organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-tert-Butyl-4′-(4-meth­­oxy­phen­yl)-3′-(4-methyl­phen­yl)-1,2,3,4-tetra­hydro­spiro­[naphthalene-2,5′(4′H)-1,2-oxazol]-1-one

aLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, and bLaboratoire de Diffraction des Rayons X, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
*Correspondence e-mail: ghali68@yahoo.fr

(Received 27 October 2010; accepted 28 October 2010; online 31 October 2010)

In the title compound, C30H31NO3, the tolyl ring is almost coplanar with the isoxazole ring [dihedral angle = 12.51 (7)°], whereas the meth­oxy­phenyl ring is almost perpendicular to the isoxazole ring [dihedral angle = 89.77 (5)°]. In the crystal, mol­ecules are connected through C—H⋯O hydrogen bonds, forming chains running along the a axis.

Related literature

For general background on the chemical synthesis, see: Al Houari et al. (2010[Al Houari, G., Bennani, A. K., Bennani, B., Daoudi, M., Benlarbi, N., El Yazidi, M., Garrigues, B. & Kerbal, A. (2010). J. Mar. Chim. Heterocycl. 9, 36-43.]); Bruche & Zecchi (1983[Bruche, L. & Zecchi, G. (1983). J. Org. Chem. 48, 2272-2278.]); Toth et al. (1999[Toth, G., Balazs, B., Levai, A., Fisera, L. & Jedlovska, E. (1999). J. Mol. Struct. 508, 29-36.]).

[Scheme 1]

Experimental

Crystal data
  • C30H31NO3

  • Mr = 453.56

  • Monoclinic, P 21 /c

  • a = 6.9248 (3) Å

  • b = 24.7919 (12) Å

  • c = 14.2111 (7) Å

  • β = 94.460 (2)°

  • V = 2432.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.34 × 0.21 × 0.20 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • 21101 measured reflections

  • 4382 independent reflections

  • 3165 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.113

  • S = 1.04

  • 4382 reflections

  • 312 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O4i 0.93 2.44 3.313 (2) 156
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the context of our research concerning the approach of dipole-dipolarophile in 1,3-dipolarcycloaddition, we have already studied the case where the dipole is an arylnitriloxide and the dipolarophiles are the 2-arylidenes of the 3,4-dihydronaphthalen-1-one substituted by anisopropyle group in position 4 (Al Houari et al., 2010).

We have shown that the ring closure reaction is highly regioselective and also highly diastereoselective. The relative configuration and conformation of the products have been determined by means of protonic magnetic resonance measurements.

In this paper we describe the regiochemistry and stereochemistry in the reaction of the para-tolylnitriloxide with the 4-tert-butyl-2-(4-methoxybenzylidene)-3,4-dihydronaphthalen-1-one.

In general, the majority or unique regiochemistry we observe in the 1,3-dipolarcycloaddition of arylnitriloxydes with ethylenic dipolarophiles leads to anisoxazoline, where the electron-attracting or withdrawing substitutent of the dipolarophile is in position 5 of the isoxazoline (Bruche & Zecchi 1983). This is exactly what we observed in our case with this X-ray crystal structure study, where the carbonyl group is in position 5 of the isoxazoline. We also found out, that the axial disposition the tert-butyl group imposes an exclusive anti approach of the dipole. This stereochemistry is due to steric effects.

The dihedral angles between the benzene ring of the naphthalenone and the two rings of the methylbenzene and the methoxybenzene are 58.79 (9)° and 85.36 (9)°, respctively. In the crystal, molecules are connected through C—H···O hydrogen bonds, forming chains running along the a axis.

Related literature top

For general background, see: Al Houari et al. (2010); Bruche & Zecchi (1983); Toth et al. (1999).

Experimental top

In a 100 ml flask, we dissolved 2 mmol of the 4-tert-butyl-2-(4-methoxybenzylidene)-3,4-dihydronaphthalen-1-one and 2.4 mmol of para tolyle oxime in 20 ml chloroform. The mixture was cooled to 0°C under magnetic stirring in an ice bath. Then 15 ml of bleach at 18°C was added in small doses without exceeding 5°C. The mixture was left under magnetic stirring for 16 h at room temperature, then washed with water until the pH was neutral and dried on sodium sulfate. The solvent was evaporated with a rotating evaporator and the oily residue was dissolved in ethanol. The precipitated product was then recrystallized in ethanol.

Refinement top

All H atoms were geometrically positioned and treated as riding with C—H ranging from 0.93 Å to 0.97Å and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Structure description top

In the context of our research concerning the approach of dipole-dipolarophile in 1,3-dipolarcycloaddition, we have already studied the case where the dipole is an arylnitriloxide and the dipolarophiles are the 2-arylidenes of the 3,4-dihydronaphthalen-1-one substituted by anisopropyle group in position 4 (Al Houari et al., 2010).

We have shown that the ring closure reaction is highly regioselective and also highly diastereoselective. The relative configuration and conformation of the products have been determined by means of protonic magnetic resonance measurements.

In this paper we describe the regiochemistry and stereochemistry in the reaction of the para-tolylnitriloxide with the 4-tert-butyl-2-(4-methoxybenzylidene)-3,4-dihydronaphthalen-1-one.

In general, the majority or unique regiochemistry we observe in the 1,3-dipolarcycloaddition of arylnitriloxydes with ethylenic dipolarophiles leads to anisoxazoline, where the electron-attracting or withdrawing substitutent of the dipolarophile is in position 5 of the isoxazoline (Bruche & Zecchi 1983). This is exactly what we observed in our case with this X-ray crystal structure study, where the carbonyl group is in position 5 of the isoxazoline. We also found out, that the axial disposition the tert-butyl group imposes an exclusive anti approach of the dipole. This stereochemistry is due to steric effects.

The dihedral angles between the benzene ring of the naphthalenone and the two rings of the methylbenzene and the methoxybenzene are 58.79 (9)° and 85.36 (9)°, respctively. In the crystal, molecules are connected through C—H···O hydrogen bonds, forming chains running along the a axis.

For general background, see: Al Houari et al. (2010); Bruche & Zecchi (1983); Toth et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 [or SAINT?] (Bruker, 2005); data reduction: APEX2 [or SAINT?] (Bruker, 2005); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound showing the atom-labelling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. : Partial packing diagram showing two molecules connected by a C-H···O hydrogen bond.
4-tert-Butyl-4'-(4-methoxyphenyl)-3'-(4-methylphenyl)- 1,2,3,4-tetrahydrospiro[naphthalene-2,5'(4'H)-1,2-oxazol]-1-one top
Crystal data top
C30H31NO3F(000) = 968
Mr = 453.56Dx = 1.239 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2572 reflections
a = 6.9248 (3) Åθ = 1.7–25.1°
b = 24.7919 (12) ŵ = 0.08 mm1
c = 14.2111 (7) ÅT = 296 K
β = 94.460 (2)°Block, yellow
V = 2432.4 (2) Å30.34 × 0.21 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD detector
diffractometer
3165 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 25.2°, θmin = 2.9°
ω and φ scansh = 78
21101 measured reflectionsk = 2929
4382 independent reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.2609P]
where P = (Fo2 + 2Fc2)/3
4382 reflections(Δ/σ)max = 0.005
312 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C30H31NO3V = 2432.4 (2) Å3
Mr = 453.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.9248 (3) ŵ = 0.08 mm1
b = 24.7919 (12) ÅT = 296 K
c = 14.2111 (7) Å0.34 × 0.21 × 0.20 mm
β = 94.460 (2)°
Data collection top
Bruker APEXII CCD detector
diffractometer
3165 reflections with I > 2σ(I)
21101 measured reflectionsRint = 0.036
4382 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
4382 reflectionsΔρmin = 0.17 e Å3
312 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.63085 (15)0.63345 (4)0.73883 (8)0.0474 (3)
N10.60997 (19)0.58121 (5)0.69829 (9)0.0468 (3)
O20.36687 (18)0.66608 (4)0.57094 (7)0.0543 (3)
C80.4373 (2)0.65875 (6)0.73832 (10)0.0389 (4)
C150.3017 (2)0.60949 (6)0.73542 (10)0.0391 (4)
H150.18790.61640.69170.047*
C100.5015 (2)0.74455 (6)0.64473 (11)0.0427 (4)
C240.3633 (2)0.51695 (6)0.65106 (11)0.0433 (4)
C50.4863 (2)0.77684 (6)0.72404 (11)0.0427 (4)
C230.4304 (2)0.56809 (6)0.69348 (10)0.0402 (4)
C90.4249 (2)0.68879 (6)0.64352 (11)0.0412 (4)
C160.2379 (2)0.59128 (6)0.82979 (11)0.0407 (4)
C210.3692 (2)0.57148 (7)0.89982 (12)0.0488 (4)
H210.49730.56630.88650.059*
C60.3864 (2)0.75536 (6)0.80660 (11)0.0426 (4)
H60.44210.77540.86160.051*
C70.4479 (2)0.69652 (6)0.82392 (11)0.0454 (4)
H7A0.58030.69650.85180.055*
H7B0.36750.68140.87030.055*
C270.2301 (3)0.42282 (7)0.55619 (12)0.0537 (5)
O30.0559 (2)0.55683 (6)1.09572 (10)0.0760 (4)
C290.4913 (3)0.48045 (7)0.61566 (12)0.0508 (4)
H290.62380.48720.62330.061*
C180.0083 (3)0.58377 (7)0.93966 (14)0.0563 (5)
H180.13740.58730.95240.068*
C170.0469 (2)0.59639 (7)0.85111 (12)0.0485 (4)
H170.04560.60850.80500.058*
C40.5666 (2)0.82844 (7)0.72359 (13)0.0524 (4)
H40.55880.85070.77590.063*
C200.3150 (3)0.55912 (7)0.98906 (12)0.0545 (5)
H200.40610.54621.03510.065*
C10.5907 (3)0.76397 (7)0.56714 (12)0.0554 (5)
H10.59770.74230.51400.067*
C280.4250 (3)0.43438 (7)0.56943 (12)0.0573 (5)
H280.51390.41050.54660.069*
C140.0526 (2)0.73897 (8)0.71858 (14)0.0625 (5)
H14A0.06940.70060.72400.094*
H14B0.10110.75120.66080.094*
H14C0.08260.74760.71840.094*
C110.1637 (2)0.76677 (7)0.80208 (12)0.0493 (4)
C190.1257 (3)0.56609 (7)1.00910 (13)0.0528 (4)
C250.1675 (3)0.50474 (7)0.63929 (13)0.0589 (5)
H250.07800.52810.66300.071*
C260.1035 (3)0.45842 (8)0.59279 (14)0.0654 (5)
H260.02860.45110.58610.078*
C20.6686 (3)0.81497 (8)0.56862 (14)0.0660 (5)
H20.72880.82780.51680.079*
C120.1311 (3)0.82777 (7)0.79301 (15)0.0679 (6)
H12A0.00380.83560.79670.102*
H12B0.17120.83990.73340.102*
H12C0.20560.84590.84330.102*
C30.6571 (3)0.84692 (8)0.64697 (14)0.0625 (5)
H30.71090.88130.64830.075*
C130.0841 (3)0.74815 (8)0.89371 (15)0.0709 (6)
H13A0.05040.75760.89310.106*
H13B0.15480.76530.94620.106*
H13C0.09780.70970.89950.106*
C220.1889 (4)0.53982 (9)1.17053 (14)0.0829 (7)
H22A0.24380.50571.15480.124*
H22B0.12290.53611.22710.124*
H22C0.29030.56611.18040.124*
C300.1581 (4)0.37406 (8)0.50084 (15)0.0777 (6)
H30A0.20000.37600.43810.117*
H30B0.01920.37310.49780.117*
H30C0.20930.34200.53140.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0394 (6)0.0439 (7)0.0576 (7)0.0060 (5)0.0044 (5)0.0047 (5)
N10.0483 (8)0.0428 (8)0.0492 (8)0.0071 (6)0.0034 (6)0.0030 (6)
O20.0736 (8)0.0494 (7)0.0383 (6)0.0022 (6)0.0061 (6)0.0056 (5)
C80.0365 (8)0.0413 (9)0.0381 (8)0.0063 (6)0.0033 (7)0.0006 (7)
C150.0378 (8)0.0398 (9)0.0388 (9)0.0063 (6)0.0030 (7)0.0009 (7)
C100.0430 (9)0.0430 (9)0.0406 (9)0.0019 (7)0.0069 (7)0.0018 (7)
C240.0560 (10)0.0369 (9)0.0376 (9)0.0032 (7)0.0085 (8)0.0032 (7)
C50.0381 (8)0.0422 (9)0.0460 (9)0.0035 (7)0.0081 (7)0.0007 (7)
C230.0456 (9)0.0404 (9)0.0345 (8)0.0062 (7)0.0032 (7)0.0040 (7)
C90.0411 (9)0.0445 (9)0.0372 (9)0.0054 (7)0.0017 (7)0.0029 (7)
C160.0403 (9)0.0374 (9)0.0440 (9)0.0038 (7)0.0012 (7)0.0030 (7)
C210.0418 (9)0.0546 (10)0.0501 (10)0.0086 (8)0.0044 (8)0.0047 (8)
C60.0453 (9)0.0415 (9)0.0399 (9)0.0012 (7)0.0045 (7)0.0081 (7)
C70.0496 (9)0.0461 (9)0.0390 (9)0.0032 (7)0.0068 (7)0.0018 (7)
C270.0784 (13)0.0405 (10)0.0451 (10)0.0084 (9)0.0234 (9)0.0001 (8)
O30.0921 (11)0.0759 (9)0.0641 (9)0.0008 (8)0.0322 (8)0.0040 (7)
C290.0555 (10)0.0463 (10)0.0508 (10)0.0090 (8)0.0048 (8)0.0003 (8)
C180.0468 (10)0.0543 (11)0.0704 (13)0.0006 (8)0.0201 (9)0.0068 (10)
C170.0394 (9)0.0475 (10)0.0582 (11)0.0040 (7)0.0007 (8)0.0045 (8)
C40.0535 (10)0.0447 (10)0.0573 (11)0.0014 (8)0.0068 (9)0.0052 (8)
C200.0618 (12)0.0540 (11)0.0468 (10)0.0065 (9)0.0008 (9)0.0046 (8)
C10.0668 (12)0.0579 (11)0.0406 (9)0.0050 (9)0.0020 (9)0.0042 (8)
C280.0785 (14)0.0421 (10)0.0531 (11)0.0106 (9)0.0167 (10)0.0024 (8)
C140.0417 (10)0.0650 (12)0.0790 (13)0.0087 (8)0.0065 (9)0.0132 (10)
C110.0458 (9)0.0427 (9)0.0593 (11)0.0038 (7)0.0041 (8)0.0080 (8)
C190.0651 (12)0.0439 (10)0.0515 (10)0.0020 (8)0.0183 (9)0.0034 (8)
C250.0593 (12)0.0506 (11)0.0696 (12)0.0037 (9)0.0233 (10)0.0149 (9)
C260.0650 (12)0.0598 (12)0.0744 (13)0.0160 (10)0.0246 (10)0.0136 (10)
C20.0793 (14)0.0640 (13)0.0540 (12)0.0154 (10)0.0002 (10)0.0130 (10)
C120.0574 (11)0.0515 (11)0.0953 (16)0.0108 (9)0.0082 (11)0.0084 (11)
C30.0661 (12)0.0481 (11)0.0714 (13)0.0119 (9)0.0069 (10)0.0096 (10)
C130.0679 (13)0.0667 (13)0.0807 (15)0.0000 (10)0.0229 (11)0.0093 (11)
C220.123 (2)0.0746 (15)0.0527 (12)0.0013 (13)0.0153 (13)0.0083 (11)
C300.1067 (17)0.0560 (12)0.0748 (14)0.0238 (11)0.0348 (12)0.0173 (11)
Geometric parameters (Å, º) top
O4—N11.4203 (16)C18—C171.379 (2)
O4—C81.4795 (17)C18—H180.9300
N1—C231.282 (2)C17—H170.9300
O2—C91.2157 (17)C4—C31.376 (3)
C8—C71.532 (2)C4—H40.9300
C8—C91.536 (2)C20—C191.374 (3)
C8—C151.539 (2)C20—H200.9300
C15—C231.512 (2)C1—C21.374 (3)
C15—C161.513 (2)C1—H10.9300
C15—H150.9800C28—H280.9300
C10—C11.391 (2)C14—C111.527 (2)
C10—C51.393 (2)C14—H14A0.9600
C10—C91.480 (2)C14—H14B0.9600
C24—C251.386 (2)C14—H14C0.9600
C24—C291.388 (2)C11—C131.524 (3)
C24—C231.464 (2)C11—C121.533 (2)
C5—C41.395 (2)C25—C261.381 (2)
C5—C61.505 (2)C25—H250.9300
C16—C211.385 (2)C26—H260.9300
C16—C171.386 (2)C2—C31.374 (3)
C21—C201.385 (2)C2—H20.9300
C21—H210.9300C12—H12A0.9600
C6—C71.534 (2)C12—H12B0.9600
C6—C111.565 (2)C12—H12C0.9600
C6—H60.9800C3—H30.9300
C7—H7A0.9700C13—H13A0.9600
C7—H7B0.9700C13—H13B0.9600
C27—C261.375 (3)C13—H13C0.9600
C27—C281.378 (3)C22—H22A0.9600
C27—C301.506 (3)C22—H22B0.9600
O3—C191.376 (2)C22—H22C0.9600
O3—C221.416 (3)C30—H30A0.9600
C29—C281.379 (2)C30—H30B0.9600
C29—H290.9300C30—H30C0.9600
C18—C191.373 (3)
N1—O4—C8108.72 (10)C5—C4—H4119.5
C23—N1—O4108.71 (12)C19—C20—C21119.53 (16)
O4—C8—C7105.51 (11)C19—C20—H20120.2
O4—C8—C9101.45 (11)C21—C20—H20120.2
C7—C8—C9113.32 (13)C2—C1—C10120.28 (17)
O4—C8—C15102.37 (11)C2—C1—H1119.9
C7—C8—C15119.86 (13)C10—C1—H1119.9
C9—C8—C15111.66 (12)C27—C28—C29121.60 (17)
C23—C15—C16111.63 (12)C27—C28—H28119.2
C23—C15—C899.94 (12)C29—C28—H28119.2
C16—C15—C8115.64 (12)C11—C14—H14A109.5
C23—C15—H15109.7C11—C14—H14B109.5
C16—C15—H15109.7H14A—C14—H14B109.5
C8—C15—H15109.7C11—C14—H14C109.5
C1—C10—C5120.57 (15)H14A—C14—H14C109.5
C1—C10—C9119.66 (14)H14B—C14—H14C109.5
C5—C10—C9119.77 (14)C13—C11—C14109.46 (16)
C25—C24—C29117.40 (16)C13—C11—C12108.05 (15)
C25—C24—C23120.98 (14)C14—C11—C12108.54 (15)
C29—C24—C23121.49 (15)C13—C11—C6109.33 (14)
C10—C5—C4117.91 (16)C14—C11—C6112.68 (13)
C10—C5—C6119.71 (14)C12—C11—C6108.66 (14)
C4—C5—C6122.38 (15)C18—C19—C20119.58 (16)
N1—C23—C24121.15 (14)C18—C19—O3115.57 (17)
N1—C23—C15113.93 (14)C20—C19—O3124.85 (18)
C24—C23—C15124.92 (14)C26—C25—C24120.92 (17)
O2—C9—C10122.47 (14)C26—C25—H25119.5
O2—C9—C8120.78 (14)C24—C25—H25119.5
C10—C9—C8116.56 (13)C27—C26—C25121.64 (19)
C21—C16—C17117.39 (15)C27—C26—H26119.2
C21—C16—C15121.45 (14)C25—C26—H26119.2
C17—C16—C15121.08 (14)C3—C2—C1119.70 (18)
C20—C21—C16121.81 (16)C3—C2—H2120.1
C20—C21—H21119.1C1—C2—H2120.1
C16—C21—H21119.1C11—C12—H12A109.5
C5—C6—C7108.84 (13)C11—C12—H12B109.5
C5—C6—C11114.54 (13)H12A—C12—H12B109.5
C7—C6—C11116.04 (13)C11—C12—H12C109.5
C5—C6—H6105.5H12A—C12—H12C109.5
C7—C6—H6105.5H12B—C12—H12C109.5
C11—C6—H6105.5C2—C3—C4120.53 (17)
C8—C7—C6117.26 (12)C2—C3—H3119.7
C8—C7—H7A108.0C4—C3—H3119.7
C6—C7—H7A108.0C11—C13—H13A109.5
C8—C7—H7B108.0C11—C13—H13B109.5
C6—C7—H7B108.0H13A—C13—H13B109.5
H7A—C7—H7B107.2C11—C13—H13C109.5
C26—C27—C28117.49 (17)H13A—C13—H13C109.5
C26—C27—C30121.20 (19)H13B—C13—H13C109.5
C28—C27—C30121.27 (17)O3—C22—H22A109.5
C19—O3—C22117.91 (17)O3—C22—H22B109.5
C28—C29—C24120.93 (17)H22A—C22—H22B109.5
C28—C29—H29119.5O3—C22—H22C109.5
C24—C29—H29119.5H22A—C22—H22C109.5
C19—C18—C17120.57 (17)H22B—C22—H22C109.5
C19—C18—H18119.7C27—C30—H30A109.5
C17—C18—H18119.7C27—C30—H30B109.5
C18—C17—C16121.04 (16)H30A—C30—H30B109.5
C18—C17—H17119.5C27—C30—H30C109.5
C16—C17—H17119.5H30A—C30—H30C109.5
C3—C4—C5121.00 (17)H30B—C30—H30C109.5
C3—C4—H4119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O4i0.932.443.313 (2)156
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC30H31NO3
Mr453.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.9248 (3), 24.7919 (12), 14.2111 (7)
β (°) 94.460 (2)
V3)2432.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.34 × 0.21 × 0.20
Data collection
DiffractometerBruker APEXII CCD detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21101, 4382, 3165
Rint0.036
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.04
No. of reflections4382
No. of parameters312
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.17

Computer programs: APEX2 (Bruker, 2005), APEX2 [or SAINT?] (Bruker, 2005), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O4i0.93002.44003.313 (2)156.00
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank the CNRST Morocco for making this work possible.

References

First citationAl Houari, G., Bennani, A. K., Bennani, B., Daoudi, M., Benlarbi, N., El Yazidi, M., Garrigues, B. & Kerbal, A. (2010). J. Mar. Chim. Heterocycl. 9, 36–43.  CAS Google Scholar
First citationBruche, L. & Zecchi, G. (1983). J. Org. Chem. 48, 2272–2278.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToth, G., Balazs, B., Levai, A., Fisera, L. & Jedlovska, E. (1999). J. Mol. Struct. 508, 29–36.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds