metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[N′-(2-oxo-1H-indol-3-yl­idene)furan-2-carbohydrazidato-κ3O,N′,O′]manganese(II) N,N-di­methyl­formide monosolvate monohydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: nadiahhalim@um.edu.my

(Received 19 August 2010; accepted 4 October 2010; online 23 October 2010)

In the title compound, [Mn(C13H8N3O3)2]·C3H7NO·H2O, the metal atom is O,N,O′-chelated by two deprotonated Schiff bases and exists in a distorted octa­hedral geometry. The N–H groups, the carbonyl group of the DMF mol­ecule and the uncoord­inated water mol­ecule engage in N—H⋯O and O—H⋯O hydrogen-bonding inter­actions, generating a hydrogen-bonded ribbon that propagates along [110].

Related literature

For the crystal structure of the uncoordinated Schiff base ligand, see: Rodríguez-Argüelles et al. (2009[Rodríguez-Argüelles, M. C., Cao, R., García-Deibe, A. M., Pelizzi, C., Sanmartín-Matalobos, J. & Zani, F. (2009). Polyhedron, 28, 2187-2195.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C13H8N3O3)2]·C3H7NO·H2O

  • Mr = 654.50

  • Triclinic, [P \overline 1]

  • a = 11.4833 (7) Å

  • b = 11.5599 (7) Å

  • c = 13.1619 (8) Å

  • α = 107.580 (1)°

  • β = 97.800 (1)°

  • γ = 115.159 (1)°

  • V = 1435.21 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 295 K

  • 0.45 × 0.32 × 0.20 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.798, Tmax = 0.902

  • 12170 measured reflections

  • 6180 independent reflections

  • 4297 reflections with I > 2I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.126

  • S = 0.95

  • 6180 reflections

  • 420 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—N2 2.016 (2)
Mn1—N5 2.023 (2)
Mn1—O5 2.0667 (18)
Mn1—O2 2.076 (2)
Mn1—O3 2.2676 (19)
Mn1—O6 2.2998 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O3 0.86 (1) 2.06 (2) 2.896 (3) 165 (4)
O1W—H1W2⋯O7 0.86 (1) 1.93 (2) 2.762 (5) 161 (4)
N3—H3⋯O1Wi 0.86 (1) 1.96 (1) 2.811 (4) 176 (3)
N6—H6⋯O6ii 0.87 (1) 2.05 (1) 2.899 (3) 167 (3)
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Divalent cobalt, nickel, copper and zinc derivatives of Schiff base condensation product of isatin and 2-furoic acid hydrazide have been synthesized, and these are reported along with the crystal structure of the Schiff base (Rodríguez-Argüelles et al., 2009). If the deprotonated Schiff base is to chelate in a terdentate manner, the anion has to rotate about the nitrogen-nitrogen bond. Such a rotation is observed in the manganese derivative, which crystallizes from DMF as a monohydrated monosolvate (Scheme I). The divalent metal atom is O,N,O'-chelated by two deprotonated Schiff base in an octahedral geometry (Fig. 1). The amino group, the carbonyl group of the DMF and the lattice water molecule engage in N—H···O and O—H···O hydrogen bonding interactions to generate a hydrogen-bonded ribbon that propagates along [110].

Related literature top

For the crystal structure of the uncoordinated Schiff base ligand, see: Rodríguez-Argüelles et al. (2009).

Experimental top

The Schiff base was synthesized by condensing isatin and furoylhydrazine according to a literature procedure (Rodríguez-Argüelles et al., 2009). Manganese acetate (1 mmol) and the Schiff base (2 mmol) were heated in ethanol (100 ml) for 5 h; several drops of triethylamine were added. The solvent was removed and the product purified by recrystallization from DMF.

Refinement top

The amino and water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H/O–H = 0.85 (1) Å; their Uiso parameters were freely refined. Carbon-bound H-atoms were placed in calculated positions (C–H = 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2-1.5Ueq(C). The highest peak and deepest hole in the final difference map are located 0.65 Å from Mn1 and 0.57 Å from H28A, respectively.

Structure description top

Divalent cobalt, nickel, copper and zinc derivatives of Schiff base condensation product of isatin and 2-furoic acid hydrazide have been synthesized, and these are reported along with the crystal structure of the Schiff base (Rodríguez-Argüelles et al., 2009). If the deprotonated Schiff base is to chelate in a terdentate manner, the anion has to rotate about the nitrogen-nitrogen bond. Such a rotation is observed in the manganese derivative, which crystallizes from DMF as a monohydrated monosolvate (Scheme I). The divalent metal atom is O,N,O'-chelated by two deprotonated Schiff base in an octahedral geometry (Fig. 1). The amino group, the carbonyl group of the DMF and the lattice water molecule engage in N—H···O and O—H···O hydrogen bonding interactions to generate a hydrogen-bonded ribbon that propagates along [110].

For the crystal structure of the uncoordinated Schiff base ligand, see: Rodríguez-Argüelles et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
Bis[N'-(2-oxo-1H-indol-3-ylidene)furan-2-carbohydrazidato- κ3O,N',O']manganese(II) N,N-dimethylformide monosolvate monohydrate top
Crystal data top
[Mn(C13H8N3O3)2]·C3H7NO·H2OZ = 2
Mr = 654.50F(000) = 674
Triclinic, P1Dx = 1.515 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.4833 (7) ÅCell parameters from 4583 reflections
b = 11.5599 (7) Åθ = 2.2–26.7°
c = 13.1619 (8) ŵ = 0.53 mm1
α = 107.580 (1)°T = 295 K
β = 97.800 (1)°Block, black
γ = 115.159 (1)°0.45 × 0.32 × 0.20 mm
V = 1435.21 (15) Å3
Data collection top
Bruker SMART area-detector
diffractometer
6180 independent reflections
Radiation source: fine-focus sealed tube4297 reflections with I > 2˘I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.798, Tmax = 0.902k = 1414
12170 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0671P)2 + 0.6988P]
where P = (Fo2 + 2Fc2)/3
6180 reflections(Δ/σ)max = 0.001
420 parametersΔρmax = 0.61 e Å3
4 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Mn(C13H8N3O3)2]·C3H7NO·H2Oγ = 115.159 (1)°
Mr = 654.50V = 1435.21 (15) Å3
Triclinic, P1Z = 2
a = 11.4833 (7) ÅMo Kα radiation
b = 11.5599 (7) ŵ = 0.53 mm1
c = 13.1619 (8) ÅT = 295 K
α = 107.580 (1)°0.45 × 0.32 × 0.20 mm
β = 97.800 (1)°
Data collection top
Bruker SMART area-detector
diffractometer
6180 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4297 reflections with I > 2˘I)
Tmin = 0.798, Tmax = 0.902Rint = 0.019
12170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0414 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.61 e Å3
6180 reflectionsΔρmin = 0.26 e Å3
420 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.48864 (4)0.33824 (4)0.74033 (3)0.03787 (13)
O10.8779 (2)0.7680 (2)0.9910 (2)0.0715 (6)
O20.66584 (18)0.5205 (2)0.84440 (17)0.0580 (5)
O30.26092 (19)0.2002 (2)0.67083 (16)0.0536 (5)
O40.5776 (2)0.0564 (2)0.90415 (16)0.0584 (5)
O50.51399 (19)0.21270 (19)0.81422 (15)0.0510 (5)
O60.4817 (2)0.4103 (2)0.59584 (16)0.0565 (5)
O70.2100 (4)0.2105 (4)0.3397 (3)0.1265 (12)
O1W0.1448 (3)0.0178 (3)0.4351 (2)0.0872 (8)
H1W10.168 (4)0.059 (4)0.5069 (9)0.105*
H1W20.153 (4)0.084 (3)0.413 (3)0.105*
N10.5167 (2)0.5882 (2)0.90994 (18)0.0448 (5)
N20.4257 (2)0.4610 (2)0.83192 (18)0.0429 (5)
N30.0846 (2)0.2401 (3)0.7046 (2)0.0530 (6)
H30.017 (2)0.1608 (18)0.660 (2)0.064*
N40.6060 (2)0.1576 (2)0.67171 (17)0.0406 (5)
N50.5641 (2)0.2372 (2)0.64017 (17)0.0406 (5)
N60.5591 (2)0.3727 (3)0.4406 (2)0.0527 (6)
H60.544 (3)0.430 (3)0.418 (2)0.063*
N70.1231 (3)0.3539 (4)0.3902 (3)0.0870 (10)
C10.9606 (4)0.8932 (4)1.0792 (3)0.0838 (11)
H11.05430.94061.09720.101*
C20.8913 (4)0.9391 (4)1.1360 (3)0.0743 (10)
H20.92611.02171.19890.089*
C30.7542 (3)0.8375 (3)1.0817 (2)0.0543 (7)
H3A0.68050.84011.10190.065*
C40.7501 (3)0.7363 (3)0.9952 (2)0.0473 (6)
C50.6409 (3)0.6055 (3)0.9102 (2)0.0425 (6)
C60.2148 (3)0.2725 (3)0.7204 (2)0.0456 (6)
C70.2962 (2)0.4144 (3)0.8083 (2)0.0421 (6)
C80.2058 (3)0.4627 (3)0.8430 (2)0.0447 (6)
C90.2232 (3)0.5855 (3)0.9194 (2)0.0553 (7)
H90.30900.65890.96360.066*
C100.1083 (4)0.5958 (4)0.9281 (3)0.0682 (9)
H100.11690.67780.97790.082*
C110.0186 (3)0.4850 (4)0.8634 (3)0.0709 (9)
H110.09390.49380.87180.085*
C120.0379 (3)0.3611 (4)0.7864 (3)0.0623 (8)
H120.12390.28750.74300.075*
C130.0758 (3)0.3521 (3)0.7773 (2)0.0487 (6)
C140.6181 (3)0.0311 (4)0.9250 (3)0.0682 (9)
H140.60780.05870.98410.082*
C150.6745 (3)0.0724 (3)0.8495 (3)0.0627 (8)
H150.71000.13170.84690.075*
C160.6695 (3)0.0079 (3)0.7746 (3)0.0524 (7)
H160.70090.01680.71270.063*
C170.6104 (3)0.0691 (3)0.8102 (2)0.0441 (6)
C180.5727 (2)0.1531 (3)0.7664 (2)0.0397 (5)
C190.5330 (3)0.3554 (3)0.5333 (2)0.0459 (6)
C200.5793 (2)0.2607 (3)0.5509 (2)0.0422 (6)
C210.6341 (2)0.2229 (3)0.4619 (2)0.0436 (6)
C220.6909 (3)0.1385 (3)0.4341 (2)0.0526 (7)
H220.70130.09160.47790.063*
C230.7322 (3)0.1256 (3)0.3391 (3)0.0636 (8)
H230.76960.06830.31820.076*
C240.7183 (3)0.1973 (3)0.2746 (3)0.0660 (9)
H240.74750.18760.21160.079*
C250.6621 (3)0.2828 (3)0.3020 (2)0.0600 (8)
H250.65310.33070.25880.072*
C260.6202 (3)0.2940 (3)0.3953 (2)0.0479 (6)
C270.1768 (6)0.2935 (6)0.3242 (4)0.121 (2)
H270.19000.31520.26270.145*
C280.1071 (5)0.3253 (5)0.4865 (4)0.1004 (13)
H28A0.18830.33170.52490.151*
H28B0.03290.23290.46430.151*
H28C0.08920.39190.53560.151*
C290.0825 (5)0.4465 (6)0.3654 (6)0.167 (3)
H29A0.10700.46000.30130.251*
H29B0.12690.53480.42860.251*
H29C0.01370.40670.34980.251*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0398 (2)0.0382 (2)0.0430 (2)0.02413 (17)0.01540 (16)0.01709 (17)
O10.0411 (11)0.0745 (15)0.0855 (16)0.0201 (11)0.0176 (11)0.0284 (13)
O20.0464 (11)0.0552 (12)0.0704 (13)0.0277 (10)0.0209 (10)0.0174 (10)
O30.0535 (11)0.0492 (11)0.0541 (11)0.0263 (10)0.0129 (9)0.0159 (9)
O40.0677 (13)0.0746 (14)0.0528 (11)0.0411 (11)0.0250 (10)0.0384 (11)
O50.0597 (12)0.0580 (12)0.0510 (11)0.0368 (10)0.0260 (9)0.0261 (9)
O60.0698 (13)0.0656 (13)0.0609 (12)0.0460 (11)0.0292 (10)0.0358 (10)
O70.142 (3)0.114 (3)0.128 (3)0.064 (3)0.058 (2)0.046 (2)
O1W0.0866 (18)0.0680 (17)0.0727 (16)0.0291 (15)0.0095 (15)0.0053 (14)
N10.0402 (12)0.0448 (12)0.0470 (12)0.0196 (10)0.0124 (10)0.0178 (10)
N20.0416 (12)0.0447 (12)0.0466 (12)0.0214 (10)0.0145 (10)0.0229 (10)
N30.0407 (13)0.0551 (15)0.0554 (14)0.0178 (11)0.0092 (11)0.0235 (12)
N40.0418 (11)0.0421 (11)0.0465 (12)0.0237 (10)0.0160 (10)0.0231 (10)
N50.0397 (11)0.0404 (11)0.0451 (12)0.0202 (9)0.0126 (9)0.0210 (10)
N60.0615 (15)0.0576 (15)0.0560 (14)0.0335 (13)0.0234 (12)0.0355 (12)
N70.079 (2)0.084 (2)0.085 (2)0.0233 (18)0.0087 (18)0.049 (2)
C10.0438 (18)0.078 (3)0.087 (3)0.0036 (18)0.0034 (18)0.030 (2)
C20.069 (2)0.066 (2)0.0570 (19)0.0151 (19)0.0051 (17)0.0179 (17)
C30.0555 (17)0.0529 (17)0.0463 (15)0.0199 (14)0.0113 (13)0.0217 (14)
C40.0381 (14)0.0519 (16)0.0537 (16)0.0186 (13)0.0130 (12)0.0293 (14)
C50.0421 (14)0.0472 (15)0.0461 (14)0.0236 (12)0.0169 (12)0.0247 (12)
C60.0444 (15)0.0486 (15)0.0451 (14)0.0218 (13)0.0115 (12)0.0232 (12)
C70.0395 (14)0.0490 (15)0.0429 (14)0.0227 (12)0.0142 (11)0.0230 (12)
C80.0444 (14)0.0575 (16)0.0436 (14)0.0278 (13)0.0202 (12)0.0277 (13)
C90.0586 (18)0.0660 (19)0.0513 (16)0.0362 (16)0.0243 (14)0.0247 (15)
C100.078 (2)0.091 (3)0.065 (2)0.057 (2)0.0374 (18)0.0368 (19)
C110.066 (2)0.111 (3)0.074 (2)0.060 (2)0.0384 (19)0.053 (2)
C120.0468 (17)0.091 (2)0.068 (2)0.0381 (17)0.0243 (15)0.0469 (19)
C130.0437 (15)0.0616 (17)0.0506 (15)0.0265 (14)0.0180 (12)0.0323 (14)
C140.072 (2)0.089 (2)0.072 (2)0.046 (2)0.0239 (18)0.057 (2)
C150.0578 (18)0.071 (2)0.083 (2)0.0394 (17)0.0218 (17)0.0483 (18)
C160.0476 (15)0.0591 (17)0.0627 (17)0.0307 (14)0.0193 (13)0.0321 (15)
C170.0415 (14)0.0490 (15)0.0423 (14)0.0198 (12)0.0122 (11)0.0231 (12)
C180.0350 (13)0.0412 (13)0.0425 (13)0.0183 (11)0.0104 (11)0.0173 (11)
C190.0464 (15)0.0496 (15)0.0485 (15)0.0245 (13)0.0168 (12)0.0261 (13)
C200.0407 (14)0.0415 (14)0.0453 (14)0.0186 (12)0.0126 (11)0.0215 (12)
C210.0404 (14)0.0412 (14)0.0419 (14)0.0147 (12)0.0107 (11)0.0164 (11)
C220.0488 (16)0.0487 (16)0.0565 (17)0.0224 (13)0.0163 (13)0.0184 (13)
C230.0587 (19)0.0578 (19)0.0639 (19)0.0257 (16)0.0237 (16)0.0138 (16)
C240.063 (2)0.067 (2)0.0546 (18)0.0222 (17)0.0278 (16)0.0187 (16)
C250.0611 (19)0.0615 (19)0.0511 (17)0.0201 (16)0.0219 (15)0.0280 (15)
C260.0439 (15)0.0442 (15)0.0494 (15)0.0154 (12)0.0137 (12)0.0205 (12)
C270.110 (4)0.114 (4)0.074 (3)0.001 (3)0.023 (3)0.038 (3)
C280.109 (3)0.104 (3)0.104 (3)0.054 (3)0.036 (3)0.057 (3)
C290.112 (4)0.115 (4)0.229 (7)0.015 (3)0.044 (4)0.113 (5)
Geometric parameters (Å, º) top
Mn1—N22.016 (2)C6—C71.470 (4)
Mn1—N52.023 (2)C7—C81.437 (3)
Mn1—O52.0667 (18)C8—C91.381 (4)
Mn1—O22.076 (2)C8—C131.404 (4)
Mn1—O32.2676 (19)C9—C101.391 (4)
Mn1—O62.2998 (19)C9—H90.93
O1—C11.364 (4)C10—C111.381 (5)
O1—C41.367 (3)C10—H100.93
O2—C51.261 (3)C11—C121.385 (5)
O3—C61.243 (3)C11—H110.93
O4—C141.359 (4)C12—C131.371 (4)
O4—C171.372 (3)C12—H120.93
O5—C181.255 (3)C14—C151.336 (5)
O6—C191.249 (3)C14—H140.93
O7—C271.231 (7)C15—C161.413 (4)
O1W—H1W10.86 (1)C15—H150.93
O1W—H1W20.86 (1)C16—C171.350 (4)
N1—N21.341 (3)C16—H160.93
N1—C51.353 (3)C17—C181.446 (3)
N2—C71.301 (3)C19—C201.466 (4)
N3—C61.346 (3)C20—C211.443 (4)
N3—C131.411 (4)C21—C221.379 (4)
N3—H30.86 (1)C21—C261.407 (4)
N4—N51.343 (3)C22—C231.385 (4)
N4—C181.361 (3)C22—H220.93
N5—C201.301 (3)C23—C241.391 (5)
N6—C191.348 (3)C23—H230.93
N6—C261.415 (4)C24—C251.383 (4)
N6—H60.87 (1)C24—H240.93
N7—C271.330 (7)C25—C261.369 (4)
N7—C281.419 (5)C25—H250.93
N7—C291.438 (5)C27—H270.93
C1—C21.325 (5)C28—H28A0.96
C1—H10.93C28—H28B0.96
C2—C31.408 (4)C28—H28C0.96
C2—H20.93C29—H29A0.96
C3—C41.342 (4)C29—H29B0.96
C3—H3A0.93C29—H29C0.96
C4—C51.448 (4)
N2—Mn1—N5171.59 (8)C11—C10—C9120.4 (3)
N2—Mn1—O5111.99 (8)C11—C10—H10119.8
N5—Mn1—O575.50 (7)C9—C10—H10119.8
N2—Mn1—O275.65 (8)C10—C11—C12122.4 (3)
N5—Mn1—O2100.19 (8)C10—C11—H11118.8
O5—Mn1—O296.41 (8)C12—C11—H11118.8
N2—Mn1—O378.39 (8)C13—C12—C11116.9 (3)
N5—Mn1—O3105.49 (8)C13—C12—H12121.6
O5—Mn1—O393.69 (7)C11—C12—H12121.6
O2—Mn1—O3154.03 (7)C12—C13—C8121.7 (3)
N2—Mn1—O695.06 (8)C12—C13—N3128.3 (3)
N5—Mn1—O677.73 (7)C8—C13—N3110.0 (2)
O5—Mn1—O6152.77 (7)C15—C14—O4111.3 (3)
O2—Mn1—O693.09 (8)C15—C14—H14124.3
O3—Mn1—O688.68 (7)O4—C14—H14124.3
C1—O1—C4104.9 (3)C14—C15—C16106.3 (3)
C5—O2—Mn1110.94 (16)C14—C15—H15126.9
C6—O3—Mn1105.12 (16)C16—C15—H15126.9
C14—O4—C17105.7 (2)C17—C16—C15106.8 (3)
C18—O5—Mn1111.41 (15)C17—C16—H16126.6
C19—O6—Mn1105.01 (15)C15—C16—H16126.6
H1W1—O1W—H1W2103 (4)C16—C17—O4109.9 (2)
N2—N1—C5107.4 (2)C16—C17—C18132.7 (2)
C7—N2—N1122.6 (2)O4—C17—C18117.3 (2)
C7—N2—Mn1117.46 (18)O5—C18—N4125.9 (2)
N1—N2—Mn1119.86 (16)O5—C18—C17120.5 (2)
C6—N3—C13110.2 (2)N4—C18—C17113.6 (2)
C6—N3—H3124 (2)O6—C19—N6127.8 (2)
C13—N3—H3125 (2)O6—C19—C20125.0 (2)
N5—N4—C18107.04 (19)N6—C19—C20107.2 (2)
C20—N5—N4122.4 (2)N5—C20—C21138.0 (2)
C20—N5—Mn1117.93 (17)N5—C20—C19114.3 (2)
N4—N5—Mn1119.52 (15)C21—C20—C19107.7 (2)
C19—N6—C26110.0 (2)C22—C21—C26120.3 (2)
C19—N6—H6122 (2)C22—C21—C20134.3 (2)
C26—N6—H6128 (2)C26—C21—C20105.4 (2)
C27—N7—C28118.5 (4)C21—C22—C23118.1 (3)
C27—N7—C29121.1 (5)C21—C22—H22121.0
C28—N7—C29120.5 (5)C23—C22—H22121.0
C2—C1—O1111.8 (3)C22—C23—C24120.9 (3)
C2—C1—H1124.1C22—C23—H23119.6
O1—C1—H1124.1C24—C23—H23119.6
C1—C2—C3106.0 (3)C25—C24—C23121.5 (3)
C1—C2—H2127.0C25—C24—H24119.2
C3—C2—H2127.0C23—C24—H24119.2
C4—C3—C2106.9 (3)C26—C25—C24117.4 (3)
C4—C3—H3A126.5C26—C25—H25121.3
C2—C3—H3A126.5C24—C25—H25121.3
C3—C4—O1110.3 (2)C25—C26—C21121.9 (3)
C3—C4—C5133.2 (3)C25—C26—N6128.5 (3)
O1—C4—C5116.5 (2)C21—C26—N6109.6 (2)
O2—C5—N1126.0 (2)O7—C27—N7123.8 (5)
O2—C5—C4120.4 (2)O7—C27—H27118.1
N1—C5—C4113.6 (2)N7—C27—H27118.1
O3—C6—N3128.2 (3)N7—C28—H28A109.5
O3—C6—C7125.2 (2)N7—C28—H28B109.5
N3—C6—C7106.6 (2)H28A—C28—H28B109.5
N2—C7—C8138.1 (3)N7—C28—H28C109.5
N2—C7—C6113.7 (2)H28A—C28—H28C109.5
C8—C7—C6108.2 (2)H28B—C28—H28C109.5
C9—C8—C13120.6 (3)N7—C29—H29A109.5
C9—C8—C7134.3 (3)N7—C29—H29B109.5
C13—C8—C7105.0 (2)H29A—C29—H29B109.5
C8—C9—C10117.8 (3)N7—C29—H29C109.5
C8—C9—H9121.1H29A—C29—H29C109.5
C10—C9—H9121.1H29B—C29—H29C109.5
N2—Mn1—O2—C52.65 (17)O3—C6—C7—C8179.1 (2)
N5—Mn1—O2—C5175.17 (17)N3—C6—C7—C80.2 (3)
O5—Mn1—O2—C5108.46 (18)N2—C7—C8—C90.4 (5)
O3—Mn1—O2—C53.8 (3)C6—C7—C8—C9178.8 (3)
O6—Mn1—O2—C597.10 (18)N2—C7—C8—C13179.3 (3)
N2—Mn1—O3—C63.01 (16)C6—C7—C8—C130.0 (3)
N5—Mn1—O3—C6169.32 (16)C13—C8—C9—C100.5 (4)
O5—Mn1—O3—C6114.71 (16)C7—C8—C9—C10178.2 (3)
O2—Mn1—O3—C61.9 (3)C8—C9—C10—C111.2 (5)
O6—Mn1—O3—C692.44 (17)C9—C10—C11—C121.2 (5)
N2—Mn1—O5—C18169.67 (16)C10—C11—C12—C130.4 (5)
N5—Mn1—O5—C186.30 (17)C11—C12—C13—C80.2 (4)
O2—Mn1—O5—C1892.60 (17)C11—C12—C13—N3178.6 (3)
O3—Mn1—O5—C18111.36 (17)C9—C8—C13—C120.2 (4)
O6—Mn1—O5—C1817.1 (3)C7—C8—C13—C12179.2 (2)
N2—Mn1—O6—C19172.82 (18)C9—C8—C13—N3178.8 (2)
N5—Mn1—O6—C192.79 (17)C7—C8—C13—N30.2 (3)
O5—Mn1—O6—C1913.5 (3)C6—N3—C13—C12179.3 (3)
O2—Mn1—O6—C1996.97 (18)C6—N3—C13—C80.3 (3)
O3—Mn1—O6—C19108.96 (18)C17—O4—C14—C150.3 (4)
C5—N1—N2—C7177.6 (2)O4—C14—C15—C160.3 (4)
C5—N1—N2—Mn10.9 (3)C14—C15—C16—C170.2 (4)
O5—Mn1—N2—C792.86 (19)C15—C16—C17—O40.0 (3)
O2—Mn1—N2—C7175.9 (2)C15—C16—C17—C18177.2 (3)
O3—Mn1—N2—C73.56 (18)C14—O4—C17—C160.1 (3)
O6—Mn1—N2—C784.04 (19)C14—O4—C17—C18177.5 (2)
O5—Mn1—N2—N190.30 (18)Mn1—O5—C18—N45.7 (3)
O2—Mn1—N2—N10.89 (17)Mn1—O5—C18—C17174.99 (18)
O3—Mn1—N2—N1179.61 (18)N5—N4—C18—O50.0 (3)
O6—Mn1—N2—N192.79 (18)N5—N4—C18—C17179.4 (2)
C18—N4—N5—C20179.0 (2)C16—C17—C18—O5177.8 (3)
C18—N4—N5—Mn16.2 (2)O4—C17—C18—O50.9 (4)
O5—Mn1—N5—C20177.8 (2)C16—C17—C18—N41.6 (4)
O2—Mn1—N5—C2088.14 (19)O4—C17—C18—N4178.5 (2)
O3—Mn1—N5—C2087.97 (19)Mn1—O6—C19—N6175.7 (2)
O6—Mn1—N5—C202.83 (18)Mn1—O6—C19—C202.7 (3)
O5—Mn1—N5—N47.14 (16)C26—N6—C19—O6178.8 (3)
O2—Mn1—N5—N486.91 (18)C26—N6—C19—C200.2 (3)
O3—Mn1—N5—N496.98 (17)N4—N5—C20—C210.2 (5)
O6—Mn1—N5—N4177.88 (18)Mn1—N5—C20—C21175.1 (3)
C4—O1—C1—C20.1 (4)N4—N5—C20—C19177.3 (2)
O1—C1—C2—C30.0 (4)Mn1—N5—C20—C192.4 (3)
C1—C2—C3—C40.0 (4)O6—C19—C20—N50.6 (4)
C2—C3—C4—O10.1 (3)N6—C19—C20—N5178.1 (2)
C2—C3—C4—C5179.2 (3)O6—C19—C20—C21178.9 (3)
C1—O1—C4—C30.1 (3)N6—C19—C20—C210.2 (3)
C1—O1—C4—C5179.3 (3)N5—C20—C21—C222.7 (6)
Mn1—O2—C5—N14.7 (3)C19—C20—C21—C22179.7 (3)
Mn1—O2—C5—C4176.15 (18)N5—C20—C21—C26177.5 (3)
N2—N1—C5—O23.9 (3)C19—C20—C21—C260.1 (3)
N2—N1—C5—C4176.9 (2)C26—C21—C22—C230.5 (4)
C3—C4—C5—O2172.0 (3)C20—C21—C22—C23179.3 (3)
O1—C4—C5—O27.2 (4)C21—C22—C23—C240.9 (4)
C3—C4—C5—N18.7 (4)C22—C23—C24—C250.6 (5)
O1—C4—C5—N1172.1 (2)C23—C24—C25—C260.1 (5)
Mn1—O3—C6—N3176.3 (2)C24—C25—C26—C210.5 (4)
Mn1—O3—C6—C72.4 (3)C24—C25—C26—N6179.5 (3)
C13—N3—C6—O3179.2 (3)C22—C21—C26—C250.2 (4)
C13—N3—C6—C70.3 (3)C20—C21—C26—C25180.0 (2)
N1—N2—C7—C81.0 (5)C22—C21—C26—N6179.8 (2)
Mn1—N2—C7—C8175.8 (3)C20—C21—C26—N60.0 (3)
N1—N2—C7—C6179.9 (2)C19—N6—C26—C25179.9 (3)
Mn1—N2—C7—C63.4 (3)C19—N6—C26—C210.1 (3)
O3—C6—C7—N20.3 (4)C28—N7—C27—O72.2 (7)
N3—C6—C7—N2179.3 (2)C29—N7—C27—O7178.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O30.86 (1)2.06 (2)2.896 (3)165 (4)
O1W—H1W2···O70.86 (1)1.93 (2)2.762 (5)161 (4)
N3—H3···O1Wi0.86 (1)1.96 (1)2.811 (4)176 (3)
N6—H6···O6ii0.87 (1)2.05 (1)2.899 (3)167 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C13H8N3O3)2]·C3H7NO·H2O
Mr654.50
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)11.4833 (7), 11.5599 (7), 13.1619 (8)
α, β, γ (°)107.580 (1), 97.800 (1), 115.159 (1)
V3)1435.21 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.45 × 0.32 × 0.20
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.798, 0.902
No. of measured, independent and
observed [I > 2˘I)] reflections
12170, 6180, 4297
Rint0.019
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.126, 0.95
No. of reflections6180
No. of parameters420
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.26

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Mn1—N22.016 (2)Mn1—O22.076 (2)
Mn1—N52.023 (2)Mn1—O32.2676 (19)
Mn1—O52.0667 (18)Mn1—O62.2998 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O30.86 (1)2.06 (2)2.896 (3)165 (4)
O1W—H1W2···O70.86 (1)1.93 (2)2.762 (5)161 (4)
N3—H3···O1Wi0.86 (1)1.96 (1)2.811 (4)176 (3)
N6—H6···O6ii0.87 (1)2.05 (1)2.899 (3)167 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRodríguez-Argüelles, M. C., Cao, R., García-Deibe, A. M., Pelizzi, C., Sanmartín-Matalobos, J. & Zani, F. (2009). Polyhedron, 28, 2187–2195.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds