metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[N′-(2-oxo-1H-indol-3-yl­idene)thiophene-2-carbohydrazidato-κ3O,N′,O′]zinc(II) N,N-di­methyl­formide mono­solvate monohydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: nadiahhalim@um.edu.my

(Received 19 August 2010; accepted 4 October 2010; online 23 October 2010)

The metal atom of the title compound, [Zn(C13H8N3O2S)2]·C3H7NO·H2O, is O,N,O′-chelated by two deprotonated Schiff bases and it exists in a distorted octa­hedral geometry. The N–H groups of the ligands, the carbonyl group of the DMF mol­ecule and uncoordinated water mol­ecule engage in N—H⋯O and O—H⋯O inter­actions, generating a hydrogen-bonded ribbon that propagates along [110]. One thienyl ring is disordered over two positions in a 1:1 ratio.

Related literature

For the crystal structure of [Zn(C13H8N3O2S)2]·1.75CH3OH, see: Rodríguez-Argüelles et al. (2009[Rodríguez-Argüelles, M. C., Cao, R., García-Deibe, A. M., Pelizzi, C., Sanmartín-Matalobos, J. & Zani, F. (2009). Polyhedron, 28, 2187-2195.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C13H8N3O2S)2]·C3H7NO·H2O

  • Mr = 697.05

  • Triclinic, [P \overline 1]

  • a = 11.5250 (8) Å

  • b = 12.0656 (8) Å

  • c = 13.4643 (9) Å

  • α = 105.913 (1)°

  • β = 100.531 (1)°

  • γ = 114.754 (1)°

  • V = 1537.25 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 293 K

  • 0.22 × 0.16 × 0.08 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.812, Tmax = 0.925

  • 13275 measured reflections

  • 6630 independent reflections

  • 3036 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.182

  • S = 0.98

  • 6630 reflections

  • 432 parameters

  • 77 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.103 (3)
Zn1—O2 2.370 (3)
Zn1—O3 2.043 (3)
Zn1—O4 2.440 (3)
Zn1—N2 2.017 (4)
Zn1—N5 2.022 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1w1⋯O2 0.84 (1) 2.06 (3) 2.859 (5) 158 (6)
O1W—H1w2⋯O5 0.84 (1) 2.31 (8) 2.771 (9) 115 (7)
N3—H3N⋯O1Wi 0.84 (1) 1.98 (1) 2.813 (6) 173 (5)
N6—H6N⋯O4ii 0.84 (1) 2.06 (2) 2.884 (5) 169 (5)
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Divalent cobalt, nickel, copper and zinc derivatives of Schiff base condensation product of isatin and 2-thienylcarboxylic acid hydrazide have been synthesized, and these are reported along with the crystal structure of the zinc derivative, which crystallizes with 1.75 molecules of methanol. The geometry is described as tetrahedral; however, if two weaker Zn···O interations are considered as bonding, the geometry is, in fact, octahedral (Rodríguez-Argüelles et al., 2009). The other compounds are expected to be chelated by the deprotonated Schiff base in a terdentate manner; for it to chelate, the anion has to rotate about the nitrogen-nitrogen bond. Such a rotation is observed in the present zinc complex, which crystallizes from DMF as a monohydrated monosolvate (Scheme I). The divalent metal atom is O,N,O'-chelated by two deprotonated Schiff base in an octahedral geometry (Fig. 1). The amino group, the carbonyl group of the DMF and the lattice water molecule engage in N–H···O and O–H···O hydrogen bonding interactions to generate a hydrogen-bonded ribbon that propagates along [110]. One thienyl ring is disordered over two positions in a 1:1 ratio.

Related literature top

For the crystal structure of [Zn(C13H8N3O2S)2].1.75CH3OH, see: Rodríguez-Argüelles et al. (2009).

Experimental top

The Schiff base was synthesized by condensing isatin and furoylhydrazine according to a literature procedure (Rodríguez-Argüelles et al., 2009). Zinc acetate (1 mmol) and the Schiff base (2 mmol) were heated in ethanol (100 ml) for 5 h; several drops of triethylamine were added. The solvent was removed and the product purified by recrystallization from DMF.

Refinement top

One thienyl ring is disordered over two positions. The disorder was modelled as follows: the C—C distances were restrained to 1.42 (1) Å and the C–S ones to 1.72 (1) Å. The displacement parameters of atoms S2 were paired with those of C16' (S2' with C16), and those of C14 with those of C15' (C14' with C15). The anisotropic displacement parameters were restrained to be nearly isotropic. The five atoms of each component ring were restrained to lie on a plane. As the disorder refined to a 1:1 ratio, the occupancy for each component was finally fixed as 0.50.

For the DMF molecule, the C—O distance was restrained to 1.25 (1) Å, the Ccarbonyl—N distance to 1.35 (1) Å and the Cmethyl—N distance to 1.45 (1) %A. The displacement parameters were also restrained to be nearly isotropic.

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Ueq(C). The amino and water H-atoms were located in a difference Fourier map, and were refined with a N–H/O–H distance restraint of 0.84 (1) Å; their Uiso parameters were freely refined. For the water molecule, the H···H distance was restrained to 1.37 (1) Å.

Structure description top

Divalent cobalt, nickel, copper and zinc derivatives of Schiff base condensation product of isatin and 2-thienylcarboxylic acid hydrazide have been synthesized, and these are reported along with the crystal structure of the zinc derivative, which crystallizes with 1.75 molecules of methanol. The geometry is described as tetrahedral; however, if two weaker Zn···O interations are considered as bonding, the geometry is, in fact, octahedral (Rodríguez-Argüelles et al., 2009). The other compounds are expected to be chelated by the deprotonated Schiff base in a terdentate manner; for it to chelate, the anion has to rotate about the nitrogen-nitrogen bond. Such a rotation is observed in the present zinc complex, which crystallizes from DMF as a monohydrated monosolvate (Scheme I). The divalent metal atom is O,N,O'-chelated by two deprotonated Schiff base in an octahedral geometry (Fig. 1). The amino group, the carbonyl group of the DMF and the lattice water molecule engage in N–H···O and O–H···O hydrogen bonding interactions to generate a hydrogen-bonded ribbon that propagates along [110]. One thienyl ring is disordered over two positions in a 1:1 ratio.

For the crystal structure of [Zn(C13H8N3O2S)2].1.75CH3OH, see: Rodríguez-Argüelles et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of [Zn(C13H8N3O2S)2].C3H7NO.H2O at the 50% probability level; H atoms are drawn as spheres of arbitrary radius. The disorder in the thienyl ring is not shown.
Bis[N'-(2-oxo-1H-indol-3-ylidene)thiophene-2-carbohydrazidato- κ3O,N',O']zinc(II) N,N-dimethylformide monosolvate monohydrate top
Crystal data top
[Zn(C13H8N3O2S)2]·C3H7NO·H2OZ = 2
Mr = 697.05F(000) = 716
Triclinic, P1Dx = 1.506 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.5250 (8) ÅCell parameters from 2596 reflections
b = 12.0656 (8) Åθ = 2.6–21.1°
c = 13.4643 (9) ŵ = 0.99 mm1
α = 105.913 (1)°T = 293 K
β = 100.531 (1)°Plate, yellow
γ = 114.754 (1)°0.22 × 0.16 × 0.08 mm
V = 1537.25 (18) Å3
Data collection top
Bruker SMART area-detector
diffractometer
6630 independent reflections
Radiation source: fine-focus sealed tube3036 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.812, Tmax = 0.925k = 1515
13275 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0886P)2]
where P = (Fo2 + 2Fc2)/3
6630 reflections(Δ/σ)max = 0.001
432 parametersΔρmax = 0.56 e Å3
77 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Zn(C13H8N3O2S)2]·C3H7NO·H2Oγ = 114.754 (1)°
Mr = 697.05V = 1537.25 (18) Å3
Triclinic, P1Z = 2
a = 11.5250 (8) ÅMo Kα radiation
b = 12.0656 (8) ŵ = 0.99 mm1
c = 13.4643 (9) ÅT = 293 K
α = 105.913 (1)°0.22 × 0.16 × 0.08 mm
β = 100.531 (1)°
Data collection top
Bruker SMART area-detector
diffractometer
6630 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3036 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.925Rint = 0.044
13275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05977 restraints
wR(F2) = 0.182H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.56 e Å3
6630 reflectionsΔρmin = 0.35 e Å3
432 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50562 (6)0.34927 (6)0.74919 (5)0.0638 (3)
S10.91009 (13)0.79052 (15)1.01272 (12)0.0733 (4)
S20.6067 (6)0.0742 (6)0.9286 (3)0.1011 (11)0.50
C140.6512 (13)0.0461 (12)0.9100 (13)0.100 (4)0.50
H140.65570.08520.96020.120*0.50
C150.6802 (16)0.0815 (17)0.8139 (11)0.079 (3)0.50
H150.70590.14490.79030.095*0.50
C160.6622 (12)0.0003 (13)0.7586 (16)0.0770 (8)0.50
H160.67590.00580.69190.092*0.50
S2'0.6837 (4)0.0034 (4)0.7590 (5)0.0770 (8)0.50
C14'0.6977 (14)0.0544 (14)0.8662 (9)0.079 (3)0.50
H14'0.73070.11210.86990.095*0.50
C15'0.6541 (17)0.0001 (16)0.9468 (15)0.100 (4)0.50
H15'0.65330.01461.01100.120*0.50
C16'0.6114 (16)0.0819 (19)0.9129 (10)0.1011 (11)0.50
H16'0.57830.12860.95460.121*0.50
O10.6775 (3)0.5329 (3)0.8550 (3)0.0683 (10)
O20.2678 (3)0.2050 (3)0.6643 (3)0.0664 (10)
O30.5375 (4)0.2324 (4)0.8228 (3)0.0671 (10)
O40.4945 (4)0.4247 (4)0.5989 (3)0.0678 (10)
O50.2073 (8)0.2034 (7)0.3516 (6)0.171 (3)
O1W0.1468 (5)0.0147 (4)0.4424 (3)0.0953 (13)
H1W10.184 (7)0.054 (6)0.5112 (12)0.143*
H1W20.101 (7)0.048 (7)0.421 (5)0.143*
N10.5088 (4)0.5749 (4)0.9029 (3)0.0581 (10)
N20.4269 (4)0.4546 (4)0.8249 (3)0.0560 (10)
N30.0860 (4)0.2331 (4)0.6887 (3)0.0613 (11)
H3N0.014 (3)0.163 (3)0.648 (3)0.074*
N40.6067 (4)0.1698 (4)0.6741 (3)0.0502 (10)
N50.5693 (4)0.2512 (4)0.6455 (3)0.0511 (10)
N60.5631 (5)0.3803 (5)0.4471 (4)0.0640 (11)
H6N0.556 (5)0.440 (4)0.431 (4)0.077*
N70.1188 (7)0.3387 (6)0.3769 (6)0.112 (2)
C10.9569 (7)0.9300 (6)1.1235 (5)0.0846 (18)
H11.04610.99881.16070.102*
C20.8526 (7)0.9290 (6)1.1500 (5)0.0799 (17)
H20.86080.99731.20890.096*
C30.7278 (6)0.8158 (6)1.0816 (4)0.0638 (14)
H3B0.64480.80031.09000.077*
C40.7431 (5)0.7305 (5)1.0006 (4)0.0515 (12)
C50.6426 (5)0.6058 (5)0.9145 (4)0.0548 (12)
C60.2177 (5)0.2683 (5)0.7082 (4)0.0575 (13)
C70.2954 (5)0.4045 (5)0.7958 (4)0.0524 (12)
C80.1993 (5)0.4411 (5)0.8260 (4)0.0530 (12)
C90.2121 (5)0.5509 (5)0.9032 (4)0.0631 (14)
H90.29720.62240.94900.076*
C100.0925 (6)0.5518 (6)0.9109 (5)0.0765 (16)
H100.09750.62460.96240.092*
C110.0324 (6)0.4443 (7)0.8419 (5)0.0742 (16)
H110.11030.44730.84770.089*
C120.0470 (5)0.3327 (6)0.7647 (5)0.0659 (15)
H120.13220.26070.71990.079*
C130.0711 (5)0.3333 (5)0.7572 (4)0.0553 (12)
C170.6223 (5)0.0882 (5)0.8126 (4)0.0690 (15)
C180.5854 (4)0.1691 (5)0.7701 (4)0.0543 (12)
C190.5399 (5)0.3688 (5)0.5400 (4)0.0553 (12)
C200.5817 (4)0.2732 (5)0.5581 (4)0.0505 (11)
C210.6287 (5)0.2316 (5)0.4702 (4)0.0542 (12)
C220.6786 (5)0.1459 (5)0.4447 (4)0.0648 (14)
H220.68720.10010.48840.078*
C230.7155 (6)0.1303 (7)0.3521 (5)0.0864 (18)
H230.74990.07330.33330.104*
C240.7022 (7)0.1980 (7)0.2870 (5)0.092 (2)
H240.72750.18470.22490.111*
C250.6524 (6)0.2849 (6)0.3109 (5)0.0785 (17)
H250.64360.33030.26680.094*
C260.6166 (5)0.3001 (5)0.4041 (4)0.0630 (14)
C270.1813 (11)0.2814 (11)0.3207 (9)0.178 (5)
H270.20330.30020.26190.214*
C280.1061 (10)0.3139 (10)0.4682 (8)0.179 (4)
H28A0.19240.33320.51340.268*
H28B0.04080.22230.44680.268*
H28C0.07600.36890.50870.268*
C290.0861 (11)0.4222 (11)0.3410 (10)0.221 (5)
H29A0.02750.37500.26560.331*
H29B0.16770.49690.34740.331*
H29C0.04050.45270.38510.331*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0637 (4)0.0688 (4)0.0754 (5)0.0417 (4)0.0338 (3)0.0303 (4)
S10.0478 (8)0.0769 (10)0.0803 (10)0.0253 (8)0.0194 (7)0.0208 (8)
S20.139 (3)0.104 (2)0.073 (2)0.057 (2)0.0280 (18)0.0614 (18)
C140.120 (6)0.100 (9)0.103 (8)0.066 (5)0.024 (5)0.063 (7)
C150.078 (5)0.083 (6)0.091 (9)0.049 (4)0.012 (6)0.049 (7)
C160.0690 (19)0.0825 (17)0.112 (2)0.0505 (15)0.0397 (17)0.0564 (16)
S2'0.0690 (19)0.0825 (17)0.112 (2)0.0505 (15)0.0397 (17)0.0564 (16)
C14'0.078 (5)0.083 (6)0.091 (9)0.049 (4)0.012 (6)0.049 (7)
C15'0.120 (6)0.100 (9)0.103 (8)0.066 (5)0.024 (5)0.063 (7)
C16'0.139 (3)0.104 (2)0.073 (2)0.057 (2)0.0280 (18)0.0614 (18)
O10.055 (2)0.066 (2)0.076 (2)0.026 (2)0.0219 (19)0.023 (2)
O20.055 (2)0.072 (2)0.067 (2)0.030 (2)0.0222 (18)0.019 (2)
O30.076 (2)0.082 (3)0.070 (2)0.050 (2)0.038 (2)0.041 (2)
O40.083 (3)0.083 (3)0.072 (2)0.057 (2)0.039 (2)0.044 (2)
O50.216 (6)0.118 (4)0.149 (5)0.074 (4)0.018 (4)0.052 (4)
O1W0.092 (4)0.075 (3)0.076 (3)0.028 (3)0.016 (3)0.002 (2)
N10.058 (3)0.061 (3)0.062 (3)0.031 (2)0.025 (2)0.027 (2)
N20.056 (3)0.061 (3)0.052 (2)0.027 (2)0.018 (2)0.028 (2)
N30.038 (3)0.068 (3)0.058 (3)0.016 (2)0.012 (2)0.019 (2)
N40.040 (2)0.054 (2)0.064 (3)0.026 (2)0.019 (2)0.030 (2)
N50.043 (2)0.053 (2)0.060 (3)0.022 (2)0.0171 (19)0.027 (2)
N60.070 (3)0.071 (3)0.065 (3)0.035 (3)0.030 (2)0.041 (3)
N70.107 (4)0.096 (4)0.106 (4)0.029 (3)0.013 (3)0.052 (4)
C10.070 (4)0.075 (4)0.071 (4)0.019 (3)0.008 (3)0.014 (3)
C20.092 (5)0.085 (5)0.056 (4)0.045 (4)0.021 (4)0.018 (3)
C30.066 (4)0.081 (4)0.067 (3)0.044 (3)0.031 (3)0.042 (3)
C40.054 (3)0.059 (3)0.052 (3)0.033 (3)0.018 (2)0.028 (3)
C50.052 (3)0.062 (3)0.061 (3)0.030 (3)0.023 (3)0.034 (3)
C60.048 (3)0.071 (4)0.052 (3)0.025 (3)0.018 (3)0.029 (3)
C70.039 (3)0.069 (3)0.056 (3)0.025 (3)0.020 (2)0.033 (3)
C80.042 (3)0.068 (3)0.054 (3)0.026 (3)0.019 (2)0.029 (3)
C90.053 (3)0.069 (4)0.062 (3)0.027 (3)0.019 (3)0.023 (3)
C100.077 (4)0.085 (4)0.081 (4)0.048 (4)0.040 (4)0.032 (4)
C110.058 (4)0.102 (5)0.090 (4)0.049 (4)0.038 (3)0.051 (4)
C120.040 (3)0.084 (4)0.077 (4)0.026 (3)0.021 (3)0.044 (3)
C130.046 (3)0.072 (4)0.058 (3)0.030 (3)0.021 (3)0.037 (3)
C170.050 (3)0.072 (4)0.091 (4)0.028 (3)0.017 (3)0.048 (3)
C180.035 (3)0.054 (3)0.073 (4)0.019 (2)0.013 (2)0.032 (3)
C190.051 (3)0.062 (3)0.061 (3)0.027 (3)0.022 (3)0.035 (3)
C200.044 (3)0.051 (3)0.054 (3)0.019 (2)0.015 (2)0.026 (2)
C210.046 (3)0.048 (3)0.062 (3)0.017 (2)0.019 (2)0.022 (3)
C220.058 (3)0.061 (3)0.068 (4)0.027 (3)0.023 (3)0.016 (3)
C230.073 (4)0.087 (5)0.093 (5)0.040 (4)0.040 (4)0.019 (4)
C240.090 (5)0.097 (5)0.073 (4)0.035 (4)0.046 (4)0.017 (4)
C250.077 (4)0.076 (4)0.064 (4)0.019 (3)0.032 (3)0.026 (3)
C260.052 (3)0.067 (4)0.060 (3)0.020 (3)0.023 (3)0.025 (3)
C270.180 (8)0.159 (8)0.140 (7)0.033 (6)0.068 (7)0.055 (6)
C280.154 (7)0.191 (8)0.180 (7)0.049 (6)0.052 (6)0.121 (7)
C290.174 (9)0.197 (8)0.265 (10)0.071 (7)0.002 (6)0.139 (8)
Geometric parameters (Å, º) top
Zn1—O12.103 (3)N7—C281.360 (7)
Zn1—O22.370 (3)N7—C271.378 (8)
Zn1—O32.043 (3)N7—C291.382 (8)
Zn1—O42.440 (3)C1—C21.311 (8)
Zn1—N22.017 (4)C1—H10.93
Zn1—N52.022 (4)C2—C31.402 (8)
S1—C41.705 (5)C2—H20.93
S1—C11.708 (6)C3—C41.373 (7)
S2—C171.650 (6)C3—H3B0.93
S2—C141.703 (9)C4—C51.429 (7)
C14—C151.394 (10)C6—C71.487 (7)
C14—H140.93C7—C81.437 (6)
C15—C161.440 (10)C8—C91.372 (7)
C15—H150.93C8—C131.401 (7)
C16—C171.410 (10)C9—C101.406 (7)
C16—H160.93C9—H90.93
S2'—C171.627 (6)C10—C111.380 (8)
S2'—C14'1.724 (9)C10—H100.93
C14'—C15'1.395 (10)C11—C121.378 (8)
C14'—H14'0.93C11—H110.93
C15'—C16'1.413 (10)C12—C131.381 (7)
C15'—H15'0.93C12—H120.93
C16'—C171.397 (10)C17—C181.425 (6)
C16'—H16'0.93C19—C201.483 (6)
O1—C51.267 (5)C20—C211.443 (6)
O2—C61.231 (6)C21—C221.376 (7)
O3—C181.261 (5)C21—C261.396 (7)
O4—C191.230 (5)C22—C231.378 (7)
O5—C271.246 (8)C22—H220.93
O1W—H1W10.842 (11)C23—C241.381 (8)
O1W—H1W20.842 (11)C23—H230.93
N1—N21.325 (5)C24—C251.385 (9)
N1—C51.394 (6)C24—H240.93
N2—C71.304 (6)C25—C261.381 (7)
N3—C61.343 (6)C25—H250.93
N3—C131.400 (7)C27—H270.93
N3—H3N0.837 (11)C28—H28A0.96
N4—N51.341 (5)C28—H28B0.96
N4—C181.361 (6)C28—H28C0.96
N5—C201.295 (6)C29—H29A0.96
N6—C191.357 (6)C29—H29B0.96
N6—C261.404 (7)C29—H29C0.96
N6—H6N0.837 (11)
N2—Zn1—N5167.72 (15)O2—C6—C7125.4 (4)
N2—Zn1—O3114.39 (14)N3—C6—C7105.6 (5)
N5—Zn1—O377.23 (14)N2—C7—C8138.3 (5)
N2—Zn1—O176.24 (16)N2—C7—C6113.8 (4)
N5—Zn1—O1106.84 (14)C8—C7—C6107.9 (4)
O3—Zn1—O198.83 (15)C9—C8—C13121.1 (5)
N2—Zn1—O276.55 (15)C9—C8—C7133.6 (5)
N5—Zn1—O299.15 (14)C13—C8—C7105.4 (4)
O3—Zn1—O295.14 (14)C8—C9—C10117.8 (5)
O1—Zn1—O2152.62 (13)C8—C9—H9121.1
N2—Zn1—O492.75 (13)C10—C9—H9121.1
N5—Zn1—O475.43 (14)C11—C10—C9119.9 (6)
O3—Zn1—O4152.55 (13)C11—C10—H10120.1
O1—Zn1—O491.31 (13)C9—C10—H10120.1
O2—Zn1—O486.90 (12)C12—C11—C10123.0 (5)
C4—S1—C191.4 (3)C12—C11—H11118.5
C17—S2—C1492.9 (8)C10—C11—H11118.5
C15—C14—S2115.0 (15)C11—C12—C13116.7 (5)
C15—C14—H14122.5C11—C12—H12121.6
S2—C14—H14122.5C13—C12—H12121.6
C14—C15—C16106.1 (19)C12—C13—N3128.7 (5)
C14—C15—H15126.9C12—C13—C8121.5 (5)
C16—C15—H15126.9N3—C13—C8109.7 (4)
C17—C16—C15115.3 (18)C16'—C17—C16112.4 (14)
C17—C16—H16122.3C16'—C17—C18121.4 (11)
C15—C16—H16122.3C16—C17—C18126.0 (10)
C17—S2'—C14'93.3 (8)C16'—C17—S2'110.9 (11)
C15'—C14'—S2'112.7 (15)C18—C17—S2'127.6 (4)
C15'—C14'—H14'123.6C16—C17—S2110.6 (10)
S2'—C14'—H14'123.6C18—C17—S2123.1 (5)
C14'—C15'—C16'107 (2)S2'—C17—S2109.3 (4)
C14'—C15'—H15'126.3O3—C18—N4126.4 (4)
C16'—C15'—H15'126.3O3—C18—C17118.7 (5)
C17—C16'—C15'115.7 (19)N4—C18—C17114.9 (5)
C17—C16'—H16'122.1O4—C19—N6128.6 (5)
C15'—C16'—H16'122.1O4—C19—C20125.8 (4)
C5—O1—Zn1110.2 (3)N6—C19—C20105.6 (4)
C6—O2—Zn1104.5 (3)N5—C20—C21137.5 (4)
C18—O3—Zn1110.5 (3)N5—C20—C19114.7 (4)
C19—O4—Zn1103.2 (3)C21—C20—C19107.8 (4)
H1W1—O1W—H1W2108.7 (19)C22—C21—C26120.6 (5)
N2—N1—C5108.4 (4)C22—C21—C20133.6 (5)
C7—N2—N1120.2 (4)C26—C21—C20105.8 (4)
C7—N2—Zn1119.8 (4)C21—C22—C23117.7 (6)
N1—N2—Zn1120.0 (3)C21—C22—H22121.1
C6—N3—C13111.3 (4)C23—C22—H22121.1
C6—N3—H3N133 (4)C22—C23—C24121.1 (6)
C13—N3—H3N116 (4)C22—C23—H23119.4
N5—N4—C18108.0 (4)C24—C23—H23119.4
C20—N5—N4121.4 (4)C23—C24—C25122.3 (6)
C20—N5—Zn1120.7 (3)C23—C24—H24118.8
N4—N5—Zn1117.8 (3)C25—C24—H24118.8
C19—N6—C26111.1 (4)C26—C25—C24116.0 (6)
C19—N6—H6N117 (4)C26—C25—H25122.0
C26—N6—H6N131 (4)C24—C25—H25122.0
C28—N7—C27115.1 (8)C25—C26—C21122.2 (6)
C28—N7—C29127.0 (10)C25—C26—N6128.1 (5)
C27—N7—C29117.7 (9)C21—C26—N6109.7 (4)
C2—C1—S1112.2 (5)O5—C27—N7117.4 (10)
C2—C1—H1123.9O5—C27—H27121.3
S1—C1—H1123.9N7—C27—H27121.3
C1—C2—C3113.9 (6)N7—C28—H28A109.5
C1—C2—H2123.1N7—C28—H28B109.5
C3—C2—H2123.1H28A—C28—H28B109.5
C4—C3—C2111.7 (5)N7—C28—H28C109.5
C4—C3—H3B124.1H28A—C28—H28C109.5
C2—C3—H3B124.1H28B—C28—H28C109.5
C3—C4—C5129.6 (5)N7—C29—H29A109.5
C3—C4—S1110.8 (4)N7—C29—H29B109.5
C5—C4—S1119.6 (4)H29A—C29—H29B109.5
O1—C5—N1124.8 (5)N7—C29—H29C109.5
O1—C5—C4120.5 (4)H29A—C29—H29C109.5
N1—C5—C4114.7 (5)H29B—C29—H29C109.5
O2—C6—N3129.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1w1···O20.84 (1)2.06 (3)2.859 (5)158 (6)
O1W—H1w2···O50.84 (1)2.31 (8)2.771 (9)115 (7)
N3—H3N···O1Wi0.84 (1)1.98 (1)2.813 (6)173 (5)
N6—H6N···O4ii0.84 (1)2.06 (2)2.884 (5)169 (5)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C13H8N3O2S)2]·C3H7NO·H2O
Mr697.05
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.5250 (8), 12.0656 (8), 13.4643 (9)
α, β, γ (°)105.913 (1), 100.531 (1), 114.754 (1)
V3)1537.25 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.22 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.812, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
13275, 6630, 3036
Rint0.044
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.182, 0.98
No. of reflections6630
No. of parameters432
No. of restraints77
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.35

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Zn1—O12.103 (3)Zn1—O42.440 (3)
Zn1—O22.370 (3)Zn1—N22.017 (4)
Zn1—O32.043 (3)Zn1—N52.022 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1w1···O20.84 (1)2.06 (3)2.859 (5)158 (6)
O1W—H1w2···O50.84 (1)2.31 (8)2.771 (9)115 (7)
N3—H3N···O1Wi0.84 (1)1.98 (1)2.813 (6)173 (5)
N6—H6N···O4ii0.84 (1)2.06 (2)2.884 (5)169 (5)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRodríguez-Argüelles, M. C., Cao, R., García-Deibe, A. M., Pelizzi, C., Sanmartín-Matalobos, J. & Zani, F. (2009). Polyhedron, 28, 2187–2195.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds