organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Nitro­benz­yl)-1H-1,2,3,4-tetra­zole

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhaohong@seu.edu.cn

(Received 22 October 2010; accepted 26 October 2010; online 31 October 2010)

In the title compound, C8H7N5O2, the dihedral angle between the benzene and tetra­zole rings is 63.13 (8)°. The crystal structure exhibits inter­molecular N—H⋯N hydrogen bonds which lead to the formation of one-dimensional chains along the [010] direction.

Related literature

For the applications of tetra­zoles, see: Demko & Sharpless (2001[Demko, Z. P. & Sharpless, K. B. (2001). Org. Lett. 3, 4091-4094.]). For our previous work on this class of compounds, see: Zhao et al. (2008[Zhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84-100.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7N5O2

  • Mr = 205.19

  • Monoclinic, P 21 /c

  • a = 6.3393 (10) Å

  • b = 4.9381 (6) Å

  • c = 28.801 (4) Å

  • β = 101.905 (14)°

  • V = 882.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 295 K

  • 0.50 × 0.42 × 0.28 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.982, Tmax = 0.990

  • 8583 measured reflections

  • 2088 independent reflections

  • 1823 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.128

  • S = 1.20

  • 2088 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4i 0.87 1.94 2.803 (2) 176
Symmetry code: (i) x, y-1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Tetrazole ligands have found a wide range of application in medicine chemistry, coordination chemistry and material chemistry (Demko & Sharpless, 2001). As part of an ongoing program in our laboratory to explore the structural characterization of the tetrazole-related compounds (Zhao et al., 2008), the crystal structure of the title compound is reported here.

In the molecule of the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the benzene ring and tetrazole ring is 63.13 (8)°. The crystal structure exhibits intermolecular N—H···N hydrogen bonds which lead to the formation of one dimensional chains along the [010] direction. (Fig. 2; Table 1).

Related literature top

For the applications of tetrazoles, see: Demko & Sharpless (2001). For our previous work on this class of compounds, see: Zhao et al. (2008). [Please confirm amended text]

Experimental top

A mixture of 2-(4-nitrophenyl)acetonitrile (20 mmol), NaN3 (22 mmol) and NH4Cl (22 mmol) in DMF (15 ml) was heated at 120°C for 20 h then cooled and the solvent removed under vacuum. The residue was poured into water (20 ml) to give the crude title compound. Colourless prismatic crystals suitable for X-ray analysis were obtained by slow evaporation of a 95% ethanol/water solution.

Refinement top

All H atoms were detected in a difference map, but were placed in calculated positions and refined using a riding motion approxmation, with C—H = 0.93–0.97 Å, with Uiso(H) = 1.2Ueq(C); N—H = 0.87 Å, with Uiso(H) = 1.5Ueq(N).

Structure description top

Tetrazole ligands have found a wide range of application in medicine chemistry, coordination chemistry and material chemistry (Demko & Sharpless, 2001). As part of an ongoing program in our laboratory to explore the structural characterization of the tetrazole-related compounds (Zhao et al., 2008), the crystal structure of the title compound is reported here.

In the molecule of the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the benzene ring and tetrazole ring is 63.13 (8)°. The crystal structure exhibits intermolecular N—H···N hydrogen bonds which lead to the formation of one dimensional chains along the [010] direction. (Fig. 2; Table 1).

For the applications of tetrazoles, see: Demko & Sharpless (2001). For our previous work on this class of compounds, see: Zhao et al. (2008). [Please confirm amended text]

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: SHELXS97 (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Diagram of the molecules linked into one-dimensional chain by a simple N—H···N interaction.
5-(4-Nitrobenzyl)-1H-1,2,3,4-tetrazole top
Crystal data top
C8H7N5O2F(000) = 424
Mr = 205.19Dx = 1.545 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2188 reflections
a = 6.3393 (10) Åθ = 3.2–27.5°
b = 4.9381 (6) ŵ = 0.12 mm1
c = 28.801 (4) ÅT = 295 K
β = 101.905 (14)°Prism, pale yellow
V = 882.2 (2) Å30.50 × 0.42 × 0.28 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2088 independent reflections
Radiation source: fine-focus sealed tube1823 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 13.6612 pixels mm-1θmax = 27.9°, θmin = 2.9°
CCD_Profile_fitting scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 66
Tmin = 0.982, Tmax = 0.990l = 3737
8583 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0293P)2 + 0.5689P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
2088 reflectionsΔρmax = 0.27 e Å3
138 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.037 (6)
Crystal data top
C8H7N5O2V = 882.2 (2) Å3
Mr = 205.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.3393 (10) ŵ = 0.12 mm1
b = 4.9381 (6) ÅT = 295 K
c = 28.801 (4) Å0.50 × 0.42 × 0.28 mm
β = 101.905 (14)°
Data collection top
Rigaku SCXmini
diffractometer
2088 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1823 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.990Rint = 0.034
8583 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.20Δρmax = 0.27 e Å3
2088 reflectionsΔρmin = 0.25 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6521 (3)0.0440 (4)0.23878 (6)0.0537 (5)
O20.3476 (3)0.0031 (4)0.18977 (6)0.0538 (5)
N10.7922 (3)0.6457 (3)0.02183 (6)0.0340 (4)
H10.78330.47060.02140.051*
N20.7245 (3)0.7302 (4)0.02353 (6)0.0402 (4)
N30.7205 (3)0.9910 (4)0.02326 (6)0.0413 (5)
N40.7847 (3)1.0783 (3)0.02209 (6)0.0358 (4)
N50.5369 (3)0.0619 (4)0.20421 (6)0.0367 (4)
C10.8285 (3)0.8620 (4)0.04930 (7)0.0297 (4)
C20.9119 (4)0.8641 (4)0.10150 (7)0.0399 (5)
H2A0.88811.04250.11350.048*
H2B1.06640.83370.10760.048*
C30.8111 (3)0.6555 (4)0.12886 (7)0.0327 (4)
C40.9324 (3)0.5398 (4)0.16973 (7)0.0369 (5)
H41.07540.59180.18020.044*
C50.8439 (3)0.3485 (4)0.19519 (7)0.0371 (5)
H50.92550.27150.22250.044*
C60.6314 (3)0.2747 (4)0.17898 (7)0.0316 (4)
C70.5058 (3)0.3865 (5)0.13898 (7)0.0382 (5)
H70.36290.33370.12880.046*
C80.5962 (3)0.5790 (4)0.11420 (7)0.0386 (5)
H80.51240.65850.08740.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0614 (10)0.0516 (10)0.0475 (9)0.0025 (8)0.0098 (8)0.0188 (8)
O20.0503 (9)0.0592 (11)0.0516 (9)0.0227 (8)0.0099 (8)0.0033 (8)
N10.0432 (9)0.0243 (8)0.0348 (9)0.0038 (7)0.0085 (7)0.0009 (7)
N20.0465 (10)0.0401 (10)0.0332 (9)0.0083 (8)0.0064 (7)0.0007 (8)
N30.0388 (9)0.0413 (10)0.0421 (10)0.0031 (8)0.0041 (8)0.0134 (8)
N40.0354 (9)0.0301 (9)0.0430 (9)0.0003 (7)0.0104 (7)0.0087 (7)
N50.0476 (10)0.0317 (9)0.0326 (9)0.0050 (8)0.0127 (7)0.0009 (7)
C10.0318 (9)0.0234 (9)0.0352 (10)0.0035 (7)0.0102 (7)0.0009 (7)
C20.0530 (12)0.0330 (11)0.0332 (10)0.0122 (9)0.0074 (9)0.0023 (9)
C30.0406 (10)0.0278 (10)0.0301 (9)0.0033 (8)0.0083 (8)0.0022 (8)
C40.0354 (10)0.0395 (11)0.0336 (10)0.0073 (9)0.0021 (8)0.0012 (9)
C50.0408 (11)0.0385 (11)0.0290 (9)0.0031 (9)0.0006 (8)0.0024 (8)
C60.0400 (10)0.0268 (9)0.0292 (9)0.0033 (8)0.0102 (8)0.0006 (7)
C70.0333 (10)0.0439 (12)0.0365 (10)0.0045 (9)0.0048 (8)0.0031 (9)
C80.0389 (10)0.0395 (12)0.0350 (10)0.0010 (9)0.0018 (8)0.0090 (9)
Geometric parameters (Å, º) top
O1—N51.224 (2)C2—H2B0.9700
O2—N51.221 (2)C3—C41.389 (3)
N1—C11.321 (2)C3—C81.392 (3)
N1—N21.354 (2)C4—C51.384 (3)
N1—H10.8666C4—H40.9300
N2—N31.288 (3)C5—C61.381 (3)
N3—N41.356 (3)C5—H50.9300
N4—C11.320 (2)C6—C71.374 (3)
N5—C61.473 (2)C7—C81.382 (3)
C1—C21.487 (3)C7—H70.9300
C2—C31.516 (3)C8—H80.9300
C2—H2A0.9700
C1—N1—N2108.07 (16)C4—C3—C8118.78 (18)
C1—N1—H1145.0C4—C3—C2120.03 (18)
N2—N1—H1106.6C8—C3—C2121.18 (18)
N3—N2—N1107.76 (17)C5—C4—C3121.02 (18)
N2—N3—N4108.73 (16)C5—C4—H4119.5
C1—N4—N3107.42 (16)C3—C4—H4119.5
O2—N5—O1123.73 (18)C6—C5—C4118.38 (18)
O2—N5—C6118.18 (17)C6—C5—H5120.8
O1—N5—C6118.08 (17)C4—C5—H5120.8
N4—C1—N1108.02 (17)C7—C6—C5122.25 (18)
N4—C1—C2125.59 (18)C7—C6—N5118.43 (17)
N1—C1—C2126.35 (17)C5—C6—N5119.28 (17)
C1—C2—C3114.87 (16)C6—C7—C8118.63 (19)
C1—C2—H2A108.6C6—C7—H7120.7
C3—C2—H2A108.5C8—C7—H7120.7
C1—C2—H2B108.6C7—C8—C3120.92 (18)
C3—C2—H2B108.6C7—C8—H8119.5
H2A—C2—H2B107.5C3—C8—H8119.5
C1—N1—N2—N30.1 (2)C3—C4—C5—C60.0 (3)
N1—N2—N3—N40.2 (2)C4—C5—C6—C70.7 (3)
N2—N3—N4—C10.2 (2)C4—C5—C6—N5177.08 (18)
N3—N4—C1—N10.2 (2)O2—N5—C6—C73.4 (3)
N3—N4—C1—C2177.72 (18)O1—N5—C6—C7177.28 (19)
N2—N1—C1—N40.1 (2)O2—N5—C6—C5178.74 (19)
N2—N1—C1—C2177.80 (18)O1—N5—C6—C50.5 (3)
N4—C1—C2—C3138.7 (2)C5—C6—C7—C80.1 (3)
N1—C1—C2—C343.8 (3)N5—C6—C7—C8177.64 (19)
C1—C2—C3—C4147.51 (19)C6—C7—C8—C31.1 (3)
C1—C2—C3—C833.4 (3)C4—C3—C8—C71.7 (3)
C8—C3—C4—C51.1 (3)C2—C3—C8—C7179.3 (2)
C2—C3—C4—C5179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.871.942.803 (2)176
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC8H7N5O2
Mr205.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)6.3393 (10), 4.9381 (6), 28.801 (4)
β (°) 101.905 (14)
V3)882.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.50 × 0.42 × 0.28
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.982, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
8583, 2088, 1823
Rint0.034
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.128, 1.20
No. of reflections2088
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.871.942.803 (2)176.0
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This work was financially supported by a Southeast University Grant for Young Researchers (grant No. 4007041027).

References

First citationDemko, Z. P. & Sharpless, K. B. (2001). Org. Lett. 3, 4091–4094.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds