distance of 0.84 Å.

Structure description top

Polynuclear nickel(II) complexes have become a focused research area due to their single-molecule magnet properties, biomimetic activity and their flexibility to engender cluster construction. (Yang et al., 2006). The structural and magnetic properties of symmetric Ni4O4 cores have been correlated to the Ni—O—Ni angle. It has been shown that the Ni4O4 core exhibits ferromagnetic interactions when the Ni—O—Ni angle is less than 98° and antiferromagnetic interactions when the angle is greater than 109° (Andrew & Blake, 1969; Barnes & Hatfield, 1971; Bertrand et al., 1971, 1978; Gladfelter et al., 1981; Mukherjee et al., 2003). Moragues-Canovas et al. (2004) have synthesized and studied the low-temperature magnetism of the Ni4O4 cubane core complex with four pendant acetonitrile ions and four nitrate ions. Brezina et al. (1998), El Fallah et al. (1996), Luo et al. (2007), Cromie et al. (2001), and Ran et al. (2008) have synthesized, crystallized and studied their magnetism at low and/or various temperatures and confirmed the ferromagnetism/antiferromagnetism of such cubane Ni4O4 core complexes.

In Fig.(1), we report a structure of {Ni-(µ3-OCH3)[o-OC6H3(CH3O)CHO](CH3OH)}4 which has a Ni4O4 cubane-type core centre formed from four µ3-methanolate O atoms and four nickels. Each NiII is in an octahedral O6 coordination environment completed with three µ3-methanolate O atoms, a bidentate 2-formyl-6-methoxyphenolate ligand, and a coordinated methanol molecule. The Ni—O(cubane) bond distances range from 2.0020 (14) to 2.0938 (14) Å, the cis bond angles range from 81.74 (6) to 97.63°, and the trans bond angles range from 168.76 (5) to 175.22 (6)°. The three Ni—O µ3-methanolate bond distances are 2.0350 (13), 2.0568 (13), and 2.0636 (13) Å. All Ni—O distances are within the normal ranges observed in other Ni complexes containing similar ligands. The o-vanillin, the methanol, and methanoate cause less distortion about the Ni's due to rigidity and stability established by the cubane Ni4O4. As a result, this coordination environment of the Ni is closer to perfect octahedral with the following bond angles: O(1S)#1-Ni—O(1S)#2 81.74 (6)°, O(1S)#2-Ni—O(1S) 82.32 (5)°, O(1S)#1-Ni—O(1S) 82.85 (5)°, Ni#1-O(1S)—Ni 96.50 (5)°, Ni#2-O(1S)—Ni 97.19 (5)°, Ni#2-O(1S)—Ni#1 97.91 (6)°. All the bond angles on the cubane (Ni—O—Ni and O—Ni—O) are close to but less than 98°. There are bifurcated hydrogen-bonding interactions between the coordinated methanol OH and both the phenolic and methoxy O of an adjoining 2-formyl-6-methoxyphenolate moiety. In addition there are weak intermolecular C—H···O interactions involving the methoxy O.

For literature related to Ni4 cubane-type clusters, see; Andrew & Blake (1969); Barnes & Hatfield (1971); Bertrand et al. (1971, 1978); Brezina et al. (1998); Cromie et al. (2001); El Fallah et al. (1996); Gladfelter et al. (1981); Luo et al. (2007); Moragues-Canovas et al. (2004); Mukherjee et al. (2003); Ran et al. (2008); Yang et al. (2006).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram showing the pseudo-cubic {Ni-(µ3-OCH3)[o-OC6H3(CH3O)CHO](CH3OH)}4 cluster with unique part labelled. The bifurcated intramolecular hydrogen bonds are shown by dashed lines.
[Figure 2] Fig. 2. The molecular packing for {Ni-(µ3-OCH3)[o-OC6H3(CH3O)CHO](CH3OH)}4 viewed down the c axis. Intra- and intermolecular interactions are shown by dashed lines.
Tetra-µ3-methanolato-tetrakis[(2-formyl-6- methoxyphenolato)methanolnickel(II)] top
Crystal data top
[Ni4(CH3O)4(C8H7O3)4(CH4O)4]Dx = 1.508 Mg m3
Mr = 1091.69Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 4573 reflections
Hall symbol: -I 4adθ = 5.0–29.3°
a = 22.2670 (9) ŵ = 1.62 mm1
c = 9.70106 (10) ÅT = 110 K
V = 4810.0 (3) Å3Prism, green
Z = 40.47 × 0.28 × 0.24 mm
F(000) = 2272
Data collection top
Oxford Xcalibur
diffractometer with a Ruby (Gemini Mo) detector
2962 independent reflections
Radiation source: Enhance (Mo) X-ray Source2131 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.5081 pixels mm-1θmax = 29.4°, θmin = 4.9°
ω scansh = 2130
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 3022
Tmin = 0.463, Tmax = 1.000l = 1312
12226 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0454P)2]
where P = (Fo2 + 2Fc2)/3
2962 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ni4(CH3O)4(C8H7O3)4(CH4O)4]Z = 4
Mr = 1091.69Mo Kα radiation
Tetragonal, I41/aµ = 1.62 mm1
a = 22.2670 (9) ÅT = 110 K
c = 9.70106 (10) Å0.47 × 0.28 × 0.24 mm
V = 4810.0 (3) Å3
Data collection top
Oxford Xcalibur
diffractometer with a Ruby (Gemini Mo) detector
2962 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
2131 reflections with I > 2σ(I)
Tmin = 0.463, Tmax = 1.000Rint = 0.035
12226 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 0.99Δρmax = 0.32 e Å3
2962 reflectionsΔρmin = 0.26 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.478914 (11)0.183990 (11)0.26340 (2)0.02258 (10)
O10.39721 (6)0.14647 (6)0.26250 (13)0.0269 (3)
O20.48379 (6)0.17818 (7)0.05257 (15)0.0344 (4)
O30.28657 (6)0.11763 (6)0.31043 (15)0.0336 (3)
O1S0.48109 (6)0.19293 (6)0.47507 (13)0.0232 (3)
O2S0.52889 (7)0.10453 (6)0.27601 (15)0.0351 (4)
H2S0.55240.10350.34360.042*
C10.36431 (9)0.13635 (8)0.1537 (2)0.0264 (4)
C20.38418 (10)0.14135 (10)0.0123 (2)0.0326 (5)
C30.34410 (11)0.12800 (11)0.0989 (2)0.0439 (6)
H3A0.35800.13140.19110.053*
C40.28728 (11)0.11077 (11)0.0753 (2)0.0471 (6)
H4A0.26140.10160.15020.057*
C50.26610 (10)0.10643 (10)0.0628 (3)0.0390 (6)
H5A0.22580.09440.07950.047*
C60.30315 (9)0.11932 (9)0.1725 (2)0.0294 (5)
C70.44257 (10)0.16174 (11)0.0244 (2)0.0386 (6)
H7A0.45100.16290.12030.046*
C80.22877 (10)0.09432 (13)0.3404 (3)0.0530 (7)
H8A0.19840.11700.28890.080*
H8B0.22090.09800.43940.080*
H8C0.22710.05190.31360.080*
C1S0.46424 (10)0.14354 (9)0.5602 (2)0.0316 (5)
H1SA0.47990.14970.65350.047*
H1SB0.48090.10640.52200.047*
H1SC0.42040.14060.56350.047*
C2S0.51222 (14)0.04601 (11)0.2403 (3)0.0646 (9)
H2SA0.50600.02230.32420.097*
H2SB0.54410.02760.18480.097*
H2SC0.47490.04710.18690.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.02257 (15)0.02712 (16)0.01804 (14)0.00098 (11)0.00057 (10)0.00374 (10)
O10.0258 (7)0.0310 (8)0.0241 (7)0.0014 (6)0.0011 (6)0.0027 (6)
O20.0285 (8)0.0531 (10)0.0218 (7)0.0090 (7)0.0017 (6)0.0082 (7)
O30.0251 (7)0.0362 (8)0.0394 (8)0.0014 (6)0.0064 (7)0.0024 (7)
O1S0.0285 (7)0.0219 (7)0.0193 (7)0.0004 (6)0.0021 (5)0.0019 (5)
O2S0.0365 (8)0.0299 (8)0.0388 (9)0.0023 (7)0.0096 (7)0.0111 (7)
C10.0269 (10)0.0214 (10)0.0309 (11)0.0003 (8)0.0010 (9)0.0038 (8)
C20.0297 (11)0.0402 (12)0.0281 (11)0.0042 (10)0.0004 (9)0.0072 (9)
C30.0423 (14)0.0598 (16)0.0296 (12)0.0085 (12)0.0021 (10)0.0117 (11)
C40.0391 (14)0.0616 (17)0.0407 (14)0.0098 (12)0.0123 (11)0.0104 (12)
C50.0239 (11)0.0391 (13)0.0541 (15)0.0040 (9)0.0052 (10)0.0025 (12)
C60.0278 (11)0.0254 (10)0.0349 (12)0.0017 (9)0.0020 (9)0.0007 (9)
C70.0370 (13)0.0560 (15)0.0228 (11)0.0058 (12)0.0034 (9)0.0085 (10)
C80.0245 (12)0.0724 (18)0.0621 (17)0.0014 (12)0.0080 (12)0.0126 (14)
C1S0.0412 (12)0.0259 (11)0.0276 (11)0.0004 (10)0.0049 (10)0.0053 (9)
C2S0.0657 (19)0.0344 (15)0.094 (2)0.0018 (13)0.0241 (16)0.0189 (15)
Geometric parameters (Å, º) top
Ni—O12.0020 (14)C2—C31.431 (3)
Ni—O1Si2.0350 (13)C3—C41.342 (3)
Ni—O22.0522 (15)C3—H3A0.9500
Ni—O1Sii2.0568 (13)C4—C51.424 (3)
Ni—O1S2.0636 (13)C4—H4A0.9500
Ni—O2S2.0938 (14)C5—C61.377 (3)
O1—C11.305 (2)C5—H5A0.9500
O2—C71.239 (3)C7—H7A0.9500
O3—C61.389 (2)C8—H8A0.9800
O3—C81.418 (3)C8—H8B0.9800
O1S—C1S1.425 (2)C8—H8C0.9800
O1S—Niii2.0350 (13)C1S—H1SA0.9800
O1S—Nii2.0568 (13)C1S—H1SB0.9800
O2S—C2S1.398 (3)C1S—H1SC0.9800
O2S—H2S0.8400C2S—H2SA0.9800
C1—C61.425 (3)C2S—H2SB0.9800
C1—C21.445 (3)C2S—H2SC0.9800
C2—C71.423 (3)
O1—Ni—O1Si172.97 (5)C4—C3—C2121.3 (2)
O1—Ni—O291.00 (5)C4—C3—H3A119.4
O1Si—Ni—O292.41 (5)C2—C3—H3A119.4
O1—Ni—O1Sii91.71 (5)C3—C4—C5119.5 (2)
O1Si—Ni—O1Sii81.74 (6)C3—C4—H4A120.3
O2—Ni—O1Sii97.63 (6)C5—C4—H4A120.3
O1—Ni—O1S93.78 (5)C6—C5—C4120.98 (19)
O1Si—Ni—O1S82.85 (5)C6—C5—H5A119.5
O2—Ni—O1S175.22 (6)C4—C5—H5A119.5
O1Sii—Ni—O1S82.32 (5)C5—C6—O3125.44 (18)
O1—Ni—O2S97.51 (6)C5—C6—C1121.94 (19)
O1Si—Ni—O2S88.72 (5)O3—C6—C1112.62 (17)
O2—Ni—O2S88.67 (6)O2—C7—C2128.4 (2)
O1Sii—Ni—O2S168.76 (5)O2—C7—H7A115.8
O1S—Ni—O2S90.63 (5)C2—C7—H7A115.8
C1—O1—Ni125.87 (12)O3—C8—H8A109.5
C7—O2—Ni125.47 (14)O3—C8—H8B109.5
C6—O3—C8116.67 (18)H8A—C8—H8B109.5
C1S—O1S—Niii119.50 (11)O3—C8—H8C109.5
C1S—O1S—Nii120.73 (12)H8A—C8—H8C109.5
Niii—O1S—Nii97.91 (6)H8B—C8—H8C109.5
C1S—O1S—Ni119.72 (12)O1S—C1S—H1SA109.5
Niii—O1S—Ni97.19 (5)O1S—C1S—H1SB109.5
Nii—O1S—Ni96.50 (5)H1SA—C1S—H1SB109.5
C2S—O2S—Ni129.19 (15)O1S—C1S—H1SC109.5
C2S—O2S—H2S109.5H1SA—C1S—H1SC109.5
Ni—O2S—H2S113.6H1SB—C1S—H1SC109.5
O1—C1—C6118.61 (18)O2S—C2S—H2SA109.5
O1—C1—C2125.64 (18)O2S—C2S—H2SB109.5
C6—C1—C2115.75 (18)H2SA—C2S—H2SB109.5
C7—C2—C3116.59 (19)O2S—C2S—H2SC109.5
C7—C2—C1122.81 (19)H2SA—C2S—H2SC109.5
C3—C2—C1120.55 (19)H2SB—C2S—H2SC109.5
O1Si—Ni—O1—C1109.0 (4)O1Si—Ni—O2S—C2S161.5 (2)
O2—Ni—O1—C110.03 (15)O2—Ni—O2S—C2S69.1 (2)
O1Sii—Ni—O1—C187.64 (15)O1Sii—Ni—O2S—C2S166.6 (3)
O1S—Ni—O1—C1170.05 (15)O1S—Ni—O2S—C2S115.7 (2)
O2S—Ni—O1—C198.82 (15)Ni—O1—C1—C6168.91 (13)
O1—Ni—O2—C76.22 (19)Ni—O1—C1—C210.5 (3)
O1Si—Ni—O2—C7167.63 (19)O1—C1—C2—C73.7 (3)
O1Sii—Ni—O2—C785.64 (19)C6—C1—C2—C7175.7 (2)
O1S—Ni—O2—C7174.7 (6)O1—C1—C2—C3178.9 (2)
O2S—Ni—O2—C7103.71 (19)C6—C1—C2—C31.7 (3)
O1—Ni—O1S—C1S46.98 (14)C7—C2—C3—C4177.3 (2)
O1Si—Ni—O1S—C1S139.22 (15)C1—C2—C3—C40.2 (4)
O2—Ni—O1S—C1S132.1 (7)C2—C3—C4—C50.8 (4)
O1Sii—Ni—O1S—C1S138.20 (15)C3—C4—C5—C60.3 (3)
O2S—Ni—O1S—C1S50.59 (14)C4—C5—C6—O3178.63 (19)
O1—Ni—O1S—Niii83.07 (6)C4—C5—C6—C11.3 (3)
O1Si—Ni—O1S—Niii90.730 (9)C8—O3—C6—C57.4 (3)
O2—Ni—O1S—Niii97.9 (7)C8—O3—C6—C1172.74 (18)
O1Sii—Ni—O1S—Niii8.15 (6)O1—C1—C6—C5178.32 (19)
O2S—Ni—O1S—Niii179.37 (6)C2—C1—C6—C52.2 (3)
O1—Ni—O1S—Nii178.07 (5)O1—C1—C6—O31.8 (2)
O1Si—Ni—O1S—Nii8.13 (6)C2—C1—C6—O3177.69 (17)
O2—Ni—O1S—Nii1.0 (7)Ni—O2—C7—C22.4 (4)
O1Sii—Ni—O1S—Nii90.708 (8)C3—C2—C7—O2176.9 (2)
O2S—Ni—O1S—Nii80.51 (6)C1—C2—C7—O20.6 (4)
O1—Ni—O2S—C2S21.8 (2)
Symmetry codes: (i) y+3/4, x1/4, z+3/4; (ii) y+1/4, x+3/4, z+3/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2S—H2S···O1i0.842.052.8062 (19)150
O2S—H2S···O3i0.842.503.181 (2)139
C5—H5A···O3iii0.952.453.360 (3)159
C1S—H1SC···O2Sii0.982.473.106 (3)122
Symmetry codes: (i) y+3/4, x1/4, z+3/4; (ii) y+1/4, x+3/4, z+3/4; (iii) y+1/4, x1/4, z1/4.

Experimental details

Crystal data
Chemical formula[Ni4(CH3O)4(C8H7O3)4(CH4O)4]
Mr1091.69
Crystal system, space groupTetragonal, I41/a
Temperature (K)110
a, c (Å)22.2670 (9), 9.70106 (10)
V3)4810.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.47 × 0.28 × 0.24
Data collection
DiffractometerOxford Xcalibur
diffractometer with a Ruby (Gemini Mo) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.463, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12226, 2962, 2131
Rint0.035
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 0.99
No. of reflections2962
No. of parameters149
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.26

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2S—H2S···O1i0.842.052.8062 (19)150.0
O2S—H2S···O3i0.842.503.181 (2)138.7
C5—H5A···O3ii0.952.453.360 (3)159.3
C1S—H1SC···O2Siii0.982.473.106 (3)122.1
Symmetry codes: (i) y+3/4, x1/4, z+3/4; (ii) y+1/4, x1/4, z1/4; (iii) y+1/4, x+3/4, z+3/4.
 

Acknowledgements

RJB acknowledges the NSF-MRI programme (grant No. CHE-0619278) for funds to purchase the diffractometer.

References

First citationAndrew, J. E. & Blake, A. B. (1969). J. Chem. Soc. A, pp. 1456–1461.  CrossRef Google Scholar
First citationBarnes, J. A. & Hatfield, W. E. (1971). Inorg. Chem. 10, 2355–2357.  CrossRef CAS Web of Science Google Scholar
First citationBertrand, J. A., Ginsberg, A. P., Kaplan, R. I., Kirkwood, C. E., Martin, R. L. & Sherwood, R. C. (1971). Inorg. Chem. 10, 240–246.  Google Scholar
First citationBertrand, J. A., Marabella, C. & Vanderveer, D. G. (1978). Inorg. Chim. Acta, 26, 113–118.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrezina, F., Biler, M. & Pastorek, R. (1998). Acta Univ. Palacki. Olomuc. Fac. Rerum Nat. Chem. 37, 7–10.  CAS Google Scholar
First citationCromie, S., Launay, F. & McKee, V. (2001). Chem. Commun. pp. 1918–1919.  Web of Science CSD CrossRef Google Scholar
First citationEl Fallah, M. S., Rentschler, E., Caneschi, A. & Gatteschi, D. (1996). Inorg. Chim. Acta, 247, 231–235.  CSD CrossRef CAS Web of Science Google Scholar
First citationGladfelter, W. L., Lynch, M. W., Schaefer, W. P., Hendrickson, D. N. & Gray, H. B. (1981). Inorg. Chem. 20, 2390–2397.  CSD CrossRef CAS Web of Science Google Scholar
First citationLuo, F., Zheng, J.-M. & Kurmoo, M. (2007). Inorg. Chem. 46, 8448–8450.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoragues-Canovas, M., Helliwell, M., Ricard, L., Riviere, E., Wernsdorfer, W., Brechin, E. & Mallah, T. (2004). Eur. J. Inorg. Chem. pp. 2219–2222.  Web of Science CSD CrossRef Google Scholar
First citationMukherjee, S., Weyhermüller, T., Bothe, E., Wieghardt, K. & Chaudhuri, P. (2003). Eur. J. Inorg. Chem. pp. 863–875.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationRan, J.-W., Zhang, S.-Y., Xu, B., Xia, Y., Guo, D., Zhang, J.-Y. & Li, Y. (2008). Inorg. Chem. Commun. 11, 73–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, E. C., Wernsdorfer, W., Zakharov, L. N., Karaki, Y., Yamaguchi, A., Isidro, R. M., Lu, G. D., Wilson, S. A., Rheingold, A. L., Ishimoto, H. & Hendrickson, D. N. (2006). Inorg. Chem. 45, 529–546.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds