metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­cadmium(II)]-μ-4,4′-sulfonyl­dibenzoato-κ2O1:O1′]

aDepartment of Chemistry, Yancheng Teachers' College, Yancheng 224002, People's Republic of China
*Correspondence e-mail: wjndyc@gmail.com

(Received 25 September 2010; accepted 4 October 2010; online 13 October 2010)

The title compound, [Cd(C14H8O6S)(H2O)2]n, comprises zigzag chains parallel to [111] of alternating [Cd(H2O)2]2+ and sulfonyl­dibenzoate units, with the Cd and S atoms lying on crystallographic twofold axes. The central CdII ion is in a slightly distorted octa­hedral geometry, coordinated by six O atoms from two carboxyl­ate groups and two water O atoms. An intra­molecular C—H⋯O hydrogen bond occurs. In the crystal, inter­molecular hydrogen bonds between carboxyl­ate O atoms and coordinated water mol­ecules in adjacent chains lead to the formation of a three-dimensional network structure. The compound is isotypic with the Zn analog.

Related literature

For related compounds based on 4,4′-sulfonyl­dibenzoic acid, see: Xiao et al. (2007[Xiao, D.-R., Li, Y.-G., Wang, E.-B., Fan, L.-L., An, H.-Y., Su, Z.-M. & Xu, L. (2007). Inorg. Chem. 46, 4158-4166.]); Wu et al. (2007[Wu, H.-H., Lian, F.-Y., Yuan, D.-Q. & Hong, M.-C. (2007). Acta Cryst. E63, m67-m69.]); Miyazawa et al. (2009[Miyazawa, M., Irie, Y., Kashimoto, K., Nishina, N., Kondo, M., Yasue, S., Maeda, K. & Uchida, F. (2009). Inorg. Chem. Commun. 12, 336-339.]); Wang et al. (2009[Wang, C.-J., Wang, Y.-Y., Liu, J.-Q., Wang, H., Shi, Q.-Z. & Peng, S.-M. (2009). Inorg. Chim. Acta, 362, 543-550.]). For the isotypic Zn analog, see: Pan et al. (2007[Pan, P.-B., Zhang, L., Li, Z.-J., Cao, X.-Y. & Yao, Y.-G. (2007). Acta Cryst. C63, m270-m272.]). For potential application of metal-organic frameworks, see: Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Ferey et al. (2005[Ferey, G., Mellot-Draznieks, C., Serre, C. & Millange, F. (2005). Acc. Chem. Res. 38, 217-225.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C14H8O6S)(H2O)2]

  • Mr = 452.72

  • Monoclinic, P 2/c

  • a = 13.293 (3) Å

  • b = 5.2742 (12) Å

  • c = 12.156 (3) Å

  • β = 116.145 (2)°

  • V = 765.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 298 K

  • 0.21 × 0.19 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.721, Tmax = 0.786

  • 3574 measured reflections

  • 1364 independent reflections

  • 1325 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.102

  • S = 1.24

  • 1361 reflections

  • 110 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −1.00 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O1i 0.85 1.97 2.7479 (14) 151
O4—H4A⋯O2ii 0.85 2.00 2.7364 (15) 145
C6—H6⋯O3 0.93 2.55 2.9208 (16) 104
Symmetry codes: (i) x, y-1, z; (ii) [x, -y, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, much attention has been focused on the construction of metal organic frameworks (MOFs) not only because of their fascinating structures and topologies but also owing to their potential application in many fields such as magnetism, catalysis, nonlinear optics. (Eddaoudi, et al., 2001; Kitagawa et al., 2004; Ferey et al., 2005.). The main method to construct such complexes is to use multidentate organic ligands. The organic aromatic polycarboxylate ligands are an important family of multidentate ligands. The 4,4'-sulfonyldibenzoic acid has been widely used in the construction of metal organic frameworks because of two carboxylate functions and its structural flexibility.(Xiao et al., 2007; Wu et al., 2007; Miyazawa et al., 2009; Wang et al., 2009.) We report here the synthesis and crystal structure of the title compound (I) based on 4,4'-sulfonyldibenzoic acid which is isostructural to the reported compound by Pan et al., 2007.

As shown in Fig. 1, the Cd centres in (I) are six-coordinate in a highly distorted octahedral geometry, involving four O atom donors of two 4,4'-sulfonyldibenzoic acid ligands and two coordinated water molecules, while the carboxylate group of 4,4'-sulfonyldibenzoic acid adopts µ2-η1:η1– chelating mode in this structure. The structure of (I) comprises zigzag chains of alternating [Cd(H2O)2]2+ and sulfonyldibenzoate unit, with their respective Cd and S atoms lying on crystallographic twofold axes. In the crystal structure there are three hydrogen bonds, two O—H···O intermolecular and one C—H···O intramolecular interactions, lead to the formation of a three dimensional network structure. Fig 2, Table 1.

Related literature top

For related compounds based on 4,4'-sulfonyldibenzoic acid, see: Xiao et al. (2007); Wu et al. (2007); Pan et al. (2007); Miyazawa et al. (2009); Wang et al. (2009). For potential application of metalorganic frameworks, see: Eddaoudi et al. (2001); Ferey et al. (2005); Kitagawa et al. (2004).

Experimental top

The title compound, (I), was prepared by the hydrothermal reaction of Cd(NO3)2.6H2O (34.5 mg, 0.1 mmol), 4,4'-sulfonyldibenzoic (30 mg, 0.1 mmol), 1,4-Bis(1,2,4-triazol-1-yl)butane (19.2 mg, 0.1 mmol), and NaOH (8.0 mg, 0.2 mmol) in H2O (10 ml) was sealed in a 16 ml Teflon-lined stainless steel container and heated at 180 °C for 72 h. After cooling to room temperature, block colorless crystals of (I) were collected by filtration and washed by water and ethanol several times. (yield 47.25%, based on Cd). Elemental analysis for C14H12CdO8S (Mr = 452.72): C 37.14, H 2.67; found: 43.61, H 2.69.

Refinement top

H atoms bonded to coordinated water oxygen atom were located in a difference Fourier map and fixed in the refinement, with Uiso(H)=1.2Ueq(O). All C-bound H atoms were positioned in calculated positions and refined using a riding model, with C—H = 0.93?(aromatic) and Uiso(H) = 1.2Ueq(C).

Structure description top

In recent years, much attention has been focused on the construction of metal organic frameworks (MOFs) not only because of their fascinating structures and topologies but also owing to their potential application in many fields such as magnetism, catalysis, nonlinear optics. (Eddaoudi, et al., 2001; Kitagawa et al., 2004; Ferey et al., 2005.). The main method to construct such complexes is to use multidentate organic ligands. The organic aromatic polycarboxylate ligands are an important family of multidentate ligands. The 4,4'-sulfonyldibenzoic acid has been widely used in the construction of metal organic frameworks because of two carboxylate functions and its structural flexibility.(Xiao et al., 2007; Wu et al., 2007; Miyazawa et al., 2009; Wang et al., 2009.) We report here the synthesis and crystal structure of the title compound (I) based on 4,4'-sulfonyldibenzoic acid which is isostructural to the reported compound by Pan et al., 2007.

As shown in Fig. 1, the Cd centres in (I) are six-coordinate in a highly distorted octahedral geometry, involving four O atom donors of two 4,4'-sulfonyldibenzoic acid ligands and two coordinated water molecules, while the carboxylate group of 4,4'-sulfonyldibenzoic acid adopts µ2-η1:η1– chelating mode in this structure. The structure of (I) comprises zigzag chains of alternating [Cd(H2O)2]2+ and sulfonyldibenzoate unit, with their respective Cd and S atoms lying on crystallographic twofold axes. In the crystal structure there are three hydrogen bonds, two O—H···O intermolecular and one C—H···O intramolecular interactions, lead to the formation of a three dimensional network structure. Fig 2, Table 1.

For related compounds based on 4,4'-sulfonyldibenzoic acid, see: Xiao et al. (2007); Wu et al. (2007); Pan et al. (2007); Miyazawa et al. (2009); Wang et al. (2009). For potential application of metalorganic frameworks, see: Eddaoudi et al. (2001); Ferey et al. (2005); Kitagawa et al. (2004).

Computing details top

Data collection: SMART (Bruker 2000); cell refinement: SAINT (Bruker 2000); data reduction: SAINT (Bruker 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 30% probability level. [Symmetry codes: (A) –x, y, 3/2 - z]
[Figure 2] Fig. 2. : A view of (I), showing the three-dimensional framework constructed via O—H···O hydrogen bonds. Hydrogen bonds are depicted as dashed lines. [Symmetry codes: (iii) x, y - 1, z; (iv) x, -y, -1/2 + z]
catena-Poly[[diaquacadmium(II)]-µ-4,4'-sulfonyldibenzoato- κ2O1:O1'] top
Crystal data top
[Cd(C14H8O6S)(H2O)2]F(000) = 448
Mr = 452.72Dx = 1.965 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 4318 reflections
a = 13.293 (3) Åθ = 2.2–27.2°
b = 5.2742 (12) ŵ = 1.61 mm1
c = 12.156 (3) ÅT = 298 K
β = 116.145 (2)°Block, white
V = 765.1 (3) Å30.21 × 0.19 × 0.15 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1364 independent reflections
Radiation source: fine-focus sealed tube1325 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
phi and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 815
Tmin = 0.721, Tmax = 0.786k = 66
3574 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.24 w = 1/[σ2(Fo2) + (0.0652P)2]
where P = (Fo2 + 2Fc2)/3
1361 reflections(Δ/σ)max = 0.004
110 parametersΔρmax = 0.82 e Å3
3 restraintsΔρmin = 1.00 e Å3
Crystal data top
[Cd(C14H8O6S)(H2O)2]V = 765.1 (3) Å3
Mr = 452.72Z = 2
Monoclinic, P2/cMo Kα radiation
a = 13.293 (3) ŵ = 1.61 mm1
b = 5.2742 (12) ÅT = 298 K
c = 12.156 (3) Å0.21 × 0.19 × 0.15 mm
β = 116.145 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1364 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1325 reflections with I > 2σ(I)
Tmin = 0.721, Tmax = 0.786Rint = 0.073
3574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0323 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.24Δρmax = 0.82 e Å3
1361 reflectionsΔρmin = 1.00 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.06452 (2)0.75000.03071 (4)
S10.50001.11217 (9)1.25000.02880 (11)
O10.14145 (7)0.34261 (18)0.81726 (7)0.0355 (2)
O20.08657 (7)0.25919 (19)0.95927 (7)0.0382 (2)
O30.45660 (6)1.24838 (18)1.32215 (7)0.0379 (2)
O40.07556 (8)0.2236 (2)0.67828 (7)0.0504 (3)
H4A0.04900.22110.60060.060*
H4B0.07240.37250.70340.060*
C10.14914 (9)0.3776 (3)0.92426 (9)0.0286 (2)
C20.23354 (12)0.5638 (2)1.00469 (11)0.0304 (4)
C30.32577 (10)0.6180 (3)0.98250 (11)0.0354 (3)
H30.33270.54180.91720.043*
C40.40667 (9)0.7851 (3)1.05787 (10)0.0365 (3)
H40.46930.81801.04490.044*
C50.39451 (10)0.9035 (2)1.15258 (11)0.0290 (3)
C60.30158 (9)0.8548 (3)1.17385 (10)0.0351 (3)
H60.29370.93531.23770.042*
C70.22143 (9)0.6857 (3)1.09904 (10)0.0349 (3)
H70.15880.65331.11210.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03760 (6)0.02817 (8)0.02969 (5)0.0000.01787 (4)0.000
S10.03045 (16)0.03051 (18)0.02660 (15)0.0000.01361 (12)0.000
O10.0430 (3)0.0402 (4)0.0285 (2)0.0069 (3)0.0206 (2)0.0069 (3)
O20.0473 (3)0.0419 (5)0.0299 (3)0.0117 (3)0.0211 (2)0.0022 (3)
O30.0406 (3)0.0381 (5)0.0387 (4)0.0037 (4)0.0208 (3)0.0066 (3)
O40.0902 (5)0.0382 (5)0.0411 (3)0.0184 (4)0.0456 (3)0.0079 (4)
C10.0348 (4)0.0289 (5)0.0234 (3)0.0038 (4)0.0140 (2)0.0057 (4)
C20.0345 (5)0.0342 (8)0.0240 (5)0.0000 (4)0.0143 (4)0.0034 (4)
C30.0375 (5)0.0461 (6)0.0309 (4)0.0039 (5)0.0226 (3)0.0076 (5)
C40.0348 (4)0.0464 (7)0.0378 (4)0.0055 (5)0.0248 (3)0.0056 (5)
C50.0305 (5)0.0305 (6)0.0253 (5)0.0004 (4)0.0116 (4)0.0028 (4)
C60.0394 (5)0.0426 (6)0.0314 (4)0.0039 (6)0.0231 (3)0.0065 (5)
C70.0375 (4)0.0405 (7)0.0364 (4)0.0060 (5)0.0252 (3)0.0035 (5)
Geometric parameters (Å, º) top
Cd1—O42.2023 (11)O4—H4A0.8500
Cd1—O4i2.2023 (11)O4—H4B0.8499
Cd1—O12.2362 (10)C1—C21.4871 (16)
Cd1—O1i2.2362 (9)C2—C71.385 (2)
Cd1—O22.5040 (9)C2—C31.396 (2)
Cd1—O2i2.5040 (10)C3—C41.3801 (18)
Cd1—C1i2.7283 (12)C3—H30.9300
S1—O31.4367 (10)C4—C51.380 (2)
S1—O3ii1.4367 (10)C4—H40.9300
S1—C51.7655 (12)C5—C61.393 (2)
S1—C5ii1.7655 (12)C6—C71.3798 (17)
O1—C11.2725 (15)C6—H60.9300
O2—C11.2550 (17)C7—H70.9300
O4—Cd1—O4i92.73 (6)C1—O1—Cd198.32 (8)
O4—Cd1—O198.09 (4)C1—O2—Cd186.34 (7)
O4i—Cd1—O1139.87 (3)Cd1—O4—H4A113.0
O4—Cd1—O1i139.87 (3)Cd1—O4—H4B113.1
O4i—Cd1—O1i98.09 (4)H4A—O4—H4B110.5
O1—Cd1—O1i98.02 (5)O2—C1—O1120.51 (10)
O4—Cd1—O2126.84 (3)O2—C1—C2121.76 (11)
O4i—Cd1—O288.07 (4)O1—C1—C2117.73 (12)
O1—Cd1—O254.80 (3)C7—C2—C3119.83 (11)
O1i—Cd1—O292.21 (3)C7—C2—C1121.45 (14)
O4—Cd1—O2i88.07 (4)C3—C2—C1118.72 (13)
O4i—Cd1—O2i126.84 (3)C4—C3—C2119.75 (13)
O1—Cd1—O2i92.21 (3)C4—C3—H3120.1
O1i—Cd1—O2i54.80 (3)C2—C3—H3120.1
O2—Cd1—O2i131.59 (5)C5—C4—C3119.95 (13)
O4—Cd1—C1i114.36 (4)C5—C4—H4120.0
O4i—Cd1—C1i115.02 (4)C3—C4—H4120.0
O1—Cd1—C1i95.34 (4)C4—C5—C6120.73 (11)
O1i—Cd1—C1i27.48 (4)C4—C5—S1119.41 (11)
O2—Cd1—C1i113.08 (4)C6—C5—S1119.84 (10)
O2i—Cd1—C1i27.33 (4)C7—C6—C5119.16 (12)
O3—S1—O3ii119.99 (9)C7—C6—H6120.4
O3—S1—C5107.90 (6)C5—C6—H6120.4
O3ii—S1—C5108.43 (6)C6—C7—C2120.54 (13)
O3—S1—C5ii108.43 (6)C6—C7—H7119.7
O3ii—S1—C5ii107.90 (6)C2—C7—H7119.7
C5—S1—C5ii102.86 (8)
O4—Cd1—O1—C1130.73 (7)O2—C1—C2—C3156.57 (12)
O4i—Cd1—O1—C126.66 (10)O1—C1—C2—C323.92 (16)
O1i—Cd1—O1—C186.14 (8)C7—C2—C3—C42.62 (18)
O2—Cd1—O1—C10.88 (7)C1—C2—C3—C4178.34 (11)
O2i—Cd1—O1—C1140.90 (7)C2—C3—C4—C51.87 (19)
C1i—Cd1—O1—C1113.69 (8)C3—C4—C5—C60.49 (19)
O4—Cd1—O2—C172.63 (8)C3—C4—C5—S1178.80 (10)
O4i—Cd1—O2—C1164.60 (7)O3ii—S1—C5—C436.48 (11)
O1i—Cd1—O2—C197.38 (8)O3—S1—C5—C4167.88 (10)
O1—Cd1—O2—C10.89 (7)C5ii—S1—C5—C477.63 (10)
O2i—Cd1—O2—C154.85 (7)O3ii—S1—C5—C6145.19 (10)
C1i—Cd1—O2—C178.93 (9)O3—S1—C5—C613.78 (12)
Cd1—O2—C1—O11.48 (11)C5ii—S1—C5—C6100.71 (11)
Cd1—O2—C1—C2178.02 (11)C4—C5—C6—C70.15 (19)
Cd1—O1—C1—O21.67 (13)S1—C5—C6—C7178.16 (10)
Cd1—O1—C1—C2177.85 (9)C5—C6—C7—C20.61 (18)
O2—C1—C2—C724.41 (18)C3—C2—C7—C62.00 (18)
O1—C1—C2—C7155.11 (11)C1—C2—C7—C6178.99 (11)
Symmetry codes: (i) x, y, z+3/2; (ii) x+1, y, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O1iii0.851.972.7479 (14)151
O4—H4A···O2iv0.852.002.7364 (15)145
C6—H6···O30.932.552.9208 (16)104
Symmetry codes: (iii) x, y1, z; (iv) x, y, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(C14H8O6S)(H2O)2]
Mr452.72
Crystal system, space groupMonoclinic, P2/c
Temperature (K)298
a, b, c (Å)13.293 (3), 5.2742 (12), 12.156 (3)
β (°) 116.145 (2)
V3)765.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.21 × 0.19 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.721, 0.786
No. of measured, independent and
observed [I > 2σ(I)] reflections
3574, 1364, 1325
Rint0.073
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.102, 1.24
No. of reflections1361
No. of parameters110
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 1.00

Computer programs: SMART (Bruker 2000), SAINT (Bruker 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O1i0.851.972.7479 (14)150.8
O4—H4A···O2ii0.852.002.7364 (15)144.5
C6—H6···O30.932.552.9208 (16)104.1
Symmetry codes: (i) x, y1, z; (ii) x, y, z1/2.
 

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFerey, G., Mellot-Draznieks, C., Serre, C. & Millange, F. (2005). Acc. Chem. Res. 38, 217–225.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationMiyazawa, M., Irie, Y., Kashimoto, K., Nishina, N., Kondo, M., Yasue, S., Maeda, K. & Uchida, F. (2009). Inorg. Chem. Commun. 12, 336–339.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, P.-B., Zhang, L., Li, Z.-J., Cao, X.-Y. & Yao, Y.-G. (2007). Acta Cryst. C63, m270–m272.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-J., Wang, Y.-Y., Liu, J.-Q., Wang, H., Shi, Q.-Z. & Peng, S.-M. (2009). Inorg. Chim. Acta, 362, 543–550.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, H.-H., Lian, F.-Y., Yuan, D.-Q. & Hong, M.-C. (2007). Acta Cryst. E63, m67–m69.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, D.-R., Li, Y.-G., Wang, E.-B., Fan, L.-L., An, H.-Y., Su, Z.-M. & Xu, L. (2007). Inorg. Chem. 46, 4158–4166.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds